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Abstract

While recent studies have shed light on the expressivity,

complexity and compositionality of convolutional networks,

the real inductive bias of the family of functions reachable

by gradient descent on natural data is still unknown. By

exploiting symmetries in the preactivation space of convo-

lutional layers, we present preliminary empirical evidence

of regularities in the preimage of trained rectifier networks,

in terms of arrangements of polytopes, and relate it to the

nonlinear transformations applied by the network to its in-

put1.

1. Introduction

The foundational understanding of deep learning is an

open problem that has attracted significant attention from

the research community [12]. While a unified theory ca-

pable of fully accounting for the great empirical success

of deep networks still eludes researchers, many disciplines

have found successful application in explaining particular

aspects of this class of parametric models [4, 8, 16].

Any comprehensive theory aiming at understanding the

generalization capability of deep networks must consider

three main factors, namely, the network architecture, the

training algorithm and the dataset representing a popula-

tion. Indeed, modern networks are highly engineered for

performance on public benchmark datasets, with architec-

tures and activation functions designed to ensure gradient

flow, so these factors are deeply entwined [10].

One crucial open question on the generalization power

of deep architectures is the search for inductive biases orig-

inating from the above three factors [18, 19], and specifi-

cally whether the hypothesis space of deep networks (and

the parameter configurations reachable by gradient descent)

are biased towards a particular family of functions that are

posited to generalize well on natural datasets [24].

1Source code available at https://github.com/magamba/cones.

A prominent field in the study of generalization is geom-

etry, which allows to characterize the expressivity of the hy-

pothesis space of deep networks [5], study the trainability of

the parameter space [6] and explain individual predictions

of a trained classifier [15]. In particular, preimage studies

are concerned with interpreting a given model in terms of

its decision boundaries, the resulting classification regions

and their complexity [2, 7].

One promising direction for discovering the implicit bias

of a classifier is looking for regularities in the preimage

of its layers, as a proxy for bias in the learned decision

function and its corresponding classification boundaries. In

the present work, we exploit symmetries in the preactiva-

tion space of convolutional layers of rectifier Convolutional

Neural Networks (CNNs) to draw a connection with the

non-linear activation of the layers. We lever this observation

to define novel statistics on the weights of convolutional

layers and study their distribution. Finally, we present pre-

liminary empirical evidence of regularity in the preimage

of convolutional layers, which we hypothesize to reflect in-

ductive bias in the function learned by the model.

2. Related work

Geometric studies on the expressivity and complexity of

deep networks describe the family of functions computable

by a network of fixed depth [17, 20] and provide bounds

on the number of linear regions of deep classifiers [21], by

studying piece-wise linear activation functions. Theoreti-

cal studies on rectifier networks investigate the reachable

parameter configurations and their optimality [1]. On the

opposite extreme, the study of activations of a trained clas-

sifier allows to explain its decisions in terms of its input[15],

by inverting individual activations for a given data sample.

Our work is placed in between the above two tracks. We

propose a formal analysis of the properties of a CNN based

on its weights and carry out a data-driven study on trained

networks, to account for actual configurations reached by

the optimizer. Recent related work describes the preimage

of rectifier CNNs in terms of hyperplane arrangements, and



argues that specific arrangements of hyperplanes associated

with successive convolutional layers can be characterized

as nested cones [2]. Our work builds on the same symme-

tries, to provide empirical evidence of their connection to

the transformation computed on the input space by a recti-

fier CNN. Finally, a related recent paper introduces statistics

on the margin of neural classifiers with respect to a given

data point and shows that they correlate well with the gener-

alization gap of the model on computer vision datasets [11].

3. Method

We recall the definition of convolutional layer with Rec-

tifier Linear Units (ReLUs) in section 3.1 and use the con-

struction to describe its preimage in section 3.2. In sec-

tion 3.3, we draw a connection between non-linearity of a

ReLU activation and the corresponding preimage. In sec-

tion 3.4, we introduce continuous statistics over the parame-

ters of a convolutional layer, which are discretized into four

finite states and are used to characterize the preimage.

3.1. Convolutional layers

Convolutional layers implement the cross-correlation

operation between an input tensor X ∈ R
C×H×W and

one or more kernels (or filters), as described in equation 1.

The learned parameters are represented by a 4-way tensor

W ∈ R
nout×nin×k×k, where nout represents the number of

kernels learned by the layer, nin is the number of input chan-

nels and k × k is the spatial size of each kernel. For input

X of square spatial size H = W , the number of local re-

ceptive fields is r2, where r = (H − k + 2p)/s+ 1, where

p represents the amount of zero-padding used and s is the

stride with which each kernel is convolved over the input.

For each filter Wo := W[o, :, :, : ], o = 1, . . . , nout, the

convolutional layer computes

Õ(o, i, j) =

bo +

nin−1
∑

c=0

k−1
∑

m=0

k−1
∑

n=0

X (c, i+m, j + n) · Wo(c,m, n)

for i = 0, . . . , r − 1 and j = 0, . . . , r − 1 (1)

where the cross-channel correlation (given by the outer

summation) is computed over the full depth and the spatial

cross-correlation is limited to the receptive field. Further-

more, the linear transformation computed by the convolu-

tional filter is typically augmented to an affine transforma-

tion, by adding a bias term bo ∈ R. Finally, the output of all

the nout filters is stacked to produce a tensor Õ ∈ R
nout×r×r,

corresponding to the preactivation of the layer.

Convolutional layers are typically implemented by vec-

torizing the tensors X and W to exploit fast general matrix

multiplication algorithms and then reshaping the product to

match the size of the output tensor Õ [23].

For a single-kernel single-channel convolution, the in-

put X ∈ R
1×H×W is flattened to a column vector x :=

vec (X ) ∈ R
HW and W ∈ R

1×1×k×k is reshaped to a ma-

trix W ∈ R
r2×HW , where r2 denotes the number of local

receptive fields in X . Each row of W has at most k2 non-

zero entries, corresponding to the parameters of W .

If W is convolved with stride s = 1, then each row

in W is obtained by shifting the components of the pre-

vious row one step to the right and W is a Toepliz ma-

trix. Similarly, for a single-kernel multi-channel convolu-

tion, vec (X ) ∈ R
ninHW and W is reshaped to a Toepliz

matrix W ∈ R
r2×ninHW .

The preactivation Õq of the convolutional filter on the

q-th receptive field, for q = 0, . . . , r2 − 1, is obtained by

multiplying the q-th row WT
q of W with x

WT
q x+ b =: Õq ∈ R (2)

Finally, for multi-kernel multi-channel convolutions, the

weight matrix W is obtained by stacking the individual

weight matrices corresponding to each filter Wo, and the

resulting W ∈ R
noutr

2
×ninHW is block-circulant.

3.2. ReLU activations

To take advantage of the compositional topology of neu-

ral networks, a non-linear activation function ϕ is applied

element-wise to Õ to produce an activation O ∈ R
nout×r×r.

For rectifier CNNs, the use of ReLU activations ϕ(x) :=
max(0, x) induces affine hyperplanes in the preactivation

space of vec (O). In fact, for each component Oi of vec(O),
the ReLU identifies two affine halfspaces X+

q = {x ∈

R
ninHW |Wqx+b ≥ 0} and X−

q = {x ∈ R
ninHW |Wqx+

b < 0} delimited by the hyperplane with normal vector

WT
q , translated by b. If Oi > 0, then its preimage corre-

sponds to one point in the preactivation space, lying in the

halfspace X+
q . If instead Oi ≤ 0, the preimage is mapped to

the entire halfspace X−

q . Hence, the activation O can be de-

scribed by the position of x with respect to the hyperplanes

identified by each WT
q , q = 0, . . . , r2 − 1 [2].

In particular, for a multi-channel convolution W with

stride s = 1, the corresponding Toepliz matrix W identi-

fies r2 distinct hyperplanes in R
D, with D = ninHW such

that:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

w0x0 + w1x1 + . . .+ wD−1xD−1 + b ≥ 0

wD−1x0 + w0x1 + . . .+ wD−2xD−1 + b ≥ 0

...
...

wD−r2+1x0 + . . .+ wD−r2xD−1 + b ≥ 0

(3)

The high sparsity of each row, arising from the small spatial

size of k ≪ H , guarantees that the Toepliz property holds

in practice for equation 3 for valid convolutions.



Thus, starting from the normal vector WT
0 to the first

hyperplane, the m-th hyperplane is obtained by cyclically

shifting the components of WT
0 by m − 1 positions to the

right, resulting in a set of intersecting hyperplanes that are

arranged symmetrically around the identity line of RD.

For the general case of multi-channel convolutions, the

resulting hyperplane arrangement describes convex poly-

topes in the preactivation space. Furthermore, for single-

channel kernels, if appropriate zero padding is used to pre-

serve the spatial dimensionality of the input, i.e. r2 = HW ,

the resulting matrix W is square and the corresponding hy-

perplanes are arranged as a polyhedral cone in the input

space. The intersection of all faces of the cone gives its

apex v = (− b
a
, . . . ,− b

a
) lying on the identity line of RD,

with a =
HW
∑

i=0

Wqi.

3.3. Arrangement of polytopes and non-linearity of
activations

For a fixed weight assignment W l of a convolutional

layer l and an input x, the ith channel Ol
i of the activation

Ol is determined by the relative position of x with respect

to the faces of the polytope corresponding to the ith kernel

of W l. As highlighted in the previous section, if x belongs

to the intersection of the positive halfspaces induced by the

faces of the polytope, then each of its components is trans-

formed linearly by the ReLU. Each component of x lying

in a negative halfspace is instead contracted to 0.

Let l be a convolutional layer with n1 filters and l + 1
be another convolutional layer learning n2 filters. When

stacking l and l+1, the i-th channel Ol+1

i of Ol+1 depends

on the relative position of x with respect to the n1 polytopes

Cl
1, . . . , C

l
n1

of layer l and the polytope Cl+1

i of layer l +
1. If the spatial dimensionality is preserved by using zero-

padding, then all the polytopes can be represented in the

input space of x, each with its apex on the identity line.

For a set A ⊆ R
D, let A∁ denote the complement of A in

R
D. Given two polytopes Cl

j and Cl+1

i , we distinguish four

cases:

1. If Cl+1

i is fully contained in Cl
j , then the region of input

space (Cl+1

i )∁ � (Cl
j)

∁, which is linearly transformed

by Cl
j , is now contracted by Cl+1

i . Hence, the convo-

lutional kernel of Cl+1

i is effectively contributing non-

linearity to the transformation computed by the net-

work. We denote this state OUT FULL IN.

2. If Cl
j is instead fully contained in Cl+1

i , then the lat-

ter kernel is not contributing additional non-linearity

to the network. We call this state IN FULL OUT.

3. If Cl
j and Cl+1

i have partial non-empty intersection and

the apex of Cl+1

i is inside the convex hull of Cl
j , then

each dimension of the region (Cl+1

i )∁ � (Cl
j)

∁ is con-

tracted to 0. We call this OUT PARTIAL IN.

4. If Cl
j and Cl+1

i have partial non-empty intersection,

but the apex of Cl+1

i is this time outside the convex

hull of Cl
j , then additional non-linearity is contributed

only in the regions (Cl+1

i )∁ ∩ Cl
j . This state is called

IN PARTIAL OUT.

In the next section, we introduce continuous statistics that

allow to detect the above four states for polyhedral cones.

Finally, it is worth noting that hyperplane arrangements

can also be used to characterize the preimage of fully con-

nected layers, but their computational complexity grows ex-

ponentially with the depth of the network [3].

3.4. Statistics over convolutional weights

In this section, we introduce three continuous statistics

over the weights of a pair of stacked convolutional layers,

that can be used to describe the mutual position of two poly-

hedral cones Cl
j and Cl+1

i , in terms of the affine alignment

of their convex hulls, expressed by a translation component

and two planar angles.

• Let vi and vj resp. denote the apices of Cl+1

i and Cl
j

in R
D. The absolute distance ||vj − vi||2, denotes the

translation along the identity line needed to move one

vertex onto the other. To allow for comparisons that

are independent from the input space dimensionality

D, the distance is scaled by 1

D
. In the experiments, the

maximum distance over all pairs of kernels is used to

normalize the absolute distance to [0, 1].

• The inclusion and intersection of the two cones de-

pends on the opening angle αi (resp. αj) of each cone,

which we compute as the angle between the identity

line and any face of the cone. Since the angle is bound

in [0, π
2
], we express the offset between the two cones

as 2

π
|αi − αj |.

• The alignment of two cones depends on the rotation

angles of each cone around its axis. In D dimensions,

there are D − 2 possible angles for each cone. Given

the hyperplane corresponding to any face of Cl+1

i , we

aggregate the rotation angle by computing the mini-

mum angle of rotation that transforms the hyperplane

into a face of Cl
j . The result is then normalized by π.

We observe that the relative arrangement of cones is fully

determined by the weights of corresponding kernels.

Thanks to the continuous measures introduced above, for

each pair (Cl, Cl+1), the alignment of the two polytopes can

be described by the four discrete states introduced in sec-

tion 3.3. In section 4, we empirically study the distribution

of the four states for two families of CNN architectures.



Figure 1: Discrete distribution for a 9-layer LeNet on CIFAR-10, every 10 epochs. The results are averaged over 5 runs.

4. Evaluation

To evaluate our methodology, we train CNNs based on

LeNet [14] and VGG [22] on CIFAR-10 [13].

Given a pair of stacked convolutional layers l and l + 1,

equation 1 shows that the oth channel of each kernel of the

second layer is convolved with the oth channel of Ol. This

in turn is the result of convolving the oth kernel of layer

l, composed of nl channels, with its input Ol−1 over the

full depth. Hence, then mutual arrangement of the polytope

Cl+1
o is computed with respect to the nl polytopes {Cl

p}
nl−1

p=0

corresponding to the channels of the oth kernel of layer l.
For the discrete states, the arrangement of Cl+1

o is com-

puted w.r.t. the conical combination of {Cl
p}

nl−1

p=0 . Finally,

to restrict the study to the affine arrangement of polyhe-

dral cones and make our theory as tight as possible, con-

volutional layers are implemented by swapping the order of

cross-channel correlation and ReLU activation, according

to equation 4. This allows to investigate for any bias arising

from the optimization process in the arrangement of cones.

O(o, i, j) =

bo +

nin−1
∑

c=0

ϕ
(

k−1
∑

m=0

k−1
∑

n=0

X (c, i+m, j + n) · Wo(c,m, n)
)

for i = 0, . . . , r − 1 and j = 0, . . . , r − 1 (4)

The distribution of the four discrete states is studied at

initialization and throughout training of two networks, one

based on VGG and one on LeNet, each with 9 total learned

layers (described in section B of the supplemental material).

First, we observe that the high frequency of state

OUT FULL IN at initialization arises from the zero-

initialization of the bias terms of each layer and the use of

conical combinations of polytopes {Cl
p}

nl−1

p=0 . For this rea-

son, we focus our evaluation on trained weights. Figure 1

shows that, as training progresses, the mutual arrangement

of cones changes in the early epochs to stabilize towards full

inclusion of polyhedral cones into the interior of those at the

previous layer. Furthermore, around 10% of cones has par-

tial non-empty intersection with their predecessors, while

another 10% (case IN PARTIAL OUT) are less effective in

contributing nonlinearity to the transformation computed by

the network. The key insight is that optimization drives the

convolutional parameters towards the case OUT FULL IN,

in which each channel effectively contracts a new region of

the input space, that was transformed linearly by kernels at

the previous layer. Finally, the error bars show that the vari-

ance of the observed states across different runs is reduced

as training progresses. Similar trends are observed for our

VGG-like network and LeNet7 (see supplemental material,

section D).

5. Conclusion

Based on symmetries in the preimage of convolutional
layers, we propose discrete statistics to study the mutual
arrangement of the hyperplanes that define ReLU activa-
tions. Our special CNNs allow to assess our methodology
as tightly as possible. We show that training on natural im-
age data changes the arrangement of the cones in a way that
is biased towards configurations that efficiently contribute
non-linearity to the function learned by the network. We
are currently investigating to what extent our findings re-
flect the actual bias of state of the art CNNs.
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[14] Yann LeCun, Léon Bottou, Yoshua Bengio, Patrick Haffner,

et al. Gradient-based learning applied to document recogni-

tion. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[15] Aravindh Mahendran and Andrea Vedaldi. Understanding

deep image representations by inverting them. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 5188–5196, 2015.

[16] Charles H Martin and Michael W Mahoney. Rethinking gen-

eralization requires revisiting old ideas: statistical mechanics

approaches and complex learning behavior. arXiv preprint

arXiv:1710.09553, 2017.

[17] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and

Yoshua Bengio. On the number of linear regions of deep

neural networks. In Advances in neural information process-

ing systems, pages 2924–2932, 2014.

[18] Behnam Neyshabur, Srinadh Bhojanapalli, David

McAllester, and Nati Srebro. Exploring generalization

in deep learning. In Advances in Neural Information

Processing Systems, pages 5947–5956, 2017.

[19] Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In

search of the real inductive bias: On the role of implicit regu-

larization in deep learning. arXiv preprint arXiv:1412.6614,

2014.

[20] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On

the number of response regions of deep feed forward net-

works with piece-wise linear activations. arXiv preprint

arXiv:1312.6098, 2013.

[21] Thiago Serra, Christian Tjandraatmadja, and Srikumar Ra-

malingam. Bounding and counting linear regions of deep

neural networks. arXiv preprint arXiv:1711.02114, 2017.

[22] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[23] Aravind Vasudevan, Andrew Anderson, and David Gregg.

Parallel multi channel convolution using general matrix mul-

tiplication. In 2017 IEEE 28th International Conference on

Application-specific Systems, Architectures and Processors

(ASAP), pages 19–24. IEEE, 2017.

[24] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learn-

ing requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016.


