
Exploring Dynamic Routing As A Pooling Layer∗

Lei Zhao

TakingData

Beijing, China

bhneo@126.com

Lei Huang

Inception Institute of Artificial Intelligence

Abu Dhabi, UAE

huanglei36060520@gmail.com

Abstract

Dynamic routing is a routing-by-agreement mechanism

which is important for achieving the equivariance and in-

variance properties for capsule network (CapsNet). It is

valuable to explore the nature of dynamic routing for better

understanding of the capsule idea and further improving the

performance of neural networks. This paper explores the

dynamic routing from the pooling perspective. We modify

the original dynamic routing algorithm for better applying

it in traditional Convolutional Neural Networks (CNNs) as

a pooling layer. We also use a parameter λ in softmax to

smoothly adjust the sparsity in the routing, which leads to

lower cost compared to the original dynamic routing. We

experimentally show that the dynamic routing can be ap-

plied to beyond the capsule network to improve the perfor-

mance of CNNs, and the coupling coefficients generated by

the routing can be used to generate heatmaps which pro-

vide visual explanations to some extent. Further, the pro-

posed dynamic routing method, combining a CNN back-

bone, achieves better results with much fewer parameters

than the baselines on aff-NIST and multi-MNIST tasks.

1. Introduction

The pooling layers are extensively used in current CNN

architectures to provide translational invariance and reduce

parameters, which however leads to information loss such

as position, size, rotation, scale [5]. Hinton et al. [5] address

this by amplifying the neuron representation with vector-

output capsules that are collections of neurons. A capsule

represents an object, and the activity-vector of a capsule

encodes the instantiation parameters of this object. When

the viewing condition changes, the instantiation parameters

change, but the capsule representing still stay active. Such

a property is called equivariance and invariance [5, 17], and

can be used to build visual relationships between capsules

∗The first workshop on Statistical Deep Learning for Computer Vision,

in Seoul, Korea, 2019. Copyright by Author(s).

of different layers with a characteristic of assigning parts

to wholes, while pooling layers model visual relationship

by selecting the response regions of interest in the previous

layer, with reduced representation.

Dynamic routing is introduced by Sabour et al. [17] to

achieve the parts-to-wholes relationship for capsule net-

work. It works by routing output-vectors from lower-level

capsules to upper-level ones iteratively. This iterative algo-

rithm selects the most appropriate parent capsule so that the

active capsules in the network represent nodes in a parse

tree, and connections between adjacent layers get sparser

when using more routing iterations. The main problem of

this dynamic routing algorithm is its expensive costs, both

in terms of memory and computation [8]. The costs are fur-

ther amplified with growing routing iterations for achieving

sparser connections in a parse tree. These problems of dy-

namic routing limit the practice of CapsNet.

This paper explores the dynamic routing as a pooling

layer, and expects to exploits the advantages of both the

dynamic routing and pooling layer, based on our observa-

tion that the weighted sum process in dynamic routing can

be viewed as a pooling operation. We modify the original

routing algorithm to make it be flexibly inserted in common

CNN architectures. We also use a parameter λ to adjust the

sparse extent of connection smoothly, which turned out to

have a similar effect as multiple iterations of routing with

reduced computation costs. We further show how to apply

our dynamic routing in traditional CNNs. The experimen-

tal results on several CNN models show that the proposed

dynamic routing pooling achieves better performance than

max/average pooling. And the coupling coefficients gener-

ated by the routing show the different importances of the

input capsules in spatial, from which we can use these co-

efficients to generate heatmaps to provide visual explana-

tions. We also show that the proposed dynamic routing,

combined with the 20-layer residual network that acts as a

primary capsule extractor, achieve better results with much

fewer parameters than the baselines on aff-NIST and multi-

MNIST of the paper [17].

2. Related Work

The concept of capsules was firstly introduced by Hin-

ton et al. [5] to address the representational limitations.

Sabour et al. [17] proposed CapsNet with dynamic rout-

ing algorithm which achieved a state-of-the-art result on

MNIST dataset. Hinton et al. [16] proposed a new itera-

tive routing procedure based on the EM algorithm which

achieved an impressive result on the small-NORB dataset.

After that, the idea of capsule was applied to many specific

tasks to improve the traditional models [2] [8] [23]. And a

lot of efforts have been made to seek better capsule architec-

tures [1] [10] [14] [19], while some works focused on inves-

tigating the inherent properties of the routing-by-agreement

mechanism [9] [18]. Our work aims at exploring applying

the dynamic routing to improve the traditional networks by

using it as a pooling operation.

3. Methods

According to the original CapsNet in the paper [17],

prediction vectors ûj|i from child capsules are weighted

summed to a parent capsule sj as:

sj ←
∑

i

cijûj|i. (1)

With larger cij , capsule i in layer l gets a stronger connec-

tion with capsule j in layer l+ 1. The coupling coefficients

between capsule i and all its parent capsules are summed to

1, since the softmax operation is along the dimension j:

cij =
exp bij∑
k exp bik

, (2)

where bij are the log prior probabilities that capsule i should

be coupled to capsule j [17].

We observe that Formula 1 can be viewed as a general-

ized pooling operation, where the pooling operation is per-

formed over the capsules, rather than the spatial location.

We thus explore the dynamic routing from the pooling per-

spective, and try to apply it as an alternative for max/average

pooling.

3.1. Modifications on Softmax Operation

One essential step of pooling is how to calculate the co-

efficients cij in Formula 1. We first observe that when dy-

namic routing is embedded in several kinds of networks as

a pooling layer, performing softmax along dimension j as

described in Formula 2 can cause the instability in training

if no normalization operation such as squash performed af-

ter the pooling. We conjecture the potential reason is the

large values in output tensor, which caused by large coeffi-

cients cij . We further find that Formula 2 is not appropriate

for the situation where the multiple child capsules in layer

l route to only one parent capsule in layer l + 1. We thus

perform the softmax along dimension i instead of j, and

the coupling coefficients cij are calculated as:

cij =
exp bij∑
k exp bkj

∑

i

cij = 1. (3)

To simplify denotation, we omit the parent capsule index

j (the j-th pooled output) in the subsequent sections.

3.2. Controlling the Extent of Sparsity

A sparser connection between capsule layers can ensure

the emergence of a parse tree in the network, this parse

tree represents the hierarchical composition of objects out

of smaller and smaller components [13], which lead to bet-

ter generalization and interpretability.

The original dynamic routing [17] updates coupling co-

efficients for certain parent capsule by accumulating the dis-

tance bi for child capsule i in each iteration:

bi ← bi + σ (4)

The sparsity of the coupling coefficient is usually con-

trolled by the iteration number. More iterations of dy-

namic routing make bi larger, and with the amplification of

softmax operation, lower values are suppressed almost to

0, while the larger one gets close to 1. One can achieve

sparser-tree with larger iterations. However, larger iter-

ations mean more computational costs. Inspired by the

works[4] [11] [15] [21] [20], we introduce a parameter λ

in this softmax to adjust “soft” extent:

ci =
expλbi∑
k expλbk

. (5)

The softmax is an operation that normalizes the input vec-

tor and suppresses the smaller elements in the vector expo-

nentially, and this λ can be used to adjust the extent of sup-

pressing. With a large enough λ, the differences between

bi [17] will be amplified, and “winners” in the competition

will get almost 100% proportion, thus making the routing

between capsules sparser. It would act like a max pool-

ing operation but determined by vectors instead of scalars.

When setting λ to 0, the routing would be equivalent to the

average pooling. One advantage of using λ to control the

extent of sparsity is that the good sparsity will be achieved

with fewer iterations, thus with reduced computation costs.

Besides, our method is the generalization of max/average

pooling, and we can achieve better performance with the

appropriate λ according to the experiments.

3.3. Vector-Normed Dynamic Routing

Our proposed dynamic routing is described in Algorithm

1. We first initialize the bij by zeros and get the initial cij by

Algorithm 1 Vector-Normed Dynamic Routing

Input: ûi, λ, r

Output: v

1: û

′

i ← norm(ûi)
2: ∀bi, bi ← 0
3: ci ← softmax j(bi)
4: for r iterations do

5: s ←
∑

i ciûi

6: v ← norm(s)
7: bi ← bi + û

′

i · v
8: ci ← softmax i(λbi)
9: end for

10: s ←
∑

i ciûi

11: v ← activation(s) {activation can be any other func-

tion according to the network}
12: return v

Formula 3. We then start the iterations for calculating the

coupling coefficients ci, but we use vector normalization

instead of squash to compute the proposal capsule v whose

length is 1. The vector normalization is computed as:

û

′

i =
ui

‖ui‖
, v =

s

‖s‖
. (6)

The agreements between û

′

i and v are computed by dot

product: û
′

i · v, and we use λ in the softmax , as described

in Formula 5. Another difference from [17] is that we sep-

arate the computation of ci from the routing procedure, i.e.,

we compute the ci from routing iterations ahead, and then

use it to compute the final capsule. This process makes the

attempt of other activation operations possible other than

only squash .

3.4. Dynamic Routing as a Pooling Layer

In traditional CNN architecture, there is usually a pool-

ing layer following by the end of convolutional layers,

which can be used to reduce parameters and provide in-

variance. We can replace this pooling layer with dynamic

routing to provide better representation.

Here we propose a fairly straightforward implementa-

tion, which showed in Figure 1, this form can be applied to

replace the layer such as the average pooling in resnet [3].

By choosing a good strategy of grouping neurons into cap-

sules, we can achieve a better result than max and average

pooling.

4. Experiments

4.1. Comparison with Max and Average Pooling

We build a simple network which has 4 convolutional

layers followed by a pooling layer which produce output

tensor with 64 neurons, then a fully-connected layer makes

Figure 1. Applying dynamic routing as a pooling layer between

Convolutional and Dense layer, the input tensor with shape W ×

H ×C can be grouped into N capsules by reshaping or any other

ways. These capsules then routed into 1 or a few capsules ac-

cording to the situation, before mapping into the result tensor by a

fully-connect layer.

the class predictions through softmax outputs. Each con-

volutional layers include 64 filters with 5x5 kernel size

and activated by rectified linear units. We conduct experi-

ments on 3 popular datasets: Fashion-MNIST [22], cropped

SVHN [12], CIFAR10 [7].

The model is trained with a batch size of 128 and opti-

mized by Adam [6] with an initial learning rate of 0.001.

We set the pooling layer as max/average pooling, and dy-

namic routing respectively to do the experiment. Data aug-

mentation (random-crop) are performed during this experi-

ment. Result in Table 1 shows that the test error get reduced

when using dynamic routing layer, here we set λ as 0.5 and

each capsule contain 16 neurons, which is searched on our

constructed validation set (5000 examples from the training

set).

dataset
error(%)

max average routing

Fashion-MNIST 7.86 7.61 7.52

cropped SVHN 6.51 6.47 6.02

CIFAR10 21.39 19.35 18.39

Table 1. Comparison of average pooling, max pooling and dy-

namic routing.

4.2. Applying to Residual Networks

We apply our method on residual networks [3] by replac-

ing the average pooling layer with dynamic routing, and

train residual networks with depth 20, 32, 44, 56 on CI-

FAR10 by following the same configuration as in the pa-

per [3]. Here we run all the experiment for 3 times and cal-

culate the average error to make sure a reliable comparison.

We set λ to 5, which is searched on our constructed vali-

dation set (5000 examples from the training set). From the

results in Table 2, we can see our proposed dynamic rout-

ing pooling achieves better performance over the 4 models,

compared to the baselines.

layers # params
error(%)

baseline routing

20 0.27M 8.73 8.49

32 0.46M 7.89 7.65

44 0.66M 7.22 7.10

56 0.85M 6.97 6.75

Table 2. Results of our proposed dynamic routing on residual net-

works. All the models achieve improvement with a dynamic rout-

ing layer.

Table 3 shows the heatmaps generated from the coupling

coefficients c, which indicates that the model learned to fo-

cus on specific areas and ignore backgrounds by coupling

coefficients c.

Table 3. The upper images are from CIFAR10 dataset (randomly

cropped), and the lower images are their corresponding heatmaps

generated by coupling coefficients c.

4.3. Aff-NIST and Multi-MNIST Dataset

We use resnet-20 as a backbone which acts as a primary

capsule extractor, but we replace the last 2 layers(the aver-

age pooling and fully-connected layer) with dynamic rout-

ing, which route the tensor into 10 capsules, and squash is

used as activation. These 10 capsules are followed by a re-

construction module same as the original capsule network

architecture in [17], as described in Figure 2.

We replicate the experiment of Sabour et al. [17] on the

aff-NIST1 dataset. In which each example in the training

set is an MNIST digit placed randomly on a black back-

ground of 40x40 pixels. The model never trained with

affine transformations other than translation and any nat-

ural transformation seen in the standard MNIST, we com-

pare the results on both test sets of expanded MNIST and

aff-NIST to evaluate the model. The results on aff-NIST

showed in Table 4 indicate that the model is robust on aff-

NIST with the backbone of resnet, and model size is re-

duced largely (about 2.5M) compare to the original capsule

networks (about 13.4M).

We also replicate the experiment of multi-MNIST, the

dataset is created by merging each sample with the digit of

other class and both the samples are shifted up to four pixels

randomly in each direction, resulting in a 36x36 image. We

achieve a good result when set λ as 5, with an error rate of

1http://www.cs.toronto.edu/˜tijmen/affNIST/

Figure 2. A CapsNet uses resnet as the backbone, which acts as a

primary capsule extractor.

method
error(%)

expanded MNIST aff-NIST

baseline 0.77 21

R-1-32 1.70 5.12

R-5-32 1.76 5.37

R-10-32 2.29 6.59

R-15-32 3.81 9.59

Table 4. Results on aff-NIST dataset. R-x-y:routing with the λ as

constant value x, and the number of neurons in each capsules is y.

4.6% on the training set and 5.2% on the test set, which is

similar to the result in the paper [17], but the model is much

smaller with a size of only 2.2M compared to the original

capsule network.

5. Conclusion

In this paper, we propose an implementation of dynamic

routing algorithm which can be flexibly applied to tradi-

tional CNN architecture as a pooling layer. We do experi-

ment on different kinds of models by applying our proposed

dynamic routing as a pooling layer, the results indicate that

our dynamic routing can achieve better performance com-

pared to the max/average pooling layer. And with the cou-

pling coefficients c generated by the routing, our method

can provide visual explanations to some extent. The repli-

cated experiment on aff-NIST and multi-MNIST datasets

indicate that the model does pooling with dynamic routing

is also robust to affine transformations, with less model size

than the original capsule network. Our future works include

better understand the nature of routing-as-pooling, and this

might lead to new ideas of building models with better in-

terpretability.

References

[1] M. T. Bahadori. Spectral capsule networks. 2018.

[2] K. Duarte, Y. Rawat, and M. Shah. Videocapsulenet: A sim-

plified network for action detection. In Advances in Neural

Information Processing Systems, pages 7610–7619, 2018.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

770–778, 2016.

[4] G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge

in a neural network. arXiv preprint arXiv:1503.02531, 2015.

[5] G. E. Hinton, A. Krizhevsky, and S. D. Wang. Transform-

ing auto-encoders. In International Conference on Artificial

Neural Networks, pages 44–51. Springer, 2011.

[6] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[7] A. Krizhevsky, G. Hinton, et al. Learning multiple layers of

features from tiny images. Technical report, Citeseer, 2009.

[8] R. LaLonde and U. Bagci. Capsules for object segmentation.

arXiv preprint arXiv:1804.04241, 2018.

[9] J. E. Lenssen, M. Fey, and P. Libuschewski. Group equiv-

ariant capsule networks. In Advances in Neural Information

Processing Systems, pages 8844–8853, 2018.

[10] H. Li, X. Guo, B. DaiWanli Ouyang, and X. Wang. Neural

network encapsulation. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 252–267, 2018.

[11] Y. Liu, H. Li, and X. Wang. Rethinking feature discrimina-

tion and polymerization for large-scale recognition. arXiv

preprint arXiv:1710.00870, 2017.

[12] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y.

Ng. Reading digits in natural images with unsupervised fea-

ture learning. 2011.

[13] D. Peer, S. Stabinger, and A. Rodriguez-Sanchez. Training

deep capsule networks. arXiv preprint arXiv:1812.09707,

2018.

[14] S. S. R. Phaye, A. Sikka, A. Dhall, and D. R. Bathula. Multi-

level dense capsule networks. In Asian Conference on Com-

puter Vision, pages 577–592. Springer, 2018.

[15] R. Ranjan, C. D. Castillo, and R. Chellappa. L2-constrained

softmax loss for discriminative face verification. arXiv

preprint arXiv:1703.09507, 2017.

[16] S. Sabour, N. Frosst, and G. Hinton. Matrix capsules with

em routing. In 6th International Conference on Learning

Representations, ICLR, 2018.

[17] S. Sabour, N. Frosst, and G. E. Hinton. Dynamic routing

between capsules. In Advances in neural information pro-

cessing systems, pages 3856–3866, 2017.

[18] A. Shahroudnejad, P. Afshar, K. N. Plataniotis, and A. Mo-

hammadi. Improved explainability of capsule networks: Rel-

evance path by agreement. In 2018 IEEE Global Conference

on Signal and Information Processing (GlobalSIP), pages

549–553. IEEE, 2018.

[19] D. Wang and Q. Liu. An optimization view on dynamic rout-

ing between capsules. 2018.

[20] F. Wang, J. Cheng, W. Liu, and H. Liu. Additive margin

softmax for face verification. IEEE Signal Processing Let-

ters, 25(7):926–930, 2018.

[21] F. Wang, X. Xiang, J. Cheng, and A. L. Yuille. Normface: l

2 hypersphere embedding for face verification. In Proceed-

ings of the 25th ACM international conference on Multime-

dia, pages 1041–1049. ACM, 2017.

[22] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-mnist: a

novel image dataset for benchmarking machine learning al-

gorithms. arXiv preprint arXiv:1708.07747, 2017.

[23] W. Zhao, J. Ye, M. Yang, Z. Lei, S. Zhang, and Z. Zhao.

Investigating capsule networks with dynamic routing for text

classification. arXiv preprint arXiv:1804.00538, 2018.

