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Abstract

We present an analysis of predictive uncertainty based
out-of-distribution detection for different approaches to es-
timate various models’ epistemic uncertainty and contrast it
with extreme value theory based open set recognition. While
the former alone does not seem to be enough to overcome
this challenge, we demonstrate that uncertainty goes hand
in hand with the latter method. This seems to be particularly
reflected in a generative model approach, where we show
that posterior based open set recognition outperforms dis-
criminative models and predictive uncertainty based outlier
rejection, raising the question of whether classifiers need to
be generative in order to know what they have not seen.

1. Introduction

A particular challenge of modern deep learning based
computer vision systems is a neural network’s tendency to
produce outputs with high confidence when presented with
task unrelated data. Early works have identified this issue
and have shown that methods employing forms of thresh-
olding a neural network’s softmax confidence are generally
not enough for rejection of unknown inputs [15]. Recently,
deep learning methods for approximate Bayesian inference
[12, 5, 10, 5], such as deep latent variable models [12] or
Monte Carlo dropout (MCD) [5], have opened the pathway
to capturing neural network uncertainty. Access to these un-
certainties comes with the promise of allowing to separate
what a model is truly confident about through output vari-
ability. However, misclassification is not prevented and in a
Bayesian approach uncertain inputs are not necesssarily un-
known and vice versa unknowns do not necessarily appear
as uncertain [3]. This has recently been observed on a large
empirical scale [19] and figure 1 illustrates this challenge.
Here we show the prediction confidence and entropy of two
deep residual neural networks [7, 23] trained on FashionM-
NIST [22] as obtained through a standard feed-forward pass
and variational inference using 50 MCD samples. Neither
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Figure 1: Classification confidence and entropy for deep
neural network classifiers with and without approximate
variational inference. Models have been trained on Fashion-
MNIST and are evaluated on out-of-distribution datasets.

of the approaches is able to avoid over-confident predictions
on previously unseen datasets, even if MCD fares much bet-
ter in separating the distributions.

A different thread for open-set recognition in deep neu-
ral networks is through extreme-value theory (EVT) based
meta-recognition [21, 2]. When applied to a neural net-
work’s penultimate feature representation, it has originally
been shown to improve out-of-distribution (OOD) detection
in contrast to simply relying on a neural network’s output
values. We have recently extended this approach by adapt-
ing EVT to each class’ approximate posterior in a latent



variable model for continual learning [16]. However, EVT
based open set recognition and capturing epistemic uncer-
tainty need not be seen as separate approaches. In this work
we thus empirically demonstrate that:

1. combining the benefit of capturing a model’s uncer-
tainty with EVT based open set recognition outper-
forms out-of-distribution detection using prediction
uncertainty on a variety of classification tasks.

2. moving to a generative model, which in addition to the
label distribution p(y) also approximates the data dis-
tribution p(x), results in similar prediction entropy but
further improves the latent based EVT approach.

2. Variational open set neural networks

We consider three different models for which we investi-
gate open set detection based on both prediction uncertainty
as well as the EVT based approach. The simplest model is a
standard deep neural network classifier. Such a model how-
ever doesn’t capture epistemic uncertainty. We thus con-
sider variational Bayesian inference with neural networks
consisting of an encoder with variational parameters 8 and
a linear classifier pg (y|z) that gives the probability density
of target y given a sample z from the approximate poste-
rior gg(z|x). We optionally also consider the addition of
a probabilistic decoder py(a|2) that returns the probability
density of x under the generative model. With the added de-
coder we thus learn a joint generative model p(x, y, z) =
p(y|z)p(x|z)p(z). These models are trained by optimizing
the following variational evidence lower-bound:

L(0,0,8) = Eqgy(z1a) [log py(x|2) 4+ log pe(y|2)]

~ BKL(go(le) || p(2)] M

Here ( is an additional parameter that weighs the contribu-
tion of the Kullback-Leibler divergence between approxi-
mate posterior gg(z|x) and prior p(z) as suggested by the
authors of 8-Variational Autoencoder [8]. We can summa-
rize the considered models as follows:

1. Standard discriminative neural network classifier that
maximizes log pg(y|x) (not described by equation 1).

2. Variational discriminative classifier with graph * —
z — y. Maximizes the lower-bound to p(y) as given
by equation 1 without the ¢ dependent (blue) term.

3. Variational generative model as described by equa-
tion 1 with generative process p(x,y,z) =
p(y|z)p(x|z)p(z). In addition to p(y), also jointly
maximizes the variational lower-bound to p(x).

Following a variational formulation, the second and third
model have natural means to capture epistemic uncertainty,

Algorithm 1 Open set recognition calibration for deep
variational neural networks. A Weibull model fit of tail-
size 7 is conducted to bound the per class approximate pos-
terior. Per class ¢ Weibull models p,. with their respective
shift 7., shape x. and scale \. parameters are returned.

Require: Trained encoder gg(z|) and classifier pg (y|z)
Require: Classifier probabilities pg(y|z) and samples
from the approximate posterior z(xz(") ~ gg(z|x®)

for each training dataset example x(*)
Require: For each class ¢, let Sgi) = z(

correctly classified training example :cé(i
cforc=1...Cdo

Get per class latent mean S, = mean(S')
|

/c(i)) for each
)

c

Weibull model p, = Fit Weibull (||S. — S,

. Return means S and Weibull models p

,m)

A

Algorithm 2 Open set probability estimation for un-
known inputs. Data points are considered statistical out-
liers if a Weibull model’s cumulative distribution function’s
(CDF) probability value exceeds a task specific prior §2;.

Require: Trained encoder qg(z|x)
Require: Per class latent mean S and Weibull model Pes
each with parameters (7., K¢, Ac)
For a novel input example & sample z ~ gg(z|%)
2: Compute distances to S.: d. = ||S. — z||
forc=1...Cdo .
4  Weibull CDF w,(d,) = 1 — exp (—M) ‘

c

Reject input if w.(d.) > €, for any class c.

i.e. uncertainty that could be lowered by training on more
data. Drawing multiple samples z ~ gg(z|x) from the ap-
proximate posterior yields a distribution over the models’
outputs as specified by the expectation in 1. For all above
approaches we can additionally place a prior distribution
over the models’” weights to find a distribution go(W') for
the weights posterior. This can be achieved by performing a
dropout operation [20] at every weight layer and conducting
approximate variational inference through multiple stochas-
tic forward passes during evaluation. We do not consider
variational autoencoders [12] that only maximize the varia-
tional lower-bound to p() (i.e. equation 1 without the blue
term), as these models have been shown to be incapable of
separating seen from unseen data in previous literature [17].

2.1. Open set meta-recognition

For a standard deep neural network classifier we follow
the EVT based approach based on the features of the penul-
timate layer [2]. To bound the open-space risk of our varia-
tional models we follow the adaptation of this method to op-
erate on the latent space and thus on the basis of the approx-



imate posterior in Bayesian inference [16]. In the Bayesian
interpretation we obtain a Weibull distribution fit on the dis-
tances from the approximate posterior z(x) ~ qg(z|x) of
each correctly classified training example. This leads to a
bound on the regions of posterior high density as the tail of
the Weibull distribution limits the amount of allowed low
density space around these regions. Given such an estimate
of the regions where the posterior has high density and the
model can thus be trusted to make an informed decision, a
novel unseen input example can be rejected according to the
statistical outlier probability given the Weibull cumulative
distribution function (CDF) between the unseen example’s
posterior samples and their distances to the high density re-
gions. The corresponding procedures to obtain the Weibull
fits and estimate an unseen data-point’s outlier probability
are outlined in algorithms 1 and 2.

3. Experiments and results

We base our encoder and optional decoder architecture
on 14-layer wide residual networks [7, 23], in the varia-
tional cases with a latent dimensionality of 60. The clas-
sifier always consists of a single linear layer. We optimize
all models using a mini-batch size of 128 and Adam [11]
with a learning rate of 0.001, batch normalization [9] with
a value of 1075, ReLLU activations and weight initialization
according to He et. al [6]. For each convolution we in-
clude a dropout layer with a rate of 0.2 that we can use for
MCD. We train all our model variants for 150 epochs un-
til full convergence on three datasets: FashionMNIST [22],
MNIST [14] and SVHN [18]. We do not apply any prepro-
cessing or data augmentation. For the EVT based outlier
rejection we fit Weibull models with a tail-size set to 5% of
training data examples per class. The used distance mea-
sure is the cosine distance. After training we evaluate out
of distribution detection on the other two datasets and ad-
ditionaly the KMNIST [4], CIFAR10 and 100 [13] and the
non-image based AudioMNIST [1] datasets. For the latter
we follow the authors’ steps to convert the audio data into
spectrograms. To make this cross-dataset evaluation pos-
sible, we repeat all gray-scale datasets to a three channel
representations and resize all images to 32 x 32.

3.1. Results and discussion

We show outlier rejection curves using both prediction
uncertainty as well as EVT based OOD recognition for the
three network types trained on FashionMNIST in figure 2.
Rejection rates for the variational approaches were com-
puted using 100 approximate posterior samples to capture
epistemic uncertainty. When looking at the prediction en-
tropy, we can observe that a standard deep neural network
classifier predicts over-confidently for all OOD data. While
the EVT based approach alleviates this to a certain extent,
the challenge of OOD detection still largely persists. Mov-
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Figure 2: The three different models trained on FashionM-
NIST and evaluated on unseen datasets. For each model a
pair of outlier rejection curves is shown. Left panels depict
outlier rejection based on prediction entropy, whereas right
panels show the EVT based open set recognition across the
range of statistical outlier rejection priors {2;.

ing to one of the variational models increases the entropy
of OOD datasets, although not to the point where a sepa-
ration from statistically inlying data is possible. Here, the
EVT approach fares much better in achieving such separa-
tion. Nevertheless, this separation is only consistent across
a wide range of rejection priors with the inclusion of the
joint generative model. This is particularly important since
this rejection prior has to be determined based on the orig-
inal inlying validation data, as we can assume no access to
OOD data upfront. Notice how this choice impacts rejection
rates of the joint generative model to a much lesser extent.

In addition we show the variational models of figure 2 pan-
els (b) and (c) in figure 3 with 50 Monte Carlo dropout



Outlier detection at 95% trained dataset inliers (%) FashionMNIST MNIST KMNIST CIFARI0 CIFAR100 SVHN AudioMNIST
Trained Model variant Test acc. ‘ Entropy Latent ‘ Entropy Latent ‘ Entropy Latent ‘ Entropy Latent ‘ Entropy Latent ‘ Entropy Latent ‘ Entropy Latent
Fashion  standard discriminative 93.36 4.903 4.852 | 38.36 63.29 | 48.82 76.97 | 23.75 3878 | 25.27 40.23 | 18.21 30.65 | 51.28 77.96
MNIST  variational discriminative 93.73 4911 4.826 | 50.51 6742 | 72.23 84.51 | 43.64 47.13 | 45.39 47.87 | 28.79 32.06 | 74.03 87.20
variational generative 93.57 4.878 4.992 | 54.58 91.13 | 5631 88.34 | 48.69 92.96 | 53.03 93.36 | 38.87 88.82 | 55.87 92.23
variational discriminative - MCD  93.70 4.864 4.887 | 91.99 95.24 | 83.84 88.95 | 79.27 81.84 | 72.24 76.86 | 48.24 58.73 | 97.01 97.56
variational generative - MCD 93.68 4.899 4908 | 84.32 95.05 | 67.24 88.37 | 68.40 97.16 | 68.07 97.51 | 49.98 94.51 | 75.59 95.11
MNIST  standard discriminative 99.43 88.04 90.71 | 4.968 4.873 | 8525 85.40 | 91.06 87.62 | 92.39 88.47 | 86.85 85.59 | 93.88 93.40
variational discriminative 99.57 97.55 99.86 | 4.890 4.871 | 95.18 99.53 | 99.76 99.98 | 99.69 99.97 | 94.37 97.70 | 98.61 99.65
variational generative 99.53 95.12 96.60 | 4.888 4.954 | 97.15 98.97 | 98.60 99.81 | 98.64 99.65 | 96.53 96.29 | 99.65 99.98
variational discriminative - MCD  99.55 99.56 99.93 | 4.879 4.932 | 98.82 99.66 | 99.96 99.98 | 99.95 99.99 | 98.32 98.97 | 99.86 99.90
variational generative - MCD 99.56 98.61 99.18 | 4.841 4.873 | 96.81 99.75 | 99.73 99.82 | 99.89 99.89 | 97.47 98.42 | 98.95 99.15
SVHN  standard discriminative 97.34 69.67 71.99 | 18.61 23.48 | 65.07 74.93 | 73.96 83.00 | 72.43 80.34 | 4.861 4.924 | 62.75 67.98
variational discriminative 97.59 75.76 81.00 | 21.17 2493 | 77.14 91.89 | 82.29 88.68 | 80.48 88.38 | 4.879 4.980 | 72.86 89.36
variational generative 97.68 75.20 99.13 | 30.10 70.68 | 82.88 98.48 | 81.63 95.14 | 80.79 93.49 | 4.893 4.927 | 7241 95.26
variational discriminative - MCD ~ 97.57 84.97 89.71 | 95.27 94.97 | 84.48 90.26 | 85.86 94.94 | 85.78 93.46 | 4.962 4.922 | 81.66 88.61
variational generative - MCD 97.58 83.73 93.53 | 100.0 100.0 | 98.32 97.57 | 82.16 93.03 | 80.40 92.77 | 4.893 4910 | 88.16 94.53

Table 1: Test accuracies and outlier detection values of the three different network types described in section 2 when con-
sidering 95% of training validation data is inlying. Additional values are provided with Monte Carlo dropout (MCD). The
variational approaches are reported with 100 z ~ gg(z|x) samples and the optional additional 50 MCD samples.
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Figure 3: Pair of outlier rejection curves based on predic-
tion entropy (left) and approximate posterior based statisti-
cal outlier rejection (right) in analogy to figure 2. Here, pan-
els (a) and (b) correspond to panels (b) and (c) in figure 2
with additional variational Monte Carlo dropout inference.

samples. We have observed no substantial further benefits
with more samples. Although this sampling can be com-
putationally prohibitively expensive, we have included this
comparison to give a better impression of how distributions
on a neural network’s weights can aid in capturing uncer-
tainty. In fact, we can observe that in both cases the predic-
tion entropy is further increased, albeit still suffers from the

same challenge as outlined before. On the other hand, the
EVT based approach profits similarly from MCD with the
generative model still outperforming all other methods and
achieving nearly perfect OOD detection.

We have quantified these results in table 1, where we report
the network test accuracy as well as the outlier rejection rate
with rejection priors and entropy thresholds determined ac-
cording to categorizing 95 % of the trained dataset’s vali-
dation data as inlying. For all values we can observe that
capturing epistemic uncertainty with variational Bayes ap-
proaches improves upon a standard neural network classi-
fier both slightly in test accuracy as well as in OOD detec-
tion. This improvement is further apparent when using the
EVT approach that outperforms OOD detection with pre-
diction uncertainty in all cases. Lastly, the joint generative
model is apparent to improve the EVT based OOD detec-
tion as the posterior now also explicitly captures informa-
tion about the data distribution p(x).

4. Conclusion

We have provided an analysis of prediction uncertainty
and EVT based out-of-distribution detection approaches for
different model types and ways to estimate a model’s epis-
temic uncertainty. While further larger scale evaluation is
necessary, our results allow for two observations. First,
whereas OOD detection is difficult based on prediction
values even when epistemic uncertainty is captured, EVT
based open set recognition based on a latent model’s ap-
proximate posterior can offer a solution to a large degree.
Second, we might require generative models for open set
detection in classification, even if previous work has shown
that generative approaches that only model the data distribu-
tion seem to fail to distinguish unseen from seen data [17].
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