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Abstract

While recent studies have shed light on the expressivity,
complexity and compositionality of convolutional networks,
the real inductive bias of the family of functions reachable
by gradient descent on natural data is still unknown. By
exploiting symmetries in the preactivation space of convo-
lutional layers, we present preliminary empirical evidence
of regularities in the preimage of trained rectifier networks,
in terms of arrangements of polytopes, and relate it to the
nonlinear transformations applied by the network to its in-
put'.

1. Introduction

The foundational understanding of deep learning is an
open problem that has attracted significant attention from
the research community [12]. While a unified theory ca-
pable of fully accounting for the great empirical success
of deep networks still eludes researchers, many disciplines
have found successful application in explaining particular
aspects of this class of parametric models [4, 8, 16].

Any comprehensive theory aiming at understanding the
generalization capability of deep networks must consider
three main factors, namely, the network architecture, the
training algorithm and the dataset representing a popula-
tion. Indeed, modern networks are highly engineered for
performance on public benchmark datasets, with architec-
tures and activation functions designed to ensure gradient
flow, so these factors are deeply entwined [10].

One crucial open question on the generalization power
of deep architectures is the search for inductive biases orig-
inating from the above three factors [18, 19], and specifi-
cally whether the hypothesis space of deep networks (and
the parameter configurations reachable by gradient descent)
are biased towards a particular family of functions that are
posited to generalize well on natural datasets [24].

!'Source code available at https://github.com/magamba/cones.

A prominent field in the study of generalization is geom-
etry, which allows to characterize the expressivity of the hy-
pothesis space of deep networks [5], study the trainability of
the parameter space [6] and explain individual predictions
of a trained classifier [15]. In particular, preimage studies
are concerned with interpreting a given model in terms of
its decision boundaries, the resulting classification regions
and their complexity [2, 7].

One promising direction for discovering the implicit bias
of a classifier is looking for regularities in the preimage
of its layers, as a proxy for bias in the learned decision
function and its corresponding classification boundaries. In
the present work, we exploit symmetries in the preactiva-
tion space of convolutional layers of rectifier Convolutional
Neural Networks (CNNs) to draw a connection with the
non-linear activation of the layers. We lever this observation
to define novel statistics on the weights of convolutional
layers and study their distribution. Finally, we present pre-
liminary empirical evidence of regularity in the preimage
of convolutional layers, which we hypothesize to reflect in-
ductive bias in the function learned by the model.

2. Related work

Geometric studies on the expressivity and complexity of
deep networks describe the family of functions computable
by a network of fixed depth [17, 20] and provide bounds
on the number of linear regions of deep classifiers [21], by
studying piece-wise linear activation functions. Theoreti-
cal studies on rectifier networks investigate the reachable
parameter configurations and their optimality [1]. On the
opposite extreme, the study of activations of a trained clas-
sifier allows to explain its decisions in terms of its input[15],
by inverting individual activations for a given data sample.

Our work is placed in between the above two tracks. We
propose a formal analysis of the properties of a CNN based
on its weights and carry out a data-driven study on trained
networks, to account for actual configurations reached by
the optimizer. Recent related work describes the preimage
of rectifier CNNss in terms of hyperplane arrangements, and



argues that specific arrangements of hyperplanes associated
with successive convolutional layers can be characterized
as nested cones [2]. Our work builds on the same symme-
tries, to provide empirical evidence of their connection to
the transformation computed on the input space by a recti-
fier CNN. Finally, a related recent paper introduces statistics
on the margin of neural classifiers with respect to a given
data point and shows that they correlate well with the gener-
alization gap of the model on computer vision datasets [11].

3. Method

We recall the definition of convolutional layer with Rec-
tifier Linear Units (ReLUs) in section 3.1 and use the con-
struction to describe its preimage in section 3.2. In sec-
tion 3.3, we draw a connection between non-linearity of a
ReLU activation and the corresponding preimage. In sec-
tion 3.4, we introduce continuous statistics over the parame-
ters of a convolutional layer, which are discretized into four
finite states and are used to characterize the preimage.

3.1. Convolutional layers

Convolutional layers implement the cross-correlation
operation between an input tensor X € RE*HXW apd
one or more kernels (or filters), as described in equation 1.
The learned parameters are represented by a 4-way tensor
W € Rrouwxninxkxk where n,, represents the number of
kernels learned by the layer, njj, is the number of input chan-
nels and k£ x k is the spatial size of each kernel. For input
X of square spatial size H = W, the number of local re-
ceptive fields is 72, where 7 = (H — k + 2p)/s + 1, where
p represents the amount of zero-padding used and s is the
stride with which each kernel is convolved over the input.

For each filter W, := W]o,:,:,: |, 0 = 1,...,noy, the
convolutional layer computes

O(O7iaj) =
nn—1 k—1 k—1

bot Y, DY X(cit+m,j+n) Wole,m,n)
c¢c=0 m=0n=0

for ¢=0,...,r—1 and j5=0,...,7—1 (1)

where the cross-channel correlation (given by the outer
summation) is computed over the full depth and the spatial
cross-correlation is limited to the receptive field. Further-
more, the linear transformation computed by the convolu-
tional filter is typically augmented to an affine transforma-
tion, by adding a bias term b, € R. Finally, the output of all
the noy filters is stacked to produce a tensor O € Rrowxrxr,
corresponding to the preactivation of the layer.

Convolutional layers are typically implemented by vec-
torizing the tensors X and WV to exploit fast general matrix
multiplication algorithms and then reshaping the product to
match the size of the output tensor 9 [23].

For a single-kernel single-channel convolution, the in-
put X € RY>XHXW iq flattened to a column vector X :=
vec (X) € REW and W € RIX1X¥kXF jg reshaped to a ma-
trix W € R™*HW \where 72 denotes the number of local
receptive fields in X'. Each row of W has at most k% non-
zero entries, corresponding to the parameters of V.

If W is convolved with stride s = 1, then each row
in W is obtained by shifting the components of the pre-
vious row one step to the right and W is a Toepliz ma-
trix. Similarly, for a single-kernel multi-channel convolu-
tion, vec (X) € R™HW and W is reshaped to a Toepliz
matrix W € R xnaHW

The preactivation Oq of the convolutional filter on the
g-th receptive field, for ¢ = 0,...,72 — 1, is obtained by
multiplying the ¢-th row W, of W with x

Wrx+b=0,€R 2)

Finally, for multi-kernel multi-channel convolutions, the
weight matrix W is obtained by stacking the individual
weight matrices corresponding to each filter W, and the
resulting W € Rrour” Xminnw is block-circulant.

3.2. ReLU activations

To take advantage of the compositional topology of neu-
ral networks, a non-linear activation function ¢ is applied
element-wise to O to produce an activation ) € R7ou*7 %7

For rectifier CNNGs, the use of ReLU activations o (z) :=
max(0, ) induces affine hyperplanes in the preactivation
space of vec (O). In fact, for each component O; of vec(O),
the ReLU identifies two affine halfspaces X7 = {x €
R HW | Wox+b > 0} and X7 = {x € R™HW | W x +
b < 0} delimited by the hyperplane with normal vector
WqT , translated by b. If O; > 0, then its preimage corre-
sponds to one point in the preactivation space, lying in the
halfspace X q+ . Ifinstead O; < 0, the preimage is mapped to
the entire halfspace X - Hence, the activation O can be de-
scribed by the position of x with respect to the hyperplanes
identified by each W1, ¢ =0,...,7%2 — 1[2].

In particular, for a multi-channel convolution WV with
stride s = 1, the corresponding Toepliz matrix W identi-
fies 72 distinct hyperplanes in R”, with D = n;, HW such
that:

+wp_1rp_1 +b>0
+wp_sxp_1 +b>0

Woxog + wi1xy1 + . ..

Wp—_1To + Woxy + ...

3)

Wp_p241Z0 + ... FWp_p2Zp—1 +b>0

The high sparsity of each row, arising from the small spatial
size of k < H, guarantees that the Toepliz property holds
in practice for equation 3 for valid convolutions.



Thus, starting from the normal vector W to the first
hyperplane, the m-th hyperplane is obtained by cyclically
shifting the components of W by m — 1 positions to the
right, resulting in a set of intersecting hyperplanes that are
arranged symmetrically around the identity line of RP.

For the general case of multi-channel convolutions, the
resulting hyperplane arrangement describes convex poly-
topes in the preactivation space. Furthermore, for single-
channel kernels, if appropriate zero padding is used to pre-
serve the spatial dimensionality of the input, i.e. 72> = HW,
the resulting matrix W is square and the corresponding hy-
perplanes are arranged as a polyhedral cone in the input
space. The intersection of all faces of the cone gives its

apex v = (—2, ..., —2) lying on the identity line of R”,
HW

witha = > W,
i=0

3.3. Arrangement of polytopes and non-linearity of
activations

For a fixed weight assignment W' of a convolutional
layer [ and an input x, the ith channel O! of the activation
O! is determined by the relative position of x with respect
to the faces of the polytope corresponding to the :th kernel
of W!. As highlighted in the previous section, if x belongs
to the intersection of the positive halfspaces induced by the
faces of the polytope, then each of its components is trans-
formed linearly by the ReLLU. Each component of x lying
in a negative halfspace is instead contracted to 0.

Let [ be a convolutional layer with n; filters and [ + 1
be another convolutional layer learning ng filters. When
stacking [ and [ 4 1, the i-th channel O'! of O'*+1 depends
on the relative position of x with respect to the n; polytopes
cl,... ,th of layer [ and the polytope Cf“ of layer [ +
1. If the spatial dimensionality is preserved by using zero-
padding, then all the polytopes can be represented in the
input space of x, each with its apex on the identity line.

Foraset A C RP, let AC denote the complement of A in
RP_ Given two polytopes C! and C;*', we distinguish four
cases:

1. If Cf *1 is fully contained in C*, then the region of input
space (C!T1)C < (Cé-)c, which is linearly transformed
by C!, is now contracted by Cf“. Hence, the convo-

lutional kernel of Cf“ is effectively contributing non-
linearity to the transformation computed by the net-
work. We denote this state OUT_FULL_IN.

2. If C]l- is instead fully contained in Cf“, then the lat-
ter kernel is not contributing additional non-linearity
to the network. We call this state IN.FULL_OUT.

3. If CJL and Cf“ have partial non-empty intersection and
the apex of Cf“ is inside the convex hull of Cé-, then

each dimension of the region (Cé“)[J ~ (Cj-)c is con-
tracted to 0. We call this OUT_PARTIAL_IN.

4. If Cé- and Cf“ have partial non-empty intersection,
but the apex of C/* is this time outside the convex
hull of C;, then additional non-linearity is contributed
only in the regions (C*")¢ N CL. This state is called
IN_PARTIAL_OUT.

In the next section, we introduce continuous statistics that
allow to detect the above four states for polyhedral cones.

Finally, it is worth noting that hyperplane arrangements
can also be used to characterize the preimage of fully con-
nected layers, but their computational complexity grows ex-
ponentially with the depth of the network [3].

3.4. Statistics over convolutional weights

In this section, we introduce three continuous statistics
over the weights of a pair of stacked convolutional layers,
that can be used to describe the mutual position of two poly-
hedral cones le- and C’lH'l, in terms of the affine alignment
of their convex hulls, expressed by a translation component
and two planar angles.

e Let v; and v; resp. denote the apices of Cé“ and C}
in RL. The absolute distance [|vj — vi||2, denotes the
translation along the identity line needed to move one
vertex onto the other. To allow for comparisons that
are independent from the input space dimensionality
D, the distance is scaled by %. In the experiments, the
maximum distance over all pairs of kernels is used to
normalize the absolute distance to [0, 1].

e The inclusion and intersection of the two cones de-
pends on the opening angle «; (resp. ;) of each cone,
which we compute as the angle between the identity
line and any face of the cone. Since the angle is bound
in [0, 7], we express the offset between the two cones
as %|O¢z — Oéj|.

e The alignment of two cones depends on the rotation
angles of each cone around its axis. In D dimensions,
there are D — 2 possible angles for each cone. Given
the hyperplane corresponding to any face of Cf“, we
aggregate the rotation angle by computing the mini-
mum angle of rotation that transforms the hyperplane
into a face of Cﬁ The result is then normalized by 7.

We observe that the relative arrangement of cones is fully
determined by the weights of corresponding kernels.

Thanks to the continuous measures introduced above, for
each pair (C!, C'*1), the alignment of the two polytopes can
be described by the four discrete states introduced in sec-
tion 3.3. In section 4, we empirically study the distribution
of the four states for two families of CNN architectures.
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Figure 1: Discrete distribution for a 9-layer LeNet on CIFAR-10, every 10 epochs. The results are averaged over 5 runs.

4. Evaluation

To evaluate our methodology, we train CNNs based on
LeNet [14] and VGG [22] on CIFAR-10 [13].

Given a pair of stacked convolutional layers [ and [ + 1,
equation 1 shows that the oth channel of each kernel of the
second layer is convolved with the oth channel of O'. This
in turn is the result of convolving the oth kernel of layer
l, composed of n; channels, with its input O'=1 over the
full depth. Hence, then mutual arrangement of the polytope
CL+1 is computed with respect to the r; polytopes {C} 1!
corresponding to the channels of the oth kernel of layer (.

For the discrete states, the arrangement of Cé“ is com-
puted w.r.t. the conical combination of {CIZ)}Z‘:_Ol. Finally,
to restrict the study to the affine arrangement of polyhe-
dral cones and make our theory as tight as possible, con-
volutional layers are implemented by swapping the order of
cross-channel correlation and ReLU activation, according
to equation 4. This allows to investigate for any bias arising
from the optimization process in the arrangement of cones.

O(Ovi>j) =
Nin—1 k—1 k—1
bot 3 o( D0 D Xlesitm,j+n) - Wale,m,m))
c=0 m=0n=0

for i=0,....,r—1 and j=0,...,r—1 (4

The distribution of the four discrete states is studied at
initialization and throughout training of two networks, one
based on VGG and one on LeNet, each with 9 total learned
layers (described in section B of the supplemental material).

First, we observe that the high frequency of state
OUT_FULL_IN at initialization arises from the zero-

initialization of the bias terms of each layer and the use of
conical combinations of polytopes {Cé, ;”:f)l. For this rea-
son, we focus our evaluation on trained weights. Figure 1
shows that, as training progresses, the mutual arrangement
of cones changes in the early epochs to stabilize towards full
inclusion of polyhedral cones into the interior of those at the
previous layer. Furthermore, around 10% of cones has par-
tial non-empty intersection with their predecessors, while
another 10% (case IN_.PARTIAL_OUT) are less effective in
contributing nonlinearity to the transformation computed by
the network. The key insight is that optimization drives the
convolutional parameters towards the case OUT_FULL_IN,
in which each channel effectively contracts a new region of
the input space, that was transformed linearly by kernels at
the previous layer. Finally, the error bars show that the vari-
ance of the observed states across different runs is reduced
as training progresses. Similar trends are observed for our
VGG-like network and LeNet7 (see supplemental material,
section D).

5. Conclusion

Based on symmetries in the preimage of convolutional
layers, we propose discrete statistics to study the mutual
arrangement of the hyperplanes that define ReLU activa-
tions. Our special CNNs allow to assess our methodology
as tightly as possible. We show that training on natural im-
age data changes the arrangement of the cones in a way that
is biased towards configurations that efficiently contribute
non-linearity to the function learned by the network. We
are currently investigating to what extent our findings re-
flect the actual bias of state of the art CNNS.
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