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Abstract

In recent years, many methods have been proposed for

the task of subspace clustering with missing data (SCMD),

and its complementary problem, high-rank matrix comple-

tion (HRMC). Given incomplete data drawn from a union

of subspaces, these methods aim to simultaneously cluster

each data point and recover the unobserved entries. In this

work, we review the current state of this literature. We or-

ganize the existing methods into five distinct families and

discuss their relative strengths and weaknesses. This clas-

sification exposes some gaps in the current literature, which

we fill by introducing a few natural extensions of prior meth-

ods. Finally, we provide a thorough and unbiased evalua-

tion of representative methods on synthetic data. Our exper-

iments demonstrate a clear advantage for alternating be-

tween projected zero-filled sparse subspace clustering, and

per-group matrix completion. Understanding why this intu-

itive but heuristic method performs well is an open problem

for future theoretical study.

1. Introduction

Modeling high-dimensional data as a union of low-

dimensional subspaces is pervasive in computer vision and

data science more broadly [34, 16, 17, 31, 37]. To this end,

significant progress has been made toward developing effi-

cient subspace clustering algorithms with both strong theo-

retical guarantees and empirical performance, under a broad

range of noisy data settings [8, 9, 22, 23, 15, 18, 40, 41,

32, 42, 38]. For much of the previous decade however, a

relatively small amount of work has focused on analyzing

union-of-subspaces (UoS) data with missing entries.

More recently, there has been a surge of interest in the

subspace clustering with missing data (SCMD) and high-

rank matrix completion (HRMC) problems. Many new

methods have been proposed, based on a diverse range of

principles [10, 2, 29, 39, 15, 26, 19, 7, 30, 14, 11, 12, 13].

Significant theoretical results have also emerged, establish-

ing for example necessary and sufficient conditions for UoS

identifiability [29, 27, 28], and relationships between the

number of missing entries and cluster correctness [6, 33].

Because of this rapid progress however, there is now lim-

ited agreement on which of the current methods in fact per-

form the best, and which will be most interesting for further

theoretical study. In an effort to raise consensus, we review

the major existing approaches to joint SCMD+HRMC prob-

lem and evaluate them on common ground. In the process,

we also observe and fill in some noticeable gaps in the set

of current methods.

Paper contributions.

• We organize the set of existing methods for

SCMD+HRMC into five distinct families, and discuss

their relative strengths and weaknesses (Table 1).

• We introduce several natural extensions of prior meth-

ods that are currently missing from the literature.

• We perform a thorough and unbiased evaluation of rep-

resentative methods on synthetic data.

• Our experiments reveal a clear advantage for an intu-

itive but heuristic approach: alternating between pro-

jected zero-filled sparse subspace clustering, and per-

group low-rank matrix completion. We suggest that

understanding this method’s performance would be a

valuable goal for future theoretical study.

Paper organization. In Section 2, we first introduce nota-

tion and a statement of the SCMD+HRMC problem. We

then review the well-known approaches to this problem,

classifying them into five distinct families (Table 1). We

discuss each method (or group of closely related methods)

under its own heading. Headings marked with a “(*)” con-

tain our proposed gap-filling extensions. In Section 3, we

present our evaluation of representative methods on syn-

thetic data. We conclude in Section 4.



Family Strengths Weaknesses Example methods

Alternating

clustering &

completion

Intuitive alternating procedure leveraging

strong prior algorithms.

No associated joint optimization problem. LRMC-SSC; (Alt)

(P)ZF-EnSC+gLRMC (*)

[39, 19].

Joint clustering

& completion

Formulates SCMD+HRMC as a joint

optimization problem.

Problems are non-convex; algorithms are

more complex; relies on poorly understood

self-expression based completion.

SSC-lifting [7]; S3LR [19];

SSC-SRMC [11]; SRME-MC

[12].

Matrix

factorization

Formulates SCMD+HRMC as a joint

optimization problem; well-motivated

completion.

Problems are non-convex; requires an

estimate of the subspace dimension.

KSS-MD [2]; EM-MD [29];

(LR-)GSSC (*) [26].

Algebraic Exploits the (nonlinear) low-dimensional

structure in unions of subspaces; does not

depend on clustering for completion.

Complex algorithms; requires a large number

of samples.

VMC [25]; LADMC [30, 24];

KFMC [13].

Neighborhood

based

Intuitive, non-iterative procedure. No associated joint optimization problem;

depends on correctness of nearest neighbors.

HRMC [10]; Robust HRMC

[14]; (Alt) TSC+gLRMC (*)

[15].

Table 1. Classification of the major approaches to SCMD+HRMC into five broad families. Methods with at least some component that is

new to this work are marked with a “(*)”.

2. Classifying approaches to SCMD

Notation. Matrices are denoted with upper case bold let-

ters, X; vectors with lower case bold letters, x; and scalars

with lower case letters, x. RD denotes the set of real vectors

of dimension D; [k] the set of integers 1, . . . , k; and X⊙Y

the Hadamard product. Finally, ‖X‖F , ‖X‖∗, and ‖X‖1
refer to the Frobenius norm, nuclear norm (also known as

the trace norm), and entrywise ℓ1 norm respectively.

Problem description. We assume we are given data X ∈
R

D×N with data points xi ∈ R
D concentrated near a union

of subspaces
⋃n

j=1 Sj , each of dimension d < D. More-

over, we assume we have access only to a subset of ℓi ≤ D
entries for each xi. We let Ω ∈ {0, 1}D×N denote the in-

dicator for the observed entries with ωi the indicator for xi.

We use PΩ(·) to denote the projection onto the coordinate

subspaces of the observed entries, i.e. PΩ(Y ) = Ω ⊙ Y .

The zero-filled data are denoted X̄ = PΩ(X).
The task of subspace clustering with missing data

(SCMD) is then to cluster the x̄i according to subspace

membership. The task of high-rank matrix completion

(HRMC), assuming a union of subspaces model, is to re-

cover the unobserved entries of X . In this work, we refer to

the joint clustering and completion task as SCMD+HRMC.

2.1. Alternating subspace clustering and per-group
completion

The majority of existing methods for subspace cluster-

ing with complete data follow a self-expressive approach,

in which one searches for a matrix C ∈ R
N×N satisfying

X ≈ XC. By choosing an appropriate regularization, one

can promote C to be subspace-preserving. That is, cij = 0
if xi and and xj are drawn from different subspaces. A

segmentation of the data can then be obtained by applying

spectral clustering to an affinity W = |C| + |C⊤|. This

problem can be formulated as

min
C

λ

2
‖X −XC‖2F + θ(C) s.t. diag(C) = 0, (1)

where λ > 0 is a penalty parameter and θ(·) is a regu-

larizer. For example, θ(C) = ‖C‖1, ‖C‖2F , ‖C‖∗, or

γ‖C‖1+(1−γ)‖C‖2F for sparse subspace clustering (SSC)

[9], least-squares regression (LSR) [23], low-rank subspace

clustering [35] and low-rank representation (LRR) [22], and

elastic-net subspace clustering (EnSC) [40] respectively.

(P)ZF-SC+gLRMC. The self-expressive methods can be

immediately extended to the missing data case by work-

ing with the zero-filled X̄ . This approach combined with

sparse regularization is referred to as zero-filled SSC (ZF-

SSC), and was first studied experimentally in [39]. More

recently, theoretical conditions on the maximum tolerable

missing entry rates were established in [6, 33].

A seemingly more attractive alternative to zero-filling is

to first apply low-rank matrix completion (LRMC) to X̄ by

solving the following convex problem [3, 20]

min
Y

‖Y ‖∗ s.t. PΩ(Y − X̄) = 0. (2)

One can then substitute the solution Y MC for X in (1).

In the intended regime where X is full-rank, however, we

should not expect this strategy to add much benefit. We re-

fer to this method as LRMC-SSC, where the prefix indicates

initialization by LRMC.

These naive approaches can be improved by also pro-

jecting the self-expressive differences onto the pattern of

observed entries, yielding for example the SSC with entry-

wise zero-filling (SSC-EWZF) method proposed in [39]:

min
C

λ

2
‖PΩ(X̄−X̄C)‖2F +‖C‖1 s.t. diag(C) = 0. (3)

We refer to this method as projected zero-filled SSC (PZF-



Algorithm 1 Alt SC+gLRMC algorithm framework

1: Input: Observed data X̄; indicator for observed entries

Ω; maxit ≥ 0.

2: Initialize completion Y 0 ← X̄ or Y 0 ← Y MC.

3: Compute affinity W 0 given Y 0, e.g. by PZF-SSC.

4: Spectral clustering on W 0 to get Q0.

5: for k = 1, . . . ,maxit do

6: Update each group Y k−1 diag((Qk)i) by gLRMC.

7: Repeat steps 3-4

8: if Qk unchanged (up to label permutation): break

9: Return: Qk, Y k, W k

SSC), following [33]. The purpose of the projection oper-

ator is merely to discount the meaningless self-expressive

errors over the zero-filled unobserved entries.

To extend these methods to the joint SCMD+HRMC

problem, one can follow subspace clustering with per-group

LRMC (gLRMC). Given a segmentation Q ∈ {0, 1}N×n

with Q1 = 1 from spectral clustering, one solves

min
Y

n
∑

i=1

‖Y diag(qi)‖∗ s.t. PΩ(Y − X̄) = 0. (4)

We indicate methods using this approach with a “+gLRMC”

suffix, e.g. PZF-SSC+gLRMC.

Alt (P)ZF-SC+gLRMC (*). A natural further general-

ization is to repeatedly alternate between subspace clus-

tering and completion. In [19], Li and co-authors con-

sider one variant of this approach. After initializing the

completion Y by LRMC, they alternate between standard

SSC and gLRMC (Alt LRMC-SSC+gLRMC). In this work,

we also consider a variant that initializes by zero-filling

and alternates between PZF-EnSC and gLRMC (Alt PZF-

EnSC+gLRMC). Both of these alternating methods as well

as many others are instances of the general Algorithm 1. In

particular, each of the previously discussed methods can be

represented as special cases of 1 with maxit ∈ {0, 1}.

The motivation behind these methods is that by perform-

ing several iterations, the algorithms will be able to refine

the self-expression C based on the progressively more ac-

curate completion. We further predict that retaining the pro-

jection beyond the first application of gLRMC may help

prevent incorrect completions from derailing this progress.

The strength of this family of methods is its intuitive

basic algorithm, founded on strong principles from self-

expressive subspace clustering and low-rank matrix com-

pletion. A limitation, however, is that it is not associated

with any formal optimization problem. As a result, theoret-

ical analysis will be more difficult.

2.2. Joint self-expressive subspace clustering and
completion

In contrast to the intuitive but heuristic alternating meth-

ods, several algorithms have been proposed that integrate

self-expressive subspace clustering and matrix completion

into a unified optimization problem. These problems obey

the following general form

min
Y ,C

λ‖Y − Y C‖+ θ(Y ,C)

s.t. PΩ(Y − X̄) = 0, diag(C) = 0

(5)

where ‖·‖ denotes a general “norm” in an abuse of notation,

e.g. ‖ ·‖ = 1
2‖ ·‖

2
F , and θ(·, ·) is a general regularizer acting

jointly on Y and C.

Having access to an explicit optimization problem en-

ables analysis of the corresponding algorithms. The specific

problem (5) has at least two weaknesses, however. First,

the problem is non-convex due to the product Y C in the

self-expressive term. Second, the joint optimization intro-

duces a new dependence between the completion Y and the

self-expression term. Intuitively, if C correctly captures the

linear relationships among the data points, and there are not

too many missing entries, then perhaps this self-expressive

based completion will be sufficient to recover the missing

entries. Compared to LRMC however, the performance of

this completion approach is poorly understood.

S3LR. Among this family, the S3LR method of [19] is the

most closely related to the alternating algorithms from the

previous section. The main motivation is to combine the

three components of Algorithm 1: (1) self-expression, (2)

spectral clustering, and (3) gLRMC, into a single optimiza-

tion problem. Specifically, they propose to optimize

min
C,Y ,Q

λ‖Y − Y C‖1 +
n
∑

j=1

‖Y diag(qj)‖∗

+ γ(α‖Θ(Q)⊙C‖1 + ‖C‖1)

s.t. diag(C) = 0, PΩ(Y − X̄) = 0, Q ∈ Q

(6)

where Q � {Q ∈ {0, 1}N×n | Q1 = 1, rank(Q) = n}.

Θ(Q) ∈ R
N×N is defined by (Θ(Q))ij = 1/2‖Qi,· −

Qj,·‖
2
2. Thus, the term involving Θ(Q) in fact represents

the spectral clustering objective. Similarly, the first and

fourth terms correspond to SSC, while the second term is

precisely the gLRMC objective.

Importantly, these similarities do not imply that the same

Algorithm 1 can be used to optimize (6). Rather, there are

extra dependencies between the variables, e.g. Y on C, Q

on Y , which necessitate a more complex algorithm. Given

a candidate segmentation Q, the authors optimize (6) with

respect to C and Y using linearized ADMM [21]. They

then update the segmentation Q by spectral clustering on

W = |C|+ |C⊤| (ignoring Q’s dependence on Y ).

SSC-lifting. In [7], Elhamifar considers a more direct ex-



tension of SSC to the joint SCMD+HRMC problem. His

method, SSC-lifting, optimizes the following problem

min
Y ,C

‖C‖0 s.t. Y = Y C, PΩ(Y − X̄) = 0,

diag(C) = 0.
(7)

To optimize this complex non-convex problem, Elhamifar

proposes a convex relaxation over a set of N
∑N

i=1(D− ℓi)
lifted variables. Although the global optimum of the convex

relaxation can technically be found in polynomial time, it is

nonetheless very expensive to solve. In particular, merely

evaluating the objective requires calculating the singular

values of a (D − ℓi)×N matrix, for every i = 1, . . . , N .

SC-SEMC & SRME-MC. In [11], Fan and Chow consider

a natural generalization of SSC-lifting, where the exact self-

expressive constraint is relaxed and the ℓ0 norm on C is

replaced by one of three popular self-expressive penalties:

‖ · ‖1, ‖ · ‖2F , or ‖ · ‖∗. Specifically, the authors optimize

min
Y ,C

λ

2
‖Y − Y C‖2F + ‖C‖q

s.t. PΩ(Y − X̄) = 0, diag(C) = 0.

(8)

where the “norm” q is allowed to be one of the previous

three choices1. Rather than consider a convex relaxation,

the authors attempt to minimize the non-convex objective

directly using linearized ADMM [21]. This results in a

more efficient algorithm compared to SSC-lifting, yet one

whose convergence properties are less well understood. We

refer to these methods as self-expressive based matrix com-

pletion (SEMC) methods.

In [12], Fan and Chow propose a variant of SSC-SEMC

called “Sparse Representation with Missing Entries and

Matrix Completion” (SRME-MC), which includes addi-

tional nuclear norm regularization term α‖Y ‖∗ in (8).

When the data are low rank, this added regularization

should improve completion performance. In the intended

full-rank regime, however, it is unclear what if any benefit

should be expected.

In summary, the joint self-expressive clustering and

completion methods each benefit from a unified optimiza-

tion problem. The cost in return is more complex, non-

convex optimization. The self-expressive based completion

also requires further understanding.

2.3. Structured matrix factorization methods

The family of structured matrix factorization meth-

ods represents an alternative approach to formulating

SCMD+HRMC as a unified optimization problem. The mo-

tivation is analogous to that for classic sparse and low-rank

recovery. By seeking a compact representation of the data,

one can expect to solve the seemingly under-determined in-

verse problem and recover the missing entries. In sparse

recovery, the representation is compact with respect to a

1The diagonal constraint is omitted when ‖ · ‖q = ‖ · ‖∗.

fixed dictionary; in low-rank recovery, it is compact with re-

spect to the set of rank-1 matrices. The challenge for meth-

ods here is to identify the corresponding set of appropriate

atomic factors for the union-of-subspaces setting.

KSS-MD & EM. In [2], Balzano and co-authors adapt the

well-known k-subspaces method to the missing data setting

(KSS-MD). The optimization problem can be written as

min
Q,{(Uj ,V j)}n

j=1

∥

∥

∥
PΩ

(

X̄ −
n
∑

j=1

U jV j diag(qj)
)∥

∥

∥

2

F

s.t. U⊤
j U j = I for j = 1, . . . , n

Q ∈ {0, 1}N×n, Q1 = 1,

(9)

where the U j ∈ R
D×d are orthogonal bases, V j ∈ R

d×N

contain coefficients representing each data point according

to each subspace, and the segmentation Q ∈ R
N×n assigns

data points to unique subspaces. To optimize (9), the au-

thors implement an efficient (linear time) online algorithm

based on the Grassmannian rank one update subspace es-

timation (GROUSE) algorithm for tracking individual in-

complete subspaces [1]. A related approach is proposed

in [29], where Pimentel-Alarcon and co-authors introduce

an EM algorithm for Gaussian mixtures, adapted to handle

missing data, which can be viewed as an extension of KSS-

MD to more general covariances beyond scaled identity.

In both works, the data are represented explicitly as

a union of low-dimensional subspaces using a structured

factorization. E.g. X ≈
∑

j U jV j diag(qj) for KSS-

MD. Since the factorization exactly matches the underly-

ing structure of the data, one expects strong recovery per-

formance. However, as with k-means and traditional k-

subspaces, the optimization of (9) as well as EM are suscep-

tible to poor local minima. Furthermore, they both require

an estimate of the subspace dimension, d̂.

(LR-)GSSC (*). In [26], Pimentel-Alarcon and co-authors

introduce another factorization based method which they

call group-sparse subspace clustering (GSSC). This method

optimizes the following problem (using slightly different

notation than [26])

min
{(Uj ,V j)}

λ

2

∥

∥

∥
PΩ

(

X̄ −
n
∑

j=1

U jV j

)∥

∥

∥

2

F
+

n
∑

j=1

‖V j‖2,1

s.t.

n
∑

j=1

‖U j‖
2
F ≤ 1,

(10)

where V j ∈ R
d×N and ‖V j‖2,1 =

∑

i ‖(V j)i‖2. The

regularization on the V j can be understood as promoting

group sparsity. Ideally for every i, only one of the (V j)i
will be non-zero across j = 1, . . . , n. This way, the assign-

ment of points to subspaces is represented implicitly in the

non-zero column supports of the V j .

One limitation of GSSC is that it also requires an esti-



mate of the subspace dimension, d̂. Here we extend GSSC

to include low-rank regularization as a way to partially ad-

dress this issue. Our LR-GSSC variant optimizes

min
{(Uj ,V j)}

λ

2

∥

∥

∥
PΩ

(

X̄ −
n
∑

j=1

U jV j

)∥

∥

∥

2

F

+
n
∑

j=1

(

γ‖U j‖2,1 + ‖V j‖2,1
)

.

(11)

Using the rotation invariance of the products U jV j , one

can show that ℓ2,1 regularization on the U j is in fact equiv-

alent to nuclear norm regularization.

Both problems are optimized locally by exact alternat-

ing minimization—first minimizing with respect to the V j

while fixing the U j , and then similarly for updating the U j .

2.4. Algebraic methods

The structured factorization methods search for a com-

pact representation of the data in the original ambient space.

By contrast, the algebraic methods seek a low-rank repre-

sentation in an embedded space of higher dimension.

VMC & LADMC. In [25, 30], Ongie, Pimentel-Alarcon,

and co-authors follow the algebraic subspace approach orig-

inally proposed in [36], which exploits the fact that unions

of low-dimensional subspaces are algebraic varieties of-

ten admitting vanishing polynomials of low enough degree.

Thus, the image of the data under the Veronese map of small

degree p (sending xi to the vector of all unique monomials

of degree p) is likely to be low-rank in this larger dimension

embedded space. When sufficiently many data points are

present, this embedded subspace is identifiable, enabling

the recovery of the missing entries.

The two methods based on this principle are variety-

based matrix completion (VMC) and low algebraic dimen-

sion matrix completion (LADMC). In the former, the au-

thors use the kernel trick to easily extend to higher order

embeddings, whereas the latter represents the embedded

data explicitly. This effectively limits the method to degree

p = 2, but in exchange the authors obtain a much simpler

algorithm with only linear complexity in the number of data

points N (compared to quadratic for VMC). Moreover, for

a generic union of n d-dimensional subspaces in R
D, the

degree p = 2 embedded data will have rank at most n
(

d+1
2

)

[25, 5]. This is often much less than the embedded ambient

dimension
(

D+1
2

)

, justifying the use LADMC with p = 2.

Crucially, after embedding into higher dimension, the

number of data points required for correct recovery be-

comes O(dpDp) [25]. This combined with the methods’

computational cost makes them difficult to apply in high di-

mensional settings.

Method Parameter

LRMC-SSC λ0 ∈ {5, 10, 20, . . . , 320}

(Alt) PZF-EnSC+gLRMC λ0 ∈ {5, 10, 20, . . . , 320},

γ ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 0.99}

S3LR λ ∈ {0.01, 0.1, . . . , 100},

γ ∈ {10−5, 10−4, . . . , 0.1}, α = 1

SRME-MC λ ∈ {5, 10, 20, . . . , 160},

α ∈ {0.01, 0.1, . . . , 100}

(LR-)GSSC d̂
D

∈ {0.02, 0.04, 0.1, 0.2, . . . , 0.6},

λ ∈ {10−5, 10−4, . . . , 0.1},

γ ∈ {10−5, 0.01, . . . , 100}

LADMC-SSC λ0 ∈ {5, 10, 20, . . . , 320}

(Alt) TSC+gLRMC
qn

N
∈ {0.05, 0.1, 0.15, . . . , 0.3}

Table 2. Parameter choices for evaluated SCMD+HRMC methods.

See problem formulations for definitions in Section 2. For SSC

and EnSC based methods, λ0 denotes a scaled λ such that λ0 > 1

ensures all columns of the optimal C are non-zero [40, 39].

2.5. Neighborhood based methods

We conclude with the neighborhood based methods,

which represent perhaps the first group of methods consid-

ered for the SCMD+HRMC problem. They all rely on the

principle that even in the presence of missing entries, near-

est neighbors can still be identified.

HRMC & Robust HRMC. In the early work [10],

Balzano, Eriksson and co-authors propose an intuitive, non-

iterative neighborhood based method that they call High-

rank Matrix Completion (HRMC). Their method executes

the following four steps: (1) choose a random subset of seed

data points and identify the nearest neighbors for each seed,

(2) fit local subspaces to each neighborhood using LRMC,

(3) prune all but n local subspaces, discarding those that lie

in the span of two or more other subspaces, (4) assign each

data point to its nearest subspace and complete by orthog-

onal projection. The authors prove that their procedure can

recover the unobserved entries with high probability pro-

vided N ≥ O(Dlog(D)). This was one of the first results es-

tablishing conditions for correct recovery in the HRMC set-

ting. However, tighter necessary and sufficient conditions

for union of subspace identifiability (N ≥ O(dn)) have

since been established [28]. More recently in [14], Gao and

co-authors also improve upon HRMC by introducing more

robust sub-routines for each of the four above steps.

(Alt) TSC+gLRMC (*). Another example of a neighbor-

hood based method is threshold subspace clustering (TSC)

[15]. This efficient and robust method applies spectral

clustering to a weighted q-nearest neighbor graph. Neigh-

borhoods are defined according to cosine-angles: θij =
|〈x̄i, x̄j〉|/‖ωj ⊙ x̄i‖2‖ωi ⊙ xj‖2. The affinity edge

weights for neighbors i and j are then given by wij =
exp(−2 arccos(θij)). Finally, the affinity is symmetrized.



As with the methods in Section 2.1, TSC can be ex-

tended to the joint SCMD+HRMC problem by combining

with gLRMC in an alternating fashion. This minor but nat-

ural extension has not been previously considered.

3. Synthetic experiments

Experiment set-up. We generated synthetic data lying near

a union of subspaces in the following manner. First, we

sampled n d-dimensional subspaces in R
D uniformly at

random by drawing U j ∈ R
D×d with standard Gaussian

entries and orthogonalizing. We then generated data for

each subspace, Xj ∈ R
D×Nj , as

Xj = U jV j +Ej , (V j)i ∼ N (0d, d
−1Id),

(Ej)i ∼ N (0D, σ2D−1ID),
(12)

where V j ∈ R
d×Nj , and Ej ∈ R

D×Nj . The Xj were then

concatenated to form the complete data matrix R
D×N ∋

X = [X1 · · ·Xj ]. We fix N1 = · · · = Nj , and use Nj �

N/n in an abuse of notation. Finally, for each data point

xi, we sample exactly ℓ > 0 observed entries uniformly at

random, following e.g. [26, 33].

We considered four synthetic data settings: (1) small

n = 5, small d = 5, small D = 25; (2) large n = 20,

small d = 5, small D = 25; (3) small n = 5, large

d = 25, large D = 100; (4) large n = 25, small d = 5,

large D = 100. All datasets were full rank, and in all but

the first setting the subspaces were guaranteed to be non-

independent. In addition, for each setting we varied the

number of points per group relative to the subspace dimen-

sion: Nj/d ∈ {2, 4, 6, 8, 10}. We included a small amount

of noise, σ = 0.001. Finally, we repeated each setting for

20 random trials.

In problems with missing data, it is common to observe

rapid phase transitions in performance as the number of

observed entries increases. It is therefore crucial to eval-

uate over a closely spaced range of ℓ values. This can be

computationally expensive, however, especially when D is

large. To overcome this, we used a binary search strategy to

identify the narrow range of ℓ values containing the phase

shift for every algorithm and setting. More specifically, we

used binary search to find the minimum threshold ℓ̂0.05 such

that for all ℓ > ℓ̂0.05, the achieved clustering error was no

greater than 5%. We then evaluated 11 choices for ℓ within

an interval centered on ℓ̂0.05 of radius no greater than d/5.

In total, at least 13 ℓ values were tested for each method and

setting: 11 central values and the two extremes ℓ = d,D.

Comparison methods. Using this set-up, we compared the

following methods across all five families.

• Alternating subspace clustering and comple-

tion: LRMC-SSC, PZF-EnSC+gLRMC, Alt PZF-

EnSC+gLRMC (*).

• Joint self-expressive clustering and completion:
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Figure 1. Mean clustering and completion error across methods for

a single setting (n = 5, d = 5, D = 25) and choice of Nj = 30 =

6d. Methods belonging to the same family share the same color.

The shaded error regions represent 95% confidence intervals over

the 20 random trials.

S3LR, SRME-MC.

• Matrix factorization: GSSC, LR-GSSC (*).

• Algebraic: LADMC-SSC.

• Neighborhood: TSC+gLRMC, Alt TSC+gLRMC (*).

Besides the baseline method LRMC-SSC, the selected

methods are among the strongest performing representa-

tives from each class. In addition, we included three

extensions proposed in the current paper: Alt PZF-

EnSC+gLRMC, Alt TSC+gLRMC, and LR-GSSC.

We compared all methods in terms of both clustering er-

ror and completion error. Clustering error is defined to be

the fraction of misclassified points, up to a permutation of

the labels. Completion error is defined to be the relative

Frobenius distance between true and recovered unobserved

entries: ‖PΩc(Y −X)‖F /‖PΩc(X)‖F . To present our re-

sults more compactly, we also report aggregate clustering

and completion errors across ℓ. Our aggregate metrics are:

(1) The 5% error threshold ℓ̂0.05 defined above.

(2) The (weighted) average completion error, defined as

follows. Let L denote the total number of tested ℓ val-

ues and ξk the completion error achieved for ℓk. The

average completion error is then

1

(D − d)

L−1
∑

k=1

ξk(ℓk+1 − ℓk). (13)

All methods were provided the true number of subspaces

n, while none were given the true dimension d. We tuned

the performance of each method over a fixed set 10 pa-
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Figure 2. Comparison of aggregate clustering and completion errors between methods for each setting. Each column of dots corresponds

to one experiment as shown in Figure 1. The shaded error regions represent 95% confidence intervals over the 20 random trials.

rameter configurations. We generated the configurations by

sampling uniformly from a grid of pre-defined values. The

range for each parameter was based on manual experimen-

tation and recommendations from the original papers (Table

2). Random sampling was used rather than exhaustive grid

search to balance tuning effort across methods with differ-

ent numbers of parameters. In addition, random parameter

sampling is more effective when some parameters are more

important than others. In both D = 25 settings, we repli-

cated our results on a second batch of 10 random configura-

tions, suggesting that this amount of tuning is sufficient to

obtain stable performance.

The best parameter configurations were selected based

on average completion error. Although tuning based on

cluster error is more common in the literature, this approach

translates more easily into practice. With real datasets one

can always hold out some observed entries as a validation

set, while in general no true cluster labels will be available.

Clustering and completion error phase transitions. In

Figure 1, we report mean clustering and completion error

for each method as a function of the number of observed

entries. For simplicity, we restrict to the small n, small

d synthetic data setting (n = 5, d = 5, D = 25), and

Nj = 50 = 10d. For each curve, we also represent the 95%

confidence interval around the mean as a shaded region.

Looking first at clustering error, we observe that all

methods undergo a phase transition between ℓ = 10 =
2d and ℓ = 15 = 3d. Within this region, the ten

methods can be divided into six groups between which

there appear to be reliable differences in performance.

Ordered from worst to best, they are: (TSC+gLRMC),

(LRMC-SSC), (Alt TSC+gLRMC), (SRME-MC), (SRME-

MC/LADMC-SSC/PZF-EnSC/S3LR), (LR-GSSC/GSSC),

(Alt PZF EnSC+gLRMC).

We observe a largely consistent pattern in completion er-

ror, with the following exceptions. First, unlike with clus-

tering, Alt PZF-EnSC+gLRMC does not achieve the best

completion for every ℓ. Instead, GSSC surpasses it as soon

as their clustering errors become comparable ℓ = 13. Sec-

ond, the completion performances for LRMC-SSC, SRME-

MC, and LADMC-SSC are each significantly worse relative

to the other methods, compared to their clustering. The poor

completion performance for LRMC-SSC is not surprising

since the data are full-rank. Similarly, although the embed-

ded data are low-rank for LADMC-SSC, the value for N
in this experiment is far fewer than the claimed O((Dd)2)
sample complexity [25]. Moreover, we observe experimen-

tally that the tensorized data have significantly larger µ-

coherence (3.07 ± 0.04 CI for the complete tensorized data,

compared to 1.46 ± 0.03 CI for Gaussian data of the same

size and rank) [4]. Nonetheless, LADMC achieves slightly

better completion than LRMC, showing that it is benefiting

somewhat from exploiting the algebraic structure. Finally,

the poor performance of SRME-MC raises further issues for

the idea of self-expressive based completion.

Somewhat surprisingly, these results suggest a signifi-

cant benefit to performing multiple iterations of alternat-

ing subspace clustering and per-group completion. Two

of the largest overall differences between methods are ob-

served for TSC+gLRMC → Alt TSC+gLRMC and PZF-

EnSC+gLRMC → Alt PZF-EnSC+gLRMC. The results

also give strong support for GSSC, although we observe no

difference in clustering between the original method and the

proposed low-rank regularized variant. Importantly, neither
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Figure 3. Comparison of mean runtime in seconds between methods for each setting. The edges of the shaded error regions correspond to

the minimum and maximum observed runtimes across the 20 random trials. Note the log scaling.

method is provided the true d, suggesting that in either form

GSSC is robust to small errors in estimated dimension.

Average clustering and completion error for varied Nj .

In Figure 2, we report the aggregate metrics ℓ̂0.05 and av-

erage completion error for every setting. Each column

of dots in Figure 2 corresponds to a single experiment as

shown in Figure 1. In the two high-dimension settings

(D = 100), some methods are excluded for some larger

Nj due to excessive runtime. Overall, the results are largely

consistent with what was previously observed. Again, Alt

PZF-EnSC+gLRMC displays a significant clustering ad-

vantage, particularly when n is large. GSSC is often the

second-best in clustering, and slightly better than Alt PZF-

EnSC+gLRMC in completion.

Runtime analysis. Finally, we compare the runtimes of

each algorithm in Figure 3. First, we observe that the two

joint self-expressive methods, S3LR and SRME-MC are

consistently among the slowest methods. This reflects the

additional complexity of the algorithms arising from the

unified objective. LADMC-SSC and GSSC are also expen-

sive, particularly for large D. The cost for LADMC-SSC

arises from the need to compute and factorize an O(D2×N)
matrix of embedded data points. The poor runtime for

GSSC is likely due to the choice of algorithm (exact al-

ternating minimization). Importantly, the best performing

method in terms of clustering, Alt PZF-EnSC+gLRMC,

also has manageable runtime.

4. Conclusions

We reviewed the state of the art for joint subspace clus-

tering with missing data and high-rank matrix completion.

We categorized the existing methods into five families, and

in the process proposed several natural but previously unex-

amined extensions of prior algorithms. In our evaluation on

synthetic data, we demonstrated superior clustering perfor-

mance Alt PZF-EnSC+gLRMC. Explaining why this intu-

itive but heuristic method performs so well is an open chal-

lenge for future work.
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[42] Chong You and René Vidal. Geometric conditions for

subspace-sparse recovery. In International Conference on

Machine learning, pages 1585–1593, 2015.


