
Structure-Constrained Feature Extraction by Autoencoders for Subspace

Clustering

Kewei Tang

Liaoning Normal University

Dalian, Peoples Republic of China

kwtang@lnnu.edu.cn

Kaiqiang Xu

Dalian University of Technology

Dalian, Peoples Republic of China

xukaiqiang@mail.dlut.edu.cn

Zhixun Su

Dalian University of Technology

Dalian, Peoples Republic of China

zxsu@dlut.edu.cn

Wei Jiang

Liaoning Normal University

Dalian, Peoples Republic of China

swxxjw@aliyun.com

Xiaonan Luo

Guilin University of Electronic Technology

Guilin, Peoples Republic of China

luoxn@guet.edu.cn

Xiyan Sun

Guilin University of Electronic Technology

Guilin, Peoples Republic of China

sxy@guet.edu.cn

Abstract

Clustering the data points drawn from a union of sub-

spaces, i.e., subspace clustering, is a hot topic in recent

years. The assumption of the nonlinear subspace is more

general for the real-world data, but also more difficult for

the traditional methods. The deep neural network is a pow-

erful technique extracting nonlinear features, so the au-

toencoders are usually adopted to handle this unsupervised

problem. However, how to add constraints on the features

to make them more effective is not heavily addressed by pre-

vious work. In this paper, we consider both the global and

local structure of the features in the autoencoders by the

low-rank property and Laplace operator, respectively. The

low-rank property can make the learned features favoring

similarity extraction by self-representation and the Laplace

operator can help our method explore the useful informa-

tion in the data set. Note that our way of placing constraints

can also be employed in other deep neural networks. In

fact, our method is closely associated with previous work.

It can be viewed as the more general case of the structured

autoencoders. Extensive experiments demonstrate the effec-

tiveness of our method.

1. Introduction

Since many high-dimensional data can be well approxi-

mated by a union of low-dimensional subspaces [1, 29, 7,

32], subspace clustering, also called subspace segmenta-

tion, has attracted substantial attention in computer vision

during the past two decades. Given the data set lies on a

union of subspaces, the task of the subspace clustering is

to group these data points into different clusters such that

each cluster corresponds to a subspace. The review [33] di-

vides the subspace clustering methods into four categories,

among which spectral-clustering based methods have been

addressed by most recent studies. This kind of methods

often learns an affinity matrix encoding the pairwise sim-

ilarity between data points, and then accomplishes the clus-

tering task by Normalized Cut (NC) [28]. As two popular

spectral-clustering based methods, Sparse Subspace Clus-

tering (SSC) [5] and Low-Rank Representation (LRR) [17]

obtain the affinity matrix by seeking the sparse and low-

rank representation of the data points in the original space,

respectively. A lot of extensions have been made about SS-

C and LRR, such as Least Squares Regression (LSR) [18],

Smooth Representation (SMR) [10], and so on. When the

mixing subspaces are all linear, these traditional methods

can usually achieve promising results.

However, the assumption of linear subspace will be vi-

olated in some real-world applications [34]. It is necessary

to propose the methods handling the nonlinear subspace

well. Unfortunately, some data points can not be expressed

as a linear combination of the data points drawn from

the same nonlinear subspace, so the self-representation of

the data points in the original space cannot be an effec-



tive way of building the affinity matrix. In this context,

learning features favoring the similarity extraction by self-

representation seems more reasonable. As a typical exam-

ple, Latent Space Sparse Subspace Clustering (LS3C) [21]

simultaneously learns the projection of data points and find-

s the sparse representation in the low-dimensional latent s-

pace. Similarly, Subspace Learning based Low-Rank Rep-

resentation (SLLRR) [30] pursues the low-rank coefficients

in the learned subspace. In fact, both LS3C and SLLR-

R can also be viewed as kernel methods whose idea pro-

vides a way of adopting self-representation to deal with the

nonlinear case. Since the nonlinear subspace can be trans-

formed into a linear one by some nonlinear mapping, we can

learn the affinity matrix by the representation of the trans-

formed data points in the feature space. Hence, some works

try to kernelize the traditional subspace clustering method-

s proposed for the linear subspace to manage the nonlin-

ear case. For example, Kernel Spectral Curvature Cluster-

ing (KSCC) [2], Kernel Sparse Subspace Clustering (KSS-

C) [37, 22] and Robust Kernel Low-Rank Representation

(RKLRR) [35] are the kernelizations of Spectral Curvature

Clustering [3], SSC and LRR, respectively. The work pre-

senting a Bayesian method named Bayesian Low-rank and

Sparse Nonlinear Representation (BLSN) [31] for the non-

linear subspace clustering can also be essentially viewed as

a kind of kernel method. However, the performance of these

kernel methods heavily relies on the choice of the kernel

function, and how to select the appropriate one is still an

open problem.

In recent years, deep neural networks have achieved

many fruitful results for learning features, so it is a pow-

erful technique to deal with the nonlinear subspace dis-

cussed above. However, there are only a few works

[24, 23, 11, 39, 38, 12] about subspace clustering because

this problem is unsupervised. Since the autoencoders do not

require the label information of the data points as the input,

they are usually employed to construct novel architecture in

this field. Ji et al. [11] add a novel self-expressive layer

between the encoder and the decoder in an autoencoder. In

this architecture, no restrictions are imposed on the features

to make them more effective. Peng et al. propose Structured

AutoEncoders (StructAE) [24, 23] to learn the features and

then obtain the clustering membership. StructAE constrains

the learned features but it only considers their global struc-

ture. In fact, the features play a key role in the problem

of nonlinear subspace. Moreover, guiding the features fa-

voring affinity extraction seems more reasonable, however,

it does not attract enough attentions by previous work. In

this paper, we address the problem of how to learn effective

features by autoencoders for subspace clustering. Inspired

by the traditional subspace clustering methods, we expec-

t the self-representation of the learned features can extract

the pairwise similarity well, so the low-rank property is in-

duced in our model. In addition, the Laplace operator is

adopted to keep the local property. Extensive experimental

results confirm the effectiveness of our method. In fact, our

method is closely related to StructAE. In details, when spec-

ifying special parameters, our method will become Struc-

tAE. From this point of view, our method can be seen as an

extension of StructAE. In summary, our main contributions

in this paper lie in the following three aspects:

• We propose a deep learning method for subspace clus-

tering. Different from the idea of previous work, we

put emphasis on the constraint of the features. Our

method considers both the local and global structure

of the features learned by autoencoders via the Laplace

operator and low-rank property and achieves state-of-

the-art performance.

• The low-rank property of the features will prefer sim-

ilarity extraction by self-representation. Laplace oper-

ator can explore the useful information in the data set.

Note that our method provides the way of adding these

structure constraint in other deep neural networks.

• Our method can be viewed as the more general case of

StructAE.

The remainder of the paper is organized as follows. In Sec-

tion 2, we introduce the main notations of this paper and

make a brief review of StructAE. In Section 3, we propose

our method and make a detailed discussion. Comprehensive

experimental results are reported in Section 4. We conclude

this paper in Section 5.

2. Brief review of StructAE

First, we summarize the main notations used in this pa-

per. We denote vectors by bold lowercase letters, e.g., x,

and matrices by bold capital letters, e.g., X. In particular, I

denotes the identity matrix. Note that the bold capital letter

with subscript or superscript also denotes the matrix, e.g.,

Xi. Their entries are denoted by the bold capital letter in

the square brackets with subscripts. For instance, [X]ij de-

notes the (i, j)-th entry of X; [X]i: denotes the i-th row of

X; [X]:j is the j-th column of X. For vectors, our nota-

tion rules are similar. The trace and the diagonal elements

of a square matrix X are respectively denoted as tr(X) and

diag(X). rank(X) represents the rank of the matrix X.

⊙ denotes the Hadmard product, i.e., [a ⊙ b]i = [a]i[b]i.

‖X‖F =
√∑

ij [X]2ij denotes the Frobenius norm of the

matrix X. ‖x‖2 =
√∑

i[x]
2
i denotes the ℓ2-norm of the

vector x. max(x) denotes the largest element in x.

In this paper, X = [x1, · · · ,xn] ∈ R
d×n always stands

for the set of n data points drawn from a union of N sub-

spaces. The discussed neural network always has M layers

in total. hm
i ∈ R

dm and ym
i ∈ R

dm denote the output



and the input of the m-th layer, m = 1, · · · ,M , respective-

ly. Particularly, h0
i = xi ∈ R

d, i = 1, · · · , n represents

the input of the neural network. Denoting f as the activa-

tion function, Wm ∈ R
dm×dm−1 as the connection weights

from all the units in the (m−1)-th layer to those in the m-th

layer, bm ∈ R
dm as the bias associated with the units in the

m-th layer, we can get

ym
i = Wmhm−1

i + bm, hm
i = f(ym

i ),
i = 1, · · · , n, m = 1, · · · ,M.

(1)

StructAE consists of an encoder and a decoder. In detail-

s, after the first M
2 hidden layers encoding the data, Struc-

tAE learns the features H
M
2 = [h

M
2

1 , · · · ,h
M
2

i , · · · ,h
M
2
n ]

which are decoded by the last M
2 hidden layers such that

the output HM = [hM
1 , · · · ,hM

i , · · · ,hM
n ] approximates

the input X as well as possible. Considering the structure

of the learned features and the regularization of the parame-

ters, the objective function of StructAE is formulated in the

following

min
Wm,bm

1
2‖X−HM‖2F + λ1

2 ‖H
M
2 −H

M
2 C‖2F

+λ2

2 (‖Wm‖2F + ‖bm‖22),
(2)

where λ1

2 ‖H
M
2 −H

M
2 C‖2F can be viewed as the structured

constraint. The input C can be obtained by the ℓ1-norm

based reconstruction

min
C

‖X−XC‖2F + λ‖C‖1 s.t. diag(C) = 0 (3)

or the ℓ2-norm based reconstruction

min
C

‖X−XC‖2F + λ‖C‖F s.t. diag(C) = 0. (4)

In their paper, C learned by the model (3) usually performs

better. After learning the features H
M
2 , StructAE obtains

clustering results by applying them to K-means or the spec-

tral clustering-based methods.

3. Structure-Constrained Feature Extraction

by Autoencoders

The structured constraint in StructAE only considers the

globality. In fact, it is reasonable to place constraints on fea-

tures to make them more effective. Many interesting prop-

erties deserve the attempt in the autoencoders. We will con-

sider both the local and global structure in our method as

follows.

3.1. Our Method

Since we aim to extract the features such that their self-

representation can effectively encode the pairwise similari-

ty, inspired by the idea in traditional methods, we suppose

these features are globally low-rank. Hence, the cost func-

tion of our autoencoders is first considered as

min
Wm,bm

1

2
‖X−HM‖2F + rank(H

M
2 ). (5)

However, rank(H
M
2 ) is non-smooth. In addition, as the

commonly used convex surrogate, the nuclear norm is also

non-smooth. According to the reference [25], the mission

of minimizing the rank of H
M
2 can also be accomplished

by the following model

min
A,B

‖A‖2F + ‖B‖2F s.t. H
M
2 = AB. (6)

Therefore, our cost function is revised as

min
Wm,bm,A,B

1
2‖X−HM‖2F + γ(‖A‖2F + ‖B‖2F )

+α‖H
M
2 −AB‖2F .

(7)

However, the above function only considers the global

structure. To capture the local capture, we add another term

about H
M
2 in the cost function

min
Wm,bm,A,B

1
2‖X−HM‖2F + γ(‖A‖2F + ‖B‖2F )

+α‖H
M
2 −AB‖2F + βΣij [S]ij‖h

M
2

i − h
M
2

j ‖22,
(8)

where S is a symmetric matrix. The large [S]ij will make

h
M
2

i close to h
M
2

j , so the local information of the feature

h
M
2

i is recorded in [S]i: or [S]:i. Similar terms have been

constructed in many previous work to keep the local struc-

ture [8, 12]. Compared to the recent work [12], we make a

detailed discussion about how to construct the appropriate

weight matrix S in Section 3.3. It is well-known that

Σij [S]ij‖h
M
2

i − h
M
2

j ‖22 = tr(H
M
2 L(H

M
2 )T ), (9)

where L is the Laplace matrix of the weight matrix S.

Hence, our cost function can be formulated as

min
Wm,bm,A,B

1
2‖X−HM‖2F + γ(‖A‖2F + ‖B‖2F )

+α‖H
M
2 −AB‖2F + βtr(H

M
2 L(H

M
2 )T ).

(10)

Actually, our method is closely associated with StructAE.

By means of ‖E‖2F = tr(EET ), we can obtain

‖H
M
2 −H

M
2 C‖2F = tr(H

M
2 (I−C)(I−C)T (H

M
2 )T )

(11)

This conclusion implies that StructAE can be viewed as a

special case of our method by setting L = (I−C)(I−C)T ,

γ = 0, and α = 0.



3.2. The Algorithm

In this section, we will provide the algorithm of our

method. Inspired by the idea of Alternating Direction

Method (ADM) [16], we explore a scheme optimizing each

variable alternatively, until the function value in Eq.(10)

converges or a maximum number of iterations is reached.

When Wm,bm,m = 1, · · · ,M and B are fixed, we mini-

mize A in Eq.(10) as follows

min
A

γ‖A‖2F + α‖H
M
2 −AB‖2F . (12)

The closed form solution is

A = (αH
M
2 BT )(αBBT + γI)−1. (13)

Similarly, fixing Wm,bm,m = 1, · · · ,M and A, we can

obtain the closed form solution of B

B = (αATA+ γI)−1(αATH
M
2 ). (14)

In the last, we will show our strategy for Wm,bm,m =
1, · · · ,M with A and B fixed. In this situation, the function

in Eq.(10) becomes

min
Wm,bm

1
2‖X−HM‖2F + α‖H

M
2 −AB‖2F

+βtr(H
M
2 L(H

M
2 )T ).

(15)

In order to efficiently solve it by the commonly used s-

tochastic gradient descent algorithm, we rewrite it in the

sample-wise form

g =
∑

i(
1
2‖xi − hM

i ‖22 + α‖h
M
2

i − [AB]:i‖
2
2

+βΣj [S]ij‖h
M
2

i − h
M
2

j ‖22).
(16)

By means of a back-propagation algorithm, we can compute

the gradients of Wm,bm,m = 1, · · · ,M and update them

in the following.

Wm = Wm − µ
∂g

∂Wm
, bm = bm − µ

∂g

∂bm
. (17)

We skip the details for the derivation of these gradients and

provide the results as follows

∂g

∂Wm
= (∆m + 2αΛm + 2βΘm)(h

(m−1)
i )T , (18)

∂g

∂bm
= ∆m + 2αΛm + 2βΘm, (19)

where ∆m is

{
−(xi − hM

i )⊙ f ′(ym
i ) m = M,

(Wm+1)T∆m+1 ⊙ f ′(ym
i ) otherwise.

(20)

Λm is

{
(h

M
2

i − [AB]:i)⊙ f ′(ym
i ) m = M

2 ,

(Wm+1)TΛm+1 ⊙ f ′(ym
i ) m = 1, · · · , M

2 − 1,
0 m = M

2 + 1, · · · ,M.
(21)

Θm is

{
H

M
2 [L]Ti: ⊙ f ′(ym

i ) m = M
2 ,

(Wm+1)TΘm+1 ⊙ f ′(ym
i ) m = 1, · · · , M

2 − 1,
0 m = M

2 + 1, · · · ,M.
(22)

The detailed procedure is provided in Algorithm 1.

Algorithm 1 The algorithm of the proposed method

Input: The data set X, the weight matrix S obtained from

Algorithm 2 and the parameters α, β, γ.

Initialize: Wm, bm, m = 1, · · · ,M .

for m = 1 : M do

Compute Hm = [hm
1 , · · · ,hm

i , · · · ,hm
n ] by Eq. (1).

end for

while not converged do

for i = 1 : n do

Randomly select a data point xi.

for m = 1 : M do

Update hm
i by Eq. (1).

end for

for m = M : 1 do

Update Wm, bm by Eq. (17)-(22).

end for

Update A by Eq. (13).

Update B by Eq. (14).

end for

end while

Obtain the clustering results by H
M
2 .

3.3. The Weight Matrix

In this subsection, we make a detailed discussion about

the weight matrix S in our method. In order to keep the

local structure, we construct

S = R⊙T, (23)

where R and T include the information from the neighbors

and local linear subspace, respectively. In details,

R =

{
1 if xi ∈ knn(xj) or xj ∈ knn(xi),
0 otherwise,

(24)

where knn(xj) denotes the k nearest neighbors of xj . In

fact, if the data points far from the intersection of the

subspaces are close to each other, they are usually in the



same subspace, so we build R to collect the local infor-

mation of this type. However, R cannot handle the inter-

section of the subspaces well. According to previous work

[26, 27], the global nonlinear subspaces can locally be well-

approximated by a series of local linear subspaces. Hence,

we construct T to overcome the limitation of R as follows

T =

{
1 if xi ∈ N(xj) and xj ∈ N(xi),
0 otherwise,

(25)

where N(xj) denotes the set of data points in the local lin-

ear subspace of xj . The selection of N(xj) shall give pri-

ority to the data points almost linearly correlated with xj .

Therefore, we consider the metric based on the angle in the

following

F = G̃T G̃, (26)

[G]ij = exp(−
1− (x̃T

i x̃j)
2

τ
), i, j = 1, · · · , n (27)

where τ is the mean of 1 − (x̃T
i x̃j)

2, i, j = 1, · · · , n, x̃i

is the normalization of xi, i.e., ‖x̃i‖2 = 1, and similarly

[G̃]:i is the normalization of [G]:i, i = 1, · · · , n. Under

this definition, when the angle between xi and xj is larger,

[G]ij will be larger. With respect to the data points linearly

correlated, the corresponding columns of G will have large

elements in similar locations, so i-th row of F measures

the linear correlation degree between all the data points and

xi by considering the whole data set. Hence, N(xj) are

selected from the first p data points except xj itself sorted

by [F]j: in the descending order. The detailed procedure is

provided in Algorithm 2.

More discussions about the idea of the main steps in the

Algorithm 2 are in the following. Since the local linear sub-

space shall include some linearly correlated data points, its

rank, relative to the number of its data points, may usually

be not high. Denoted as ξ and recorded in φ in Algorithm 2,

the rank is one of the main measures to evaluate which data

set is the local linear subspace in our algorithm. The compu-

tation of this quantity mainly depends on the evaluations on

the singular values of the current data set [xj ,xj1 , · · · ,xji ]
in step 1. Our idea is utilizing the percentage and the rel-

ative variation recorded in u and v, respectively. Given a

data set, if the sum of r singular values has a high percent-

age of the sum of all the singular values and the relative

variation of the r-th singular value to the (r+1)-th singular

value is also large, the rank of this data set may be r. Hence,

we find the maximal component of ϕ, equally considering u

and v, to determine the rank of the data set. To some exten-

t, max(ϕ) can be viewed as the confidence of the obtained

rank. However, if all the singular values do not have a dra-

matic change, the data set is possibly full rank. Hence, we

add a judgment in our algorithm. We expect the local linear

subspace is low-rank but includes the data points as many

as possible, so we first construct ψ to consider the rank ξ,

Algorithm 2 The algorithm about N(xj)

Input: The first p data points xj1 , · · · ,xjp except xj sorted

by [F]j: in Eq. (26) in the descending order, and ε.

Output: N(xj) = {xj1 , · · · ,xjq}.

for i = 1 : p do

1. Compute all the singular values σ1 ≥ · · · ≥ σi+1 of

the data matrix [xj ,xj1 , · · · ,xji ].
2. s = Σi

k=1σk.

for l = 1 : i do

1. t = Σl
k=1σk.

2. [u]l =
t
s
.

3. [v]l =
σl−σl+1

σl+1
.

end for

if max(v) < ε then

1. [φ]i = i+ 1,

2. [ψ]i = 1 + [v]i.
else

1. ϕ = u+ v

max(v) .

2. Compute max(ϕ) and its index ξ.

3. [φ]i = ξ.

4. [ψ]i =
max(ϕ)∗(i+1)

ξ
.

end if

end for

1. Compute max(ψ) and its index λ.

2. Compute the nearest integer of λ
[φ]λ

and denote it as q.

the number of the data points including xj and the confi-

dence of the rank max(ϕ), and then compute max(ψ) to

determine the key parameters of the local linear subspace.

The meaning of λ and [φ]λ are the number of the data points

and the rank, respectively. Since we suppose the rank of the

local linear subspace is relatively small to the number of its

data points, λ
[φ]λ

can be viewed as the confidence of N(xj).

Hence, the local linear subspace only includes the first q

data points. When xj is linearly correlated with xi, xi will

also be linearly correlated with xj . Therefore, we use “and”

in the construction of T in Eq. (25).

4. Experimental Results

In this section, we test the performance of our method on

four benchmark databases. Since StructAE can be viewed

as a special case of our method to some extent, we compare

it in our experiment. In addition, some popular subspace

clustering methods for linear or nonlinear subspace are al-

so compared in the experiment, including LRR, SSC, LSR,

SMR, KLRR, KSSC. Note that LSR1 and LSR2 denote two

versions of LSR, please refer to the work [18] for details.

With regard to the kernel methods, how to choose an ap-

propriate kernel is still an open problem. Hence, we report

their results by selecting the common kernel. KLRRG and

KLRRP denote KLRR with Gaussian kernel and Polynomi-



Method ACC NMI ARI Precision Fscore

Ours 52.53±0.23 65.21±0.30 34.02±0.27 31.41±0.30 36.00±0.25

StructAE 45.65±1.06 50.24±1.45 20.84±0.28 22.25±0.28 26.61±0.23

LRR 38.69±1.31 49.93±0.51 14.38±3.24 17.73±3.50 21.84±3.03

SSC 37.71±0.61 32.46±0.81 9.90±0.35 8.89±0.27 13.45±0.32

LSR1 41.50±1.22 47.00±0.54 11.00±1.30 17.39±1.31 17.65±1.18

LSR2 41.40±0.89 47.76±0.78 11.93±1.67 18.32±1.76 18.10±1.53

SMR 44.77±0.46 48.12±1.00 18.55±2.62 14.04±3.42 19.11±2.46

KSSCG 41.93±1.11 37.50±0.42 13.09±0.69 11.16±0.64 16.45±0.60

KSSCP 42.39±1.17 38.08±1.10 13.85±0.85 11.72±0.71 15.23±0.77

KLRRG 36.30±0.58 46.49±0.53 13.70±0.90 10.97±1.12 15.93±0.81

KLRRP 19.87±0.52 35.73±0.54 9.99±0.28 12.06±0.27 12.39±0.27

Table 1. The results of all the compared methods on LPQ of Extended Yale B.

0.001 0.005 0.01 0.04 0.1 0.5 1
0

10

20

30

40

50

60

70

80

alpha

R
e
s
u
lt
s

ACC

NMI

ARI

Precision

Fscore

0.05 0.1 0.5 1 5 10 15 20 50
0

10

20

30

40

50

60

70

80

beta

R
e
s
u
lt
s

ACC

NMI

ARI

Precision

Fscore

(a) (b)

Figure 1. (a) The results of our methods versus α on LPQ of Extended Yale B. (b) The results of our methods versus β on LPQ of Extended

Yale B

al kernel, respectively. Similarly, KSSCG and KSSCP have

the same meaning. Since accuracy (ACC) and normalized

mutual information (NMI) are two key evaluation metrics

in subspace clustering, our experiment compares the above

methods on these two measures. Moreover, the adjusted

rand index (ARI), Precision, and Fscore are also reported to

make a comprehensive evaluation. With respect to these five

evaluation metrics, larger value always means better perfor-

mance. Because NC includes the step of K-means, we re-

peat the experiment five times and report the mean and stan-

dard deviation to reduce the impact of randomization. The

important parameters of all the compared methods are em-

pirically tuned on the source codes provided by the original

authors to achieve the best result.

4.1. Implementation Details of Our Method

The implementation details of our method are similar

with StructAE for a fair comparison. In summary, the acti-

vation function is

f(x) =
ex − e−x

ex + e−x
. (28)

Hence,

f ′(x) = 1− (f(x))2. (29)

In the experiment, our method includes five layers con-

sisting of 300 − 200 − 150 − 200 − 300 neurons. The

initialization is completed by training shallow networks of

300−200−300 and 200−150−200, respectively. The idea

is inspired by the strategy in [9]. In our implementation, the

fully connected layers are adopted. However, other archi-

tectures such as convolutional neural networks can also be

used. When the loss is not larger than 10−3, our method is

believed to achieve convergence. In the training process, the

batch-size is 1. The iteration of the Algorithm 1 is stopped if

our method converges or the training epoch reaches to 100.

Similar with StructAE, our method also obtains clustering

results by applying the learned features H
M
2 to K-means or

the spectral clustering-based methods.

4.2. The Results on LPQ of Extended Yale B

The Extended Yale B [6] database consists of 2414 facial

images captured from 38 persons, where the size of each im-

age is 192×168. Following [23], we first divide each image



Method ACC NMI ARI Precision Fscore

Ours 85.75±0.40 90.50±0.26 80.46±0.39 79.82±0.36 81.45±0.37

StructAE 84.38±1.67 89.72±0.57 81.51±2.02 81.65±2.83 82.43±1.90

LRR 75.99±4.01 88.64±1.37 76.12±3.03 69.67±3.92 74.58±2.83

SSC 75.53±1.82 88.01±0.85 74.53±1.91 70.86±1.63 75.88±1.82

LSR1 69.57±1.54 77.81±0.88 61.53±1.38 60.66±1.22 63.51±1.31

LSR2 69.82±2.66 77.10±1.24 61.20±2.33 60.72±2.94 63.20±2.19

SMR 77.88±1.17 86.80±0.12 73.63±1.38 71.99±2.30 74.98±1.29

KSSCG 71.89±1.54 84.23±1.19 66.84±2.51 63.64±3.55 68.60±2.34

KSSCP 71.39±0.51 84.08±0.36 67.85±0.72 63.76±1.80 69.59±0.66

KLRRG 68.58±0.91 79.64±0.60 61.44±1.21 58.33±1.12 63.51±1.14

KLRRP 64.28±1.18 76.55±0.63 56.37±1.61 54.36±2.40 58.69±1.48

Table 2. The results of all the compared methods on LPQ of Coil 20.

Method ACC NMI ARI Precision Fscore

Ours 22.72±0.58 10.02±0.25 5.22±0.25 13.26±0.19 18.68±0.18

StructAE 21.05±0.56 7.54±0.78 3.57±0.71 12.23±0.46 16.72±0.57

LRR 15.06±0.09 2.53±0.02 0.73±0.01 10.54±0.01 12.09±0.02

SSC 16.02±0.03 3.44±0.03 1.47±0.02 11.27±0.01 11.54±0.01

LSR1 16.67±0.03 3.88±0.00 1.75±0.00 11.52±0.00 11.76±0.00

LSR2 16.65±0.00 3.79±0.00 1.69±0.00 11.47±0.00 11.70±0.00

SMR 17.30±0.00 3.98±0.00 1.71±0.00 11.28±0.00 13.09±0.00

KSSCG 20.47±0.04 6.78±0.00 4.48±0.00 11.85±0.00 14.36±0.00

KSSCP 18.92±0.11 5.72±0.09 2.64±0.05 11.34±0.04 12.42±0.05

KLRRG 20.35±0.00 6.79±0.00 4.52±0.00 12.02±0.00 14.11±0.00

KLRRP 19.81±0.19 6.73±0.04 3.15±0.03 11.76±0.03 13.01±0.03

Table 3. The results of all the compared methods on LPQ of CIFAR 10.

into multiple non-overlapping 15 × 15 blocks and then ex-

tract the local phase quantization (LPQ) feature [20]. In

the last, we project these features into 300-dimensional s-

pace by PCA for computational efficiency. Since StructAE

performs better on this database when employing the Ho-

motopy algorithm [36] to solve the model (3), we also ob-

tain our clustering results by applying the learned features

H
M
2 to the model (3) for a fair comparison in this section.

The experimental results are reported in Table 1 where our

method performs best on all the measures. In particular, our

NMI is much better than that of the others. In addition, we

evaluate the impact of the main parameters on our method.

We vary α and β by fixing the other parameters and plot the

results in Fig. 1 (a) and (b), respectively. Since our method

performs best at α = 0.04 and β = 5, the range of α and

β are set as [0.001, 1] and [0.05, 50], respectively. Although

our performance has a little fluctuation, our results are usu-

ally better than the compared methods. These results imply

the effectiveness of our method.

4.3. The Results on LPQ of Coil 20

The Coil 20 [19] database contains 1440 grayscale im-

ages from 20 objects. With respect to each object, 72 im-

ages are acquired by a fixed camera. The dimension of these

images is 32× 32. In our experiment, LPQ features are ex-

tracted from 8× 8 non-overlapping patch and then project-

ed into a 300-dimensional space by PCA. In this section,

the strategy of obtaining the clustering results is the same

as that of Extended Yale B. Table 2 shows the experimental

results of all the compared methods. Although ARI, Pre-

cision and Fscore of our method are only a few lower than

those of StructAE, our method performs best on two main

measures, i.e., ACC and NMI. This result also indicates the

effectiveness of our method.

4.4. The Results on CIFAR 10

The CIFAR 10 [13] database includes 60000 color im-

ages in 10 classes, with 6000 images per class. The size

of these images is also 32 × 32. In our experiment, we s-

elect the first 200 images for each class and convert them

into gray images. In this section, we compare the methods

on both the histogram of oriented gradients (HOG) [4] and

LPQ feature by following the setting of [23]. Since Struc-

tAE performs better when applying learned features H
M
2

to K-means on this database, our method adopts the same

strategy for a fair comparison. Table 3 and 4 report the re-



Method ACC NMI ARI Precision Fscore

Ours 27.00±0.28 13.16±0.12 6.86±0.10 15.72±0.13 16.98±0.06

StructAE 25.92±0.95 12.85±0.53 6.62±0.37 15.88±0.35 16.02±0.31

LRR 15.25±0.11 2.06±0.03 0.69±0.02 10.58±0.02 10.86±0.02

SSC 18.40±0.07 4.66±0.03 2.01±0.02 11.66±0.01 12.45±0.07

LSR1 15.61±0.33 2.50±0.12 0.89±0.06 10.77±0.06 10.84±0.05

LSR2 15.52±0.49 2.43±0.14 0.85±0.10 10.74±0.09 10.81±0.09

SMR 20.92±0.04 6.18±0.02 3.02±0.02 12.54±0.02 13.23±0.01

KSSCG 23.60±0.00 11.22±0.01 6.04±0.01 14.01±0.01 14.57±0.01

KSSCP 23.70±0.00 11.86±0.00 6.47±0.00 14.26±0.00 15.00±0.00

KLRRG 23.35±0.00 11.90±0.00 6.70±0.00 14.09±0.00 15.14±0.00

KLRRP 23.30±0.00 12.00±0.00 6.66±0.00 14.24±0.00 14.32±0.00

Table 4. The results of all the compared methods on HOG of CIFAR10.

Method ACC NMI ARI Precision Fscore

Ours 63.16±0.11 50.96±0.04 38.69±0.12 44.87±0.09 45.27±0.10

StructAE 59.77±0.00 48.28±0.05 33.99±0.11 40.60±0.09 41.08±0.10

LRR 52.15±0.00 43.83±0.00 28.37±0.00 33.59±0.00 36.67±0.00

SSC 42.19±3.13 34.01±3.05 15.53±1.59 19.33±1.01 28.99±1.15

LSR1 52.15±0.00 45.94±0.00 27.02±0.00 29.61±0.00 36.59±0.00

LSR2 54.10±0.00 48.26±0.00 30.36±0.00 33.01±0.00 39.12±0.00

SMR 48.83±0.00 41.03±0.00 25.67±0.00 28.72±0.00 35.39±0.00

KSSCG 49.22±0.00 43.05±0.00 26.90±0.00 31.41±0.00 35.73±0.00

KSSCP 50.98±0.00 44.95±0.00 28.07±0.00 31.53±0.00 37.03±0.00

KLRRG 51.37±0.00 45.11±0.00 22.40±0.00 25.61±0.00 33.02±0.00

KLRRP 48.67±0.35 40.28±0.34 18.28±0.26 22.57±0.18 29.70±0.23

Table 5. The results of all the compared methods on Caltech 101.

sults of all the methods on LPQ and HOG, respectively. Our

method also performs best on these two features even if we

adopt another clustering strategy. This result confirms the

effectiveness of our method.

4.5. The Results on Caltech 101

Caltech 101 [15] database consists of color images with

different sizes from 101 objects. We select images from

ten objects, named camera, pagoda, dollarbill, panda, piz-

za, wrench, starfish, yin-yang, windsor-chair, inline-skate,

and convert them into gray images to conduct our experi-

ment. We first extract the descriptors of the spatial pyramid

bag of words [14] with the size of the dictionary set at 100,

and then project these descriptors into the 300-dimensional

space by PCA. In the last, the normalized data are used to

compare all the methods. In this section, we try another

popular spectral clustering-based method to make a com-

prehensive comparison. In details, our method obtains the

clustering results by applying the learned features to LR-

R. For a fair comparison, we also adopt the same strategy

for StructAE. The experimental results are shown in Table

5 where our method still achieves the best results on all the

measures. This result further demonstrates the effectiveness

of our method.

5. Conclusion and Future Work

In this paper, we study the strategy of adding the struc-

ture constraint on the features to guide the autoencoders.

Both the local and global structure are considered by the

Laplace operator and low-rank property, respectively. The

effectiveness of our method is confirmed by the extensive

experiments. In addition, our way of placing structure con-

straint can also be adopted by other deep neural network-

s. With respect to the future work, since the extension-

s of some traditional subspace clustering methods can al-

so be applied in the graph-based semi-supervised learning,

we will try our method on this problem in the future, too.

One of our advantages may be that the weight matrix in our

method can include more accurate information provided by

the labeled data.

Acknowledgments This work is partially supported by

the National Natural Science Foundation of China (Nos.

61702243, 61572099, 61976041, 61771229, 61320106008,

61772149, and 61561016), and the National Science and

Technology Major Project (No. 2018ZX04041001-007).



References

[1] R. Basri and D. W. Jacobs. Lambertian reflectance and

linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell.,

25(2):218–233, 2003.

[2] G. Chen, S. Atev, and G. Lerman. Kernel spectral curvature

clustering (KSCC). In ICCV, pages 765–772, 2009.

[3] G. Chen and G. Lerman. Spectral curvature clustering (SC-

C). International Journal of Computer Vision, 81(3):317–

330, 2009.

[4] N. Dalal and B. Triggs. Histograms of oriented gradients for

human detection. In CVPR, pages 886–893, 2005.

[5] E. Elhamifar and R. Vidal. Sparse subspace clustering: Al-

gorithm, theory, and applications. IEEE Trans. Pattern Anal.

Mach. Intell., 35(11):2765–2781, 2013.

[6] A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman.

From few to many: Illumination cone models for face recog-

nition under variable lighting and pose. IEEE Trans. Pattern

Anal. Mach. Intell., 23(6):643–660, 2001.

[7] T. Hastie and P. Y. Simard. Metrics and models for handwrit-

ten character recognition. Statistical Science, 13(1):54–65,

1998.

[8] X. He, S. Yan, Y. Hu, P. Niyogi, and H. Zhang. Face recogni-

tion using laplacianfaces. IEEE Trans. Pattern Anal. Mach.

Intell., 27(3):328–340, 2005.

[9] G. E. Hinton and R. R. Salakhutdinov. Reducing the

dimensionality of data with neural networks. Science,

313(5786):504–507, 2006.

[10] H. Hu, Z. Lin, J. Feng, and J. Zhou. Smooth representation

clustering. In CVPR, pages 3834–3841.

[11] P. Ji, T. Zhang, H. Li, M. Salzmann, and I. D. Reid. Deep

subspace clustering networks. In NIPS, pages 23–32, 2017.

[12] Q. Ji, Y. Sun, J. Gao, Y. Hu, and B. Yin. Nonlinear subspace

clustering via adaptive graph regularized autoencoder. IEEE

Access, 7:74122–74133, 2019.

[13] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Technical Report, 2009.

[14] S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of

features: Spatial pyramid matching for recognizing natural

scene categories. In CVPR, pages 2169–2178, 2006.

[15] F. Li, R. Fergus, and P. Perona. Learning generative vi-

sual models from few training examples: An incremental

bayesian approach tested on 101 object categories. Com-

puter Vision and Image Understanding, 106(1):59–70, 2007.

[16] Z. Lin, M. Chen, and Y. Ma. The augmented lagrange mul-

tiplier method for exact recovery of corrupted low-rank ma-

trices. CoRR, abs/1009.5055, 2010.

[17] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma. Ro-

bust recovery of subspace structures by low-rank represen-

tation. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):171–

184, 2013.

[18] C.-Y. Lu, H. Min, Z.-Q. Zhao, L. Zhu, D.-S. Huang, and

S. Yan. Robust and efficient subspace segmentation via least

squares regression. In ECCV, pages 347–360, 2012.

[19] S. A. Nene, S. K. Nayar, and H. Murase. Columbia objec-

t image library (coil-20). Technical Report, CUCS-005-96,

1996.

[20] V. Ojansivu and J. Heikkilä. Blur insensitive texture clas-

sification using local phase quantization. In ICISP, pages

236–243, 2008.

[21] V. M. Patel, H. V. Nguyen, and R. Vidal. Latent space sparse

subspace clustering. In ICCV, pages 225–232, 2013.

[22] V. M. Patel and R. Vidal. Kernel sparse subspace clustering.

In ICIP, pages 2849–2853, 2014.

[23] X. Peng, J. Feng, S. Xiao, W. Yau, J. T. Zhou, and S. Yang.

Structured autoencoders for subspace clustering. IEEE Tran-

s. Image Processing, 27(10):5076–5086, 2018.

[24] X. Peng, S. Xiao, J. Feng, W. Yau, and Z. Yi. Deep subspace

clustering with sparsity prior. In IJCAI, pages 1925–1931,

2016.

[25] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-

rank solutions of linear matrix equations via nuclear norm

minimization. SIAM Review, 52(3):471–501, 2010.

[26] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduc-

tion by locally linear embedding. Science, 290(5500):2323–

2326, 2000.

[27] L. K. Saul and S. T. Roweis. Think globally, fit locally: Un-

supervised learning of low dimensional manifold. Journal of

Machine Learning Research, 4:119–155, 2003.

[28] J. Shi and J. Malik. Normalized cuts and image segmenta-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 22(8):888–

905, 2000.

[29] P. Y. Simard, Y. LeCun, and J. S. Denker. Efficient pattern

recognition using a new transformation distance. In NIPS,

pages 50–58, 1992.

[30] K. Tang, X. Liu, Z. Su, W. Jiang, and J. Dong. Subspace

learning based low-rank representation. In ACCV, pages

416–431, 2016.

[31] K. Tang, J. Zhang, Z. Su, and J. Dong. Bayesian low-rank

and sparse nonlinear representation for manifold clustering.

Neural Processing Letters, 44(3):719–733, 2016.

[32] R. Tron and R. Vidal. A benchmark for the comparison of

3-d motion segmentation algorithms. In CVPR, 2007.

[33] R. Vidal. Subspace clustering. IEEE Signal Process. Mag.,

28(2):52–68, 2011.

[34] Y. Wang, Y. Jiang, Y. Wu, and Z. Zhou. Spectral cluster-

ing on multiple manifolds. IEEE Trans. Neural Networks,

22(7):1149–1161, 2011.

[35] S. Xiao, M. Tan, D. Xu, and Z. Y. Dong. Robust kernel

low-rank representation. IEEE Trans. Neural Netw. Learning

Syst., 27(11):2268–2281, 2016.

[36] A. Y. Yang, S. S. Sastry, A. Ganesh, and Y. Ma. Fast l1-

minimization algorithms and an application in robust face

recognition: A review. In ICIP, pages 1849–1852, 2010.

[37] M. Yin, Y. Guo, J. Gao, Z. He, and S. Xie. Kernel sparse sub-

space clustering on symmetric positive definite manifolds. In

CVPR, pages 5157–5164, 2016.

[38] T. Zhang, P. Ji, M. Harandi, W. Huang, and H. Li. Neural col-

laborative subspace clustering. In ICML, pages 7384–7393,

2019.

[39] P. Zhou, Y. Hou, and J. Feng. Deep adversarial subspace

clustering. In CVPR, pages 1596–1604, 2018.


