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Abstract

Dynamic routing is a routing-by-agreement mechanism
which is important for achieving the equivariance and in-
variance properties for capsule network (CapsNet). It is
valuable to explore the nature of dynamic routing for better
understanding of the capsule idea and further improving the
performance of neural networks. This paper explores the
dynamic routing from the pooling perspective. We modify
the original dynamic routing algorithm for better applying
it in traditional Convolutional Neural Networks (CNNs) as
a pooling layer. We also use a parameter X\ in softmax to
smoothly adjust the sparsity in the routing, which leads to
lower cost compared to the original dynamic routing. We
experimentally show that the dynamic routing can be ap-
plied to beyond the capsule network to improve the perfor-
mance of CNNs, and the coupling coefficients generated by
the routing can be used to generate heatmaps which pro-
vide visual explanations to some extent. Further, the pro-
posed dynamic routing method, combining a CNN back-
bone, achieves better results with much fewer parameters
than the baselines on aff-NIST and multi-MNIST tasks.

1. Introduction

The pooling layers are extensively used in current CNN
architectures to provide translational invariance and reduce
parameters, which however leads to information loss such
as position, size, rotation, scale [5]. Hinton et al. [5] address
this by amplifying the neuron representation with vector-
output capsules that are collections of neurons. A capsule
represents an object, and the activity-vector of a capsule
encodes the instantiation parameters of this object. When
the viewing condition changes, the instantiation parameters
change, but the capsule representing still stay active. Such
a property is called equivariance and invariance [5, 17], and
can be used to build visual relationships between capsules
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of different layers with a characteristic of assigning parts
to wholes, while pooling layers model visual relationship
by selecting the response regions of interest in the previous
layer, with reduced representation.

Dynamic routing is introduced by Sabour et al. [17] to
achieve the parts-to-wholes relationship for capsule net-
work. It works by routing output-vectors from lower-level
capsules to upper-level ones iteratively. This iterative algo-
rithm selects the most appropriate parent capsule so that the
active capsules in the network represent nodes in a parse
tree, and connections between adjacent layers get sparser
when using more routing iterations. The main problem of
this dynamic routing algorithm is its expensive costs, both
in terms of memory and computation [8]. The costs are fur-
ther amplified with growing routing iterations for achieving
sparser connections in a parse tree. These problems of dy-
namic routing limit the practice of CapsNet.

This paper explores the dynamic routing as a pooling
layer, and expects to exploits the advantages of both the
dynamic routing and pooling layer, based on our observa-
tion that the weighted sum process in dynamic routing can
be viewed as a pooling operation. We modify the original
routing algorithm to make it be flexibly inserted in common
CNN architectures. We also use a parameter A to adjust the
sparse extent of connection smoothly, which turned out to
have a similar effect as multiple iterations of routing with
reduced computation costs. We further show how to apply
our dynamic routing in traditional CNNs. The experimen-
tal results on several CNN models show that the proposed
dynamic routing pooling achieves better performance than
max/average pooling. And the coupling coefficients gener-
ated by the routing show the different importances of the
input capsules in spatial, from which we can use these co-
efficients to generate heatmaps to provide visual explana-
tions. We also show that the proposed dynamic routing,
combined with the 20-layer residual network that acts as a
primary capsule extractor, achieve better results with much
fewer parameters than the baselines on aff-NIST and multi-
MNIST of the paper [17].



2. Related Work

The concept of capsules was firstly introduced by Hin-
ton et al. [S] to address the representational limitations.
Sabour et al. [17] proposed CapsNet with dynamic rout-
ing algorithm which achieved a state-of-the-art result on
MNIST dataset. Hinton et al. [16] proposed a new itera-
tive routing procedure based on the EM algorithm which
achieved an impressive result on the small-NORB dataset.
After that, the idea of capsule was applied to many specific
tasks to improve the traditional models [2] [8] [23]. And a
lot of efforts have been made to seek better capsule architec-
tures [1] [10] [14] [19], while some works focused on inves-
tigating the inherent properties of the routing-by-agreement
mechanism [9] [18]. Our work aims at exploring applying
the dynamic routing to improve the traditional networks by
using it as a pooling operation.

3. Methods

According to the original CapsNet in the paper [17],
prediction vectors i;|; from child capsules are weighted
summed to a parent capsule s; as:

Sj ¢ > cijll);. (1)

With larger c;;, capsule ¢ in layer [ gets a stronger connec-
tion with capsule j in layer [ 4+ 1. The coupling coefficients
between capsule ¢ and all its parent capsules are summed to
1, since the softmax operation is along the dimension j:
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where b;; are the log prior probabilities that capsule 4 should
be coupled to capsule 5 [17].

We observe that Formula 1 can be viewed as a general-
ized pooling operation, where the pooling operation is per-
formed over the capsules, rather than the spatial location.
We thus explore the dynamic routing from the pooling per-
spective, and try to apply it as an alternative for max/average
pooling.

3.1. Modifications on Softmax Operation

One essential step of pooling is how to calculate the co-
efficients ¢;; in Formula 1. We first observe that when dy-
namic routing is embedded in several kinds of networks as
a pooling layer, performing softmaz along dimension j as
described in Formula 2 can cause the instability in training
if no normalization operation such as squash performed af-
ter the pooling. We conjecture the potential reason is the
large values in output tensor, which caused by large coeffi-
cients c;;. We further find that Formula 2 is not appropriate
for the situation where the multiple child capsules in layer

[ route to only one parent capsule in layer [ + 1. We thus
perform the softmaz along dimension ¢ instead of j, and
the coupling coefficients c¢;; are calculated as:

D e=1. 3)

To simplify denotation, we omit the parent capsule index
j (the j-th pooled output) in the subsequent sections.

exp b;; _expbi;
Cij =
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3.2. Controlling the Extent of Sparsity

A sparser connection between capsule layers can ensure
the emergence of a parse tree in the network, this parse
tree represents the hierarchical composition of objects out
of smaller and smaller components [13], which lead to bet-
ter generalization and interpretability.

The original dynamic routing [17] updates coupling co-
efficients for certain parent capsule by accumulating the dis-
tance b; for child capsule ¢ in each iteration:

bi<bi+to )

The sparsity of the coupling coefficient is usually con-
trolled by the iteration number. More iterations of dy-
namic routing make b; larger, and with the amplification of
softmax operation, lower values are suppressed almost to
0, while the larger one gets close to 1. One can achieve
sparser-tree with larger iterations. However, larger iter-
ations mean more computational costs. Inspired by the
works[4] [11] [15] [21] [20], we introduce a parameter A
in this softmax to adjust “soft” extent:

o = exp Ab;
C Y exp by

The softmax is an operation that normalizes the input vec-
tor and suppresses the smaller elements in the vector expo-
nentially, and this A can be used to adjust the extent of sup-
pressing. With a large enough A, the differences between
b; [17] will be amplified, and “winners” in the competition
will get almost 100% proportion, thus making the routing
between capsules sparser. It would act like a max pool-
ing operation but determined by vectors instead of scalars.
When setting A to 0, the routing would be equivalent to the
average pooling. One advantage of using A to control the
extent of sparsity is that the good sparsity will be achieved
with fewer iterations, thus with reduced computation costs.
Besides, our method is the generalization of max/average
pooling, and we can achieve better performance with the
appropriate A according to the experiments.

&)

3.3. Vector-Normed Dynamic Routing

Our proposed dynamic routing is described in Algorithm
1. We first initialize the b;; by zeros and get the initial c;; by



Algorithm 1 Vector-Normed Dynamic Routing

Input: 4;, A\, r
Output: v
. @, < norm(i;)
c; + softmaz ;(b;)
for r iterations do
S «— Zi Ciﬁi
v + norm(s)
b« b+, - v
¢i < softmaz;(A\b;)
end for
S < Zi c;i;
: v < activation(s) {activation can be any other func-
tion according to the network }
12: return v
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Formula 3. We then start the iterations for calculating the
coupling coefficients ¢;, but we use vector normalization
instead of squash to compute the proposal capsule v whose
length is 1. The vector normalization is computed as:

7 u; S
u; v =——.
' Il

(6)

il

The agreements between 11; and v are computed by dot
product: ﬁ; - v, and we use A in the softmazx, as described
in Formula 5. Another difference from [17] is that we sep-
arate the computation of ¢; from the routing procedure, i.e.,
we compute the ¢; from routing iterations ahead, and then
use it to compute the final capsule. This process makes the
attempt of other activation operations possible other than
only squash.

3.4. Dynamic Routing as a Pooling Layer

In traditional CNN architecture, there is usually a pool-
ing layer following by the end of convolutional layers,
which can be used to reduce parameters and provide in-
variance. We can replace this pooling layer with dynamic
routing to provide better representation.

Here we propose a fairly straightforward implementa-
tion, which showed in Figure 1, this form can be applied to
replace the layer such as the average pooling in resnet [3].
By choosing a good strategy of grouping neurons into cap-
sules, we can achieve a better result than max and average
pooling.

4. Experiments

4.1. Comparison with Max and Average Pooling

We build a simple network which has 4 convolutional
layers followed by a pooling layer which produce output
tensor with 64 neurons, then a fully-connected layer makes
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(Primary Capsules: NxD}

(Result Capsule: 1xD)

(Tensor: HxWxC)

Figure 1. Applying dynamic routing as a pooling layer between
Convolutional and Dense layer, the input tensor with shape W x
H x C can be grouped into N capsules by reshaping or any other
ways. These capsules then routed into 1 or a few capsules ac-
cording to the situation, before mapping into the result tensor by a
fully-connect layer.

the class predictions through softmax outputs. Each con-
volutional layers include 64 filters with 5x5 kernel size
and activated by rectified linear units. We conduct experi-
ments on 3 popular datasets: Fashion-MNIST [22], cropped
SVHN [12], CIFARI10 [7].

The model is trained with a batch size of 128 and opti-
mized by Adam [6] with an initial learning rate of 0.001.
We set the pooling layer as max/average pooling, and dy-
namic routing respectively to do the experiment. Data aug-
mentation (random-crop) are performed during this experi-
ment. Result in Table 1 shows that the test error get reduced
when using dynamic routing layer, here we set A as 0.5 and
each capsule contain 16 neurons, which is searched on our
constructed validation set (5000 examples from the training
set).

error(%)
max | average | routing

Fashion-MNIST | 7.86 7.61 7.52
cropped SVHN | 6.51 6.47 6.02
CIFAR10 21.39 | 19.35 18.39

# dataset

Table 1. Comparison of average pooling, max pooling and dy-
namic routing.

4.2. Applying to Residual Networks

We apply our method on residual networks [3] by replac-
ing the average pooling layer with dynamic routing, and
train residual networks with depth 20, 32, 44, 56 on CI-
FAR10 by following the same configuration as in the pa-
per [3]. Here we run all the experiment for 3 times and cal-
culate the average error to make sure a reliable comparison.
We set A to 5, which is searched on our constructed vali-
dation set (5000 examples from the training set). From the
results in Table 2, we can see our proposed dynamic rout-
ing pooling achieves better performance over the 4 models,
compared to the baselines.



error(%)
#layers | # params baseline | routing
20 0.27M 8.73 8.49
32 0.46M 7.89 7.65
44 0.66M 7.22 7.10
56 0.85M 6.97 6.75

Table 2. Results of our proposed dynamic routing on residual net-
works. All the models achieve improvement with a dynamic rout-
ing layer.

Table 3 shows the heatmaps generated from the coupling
coefficients ¢, which indicates that the model learned to fo-
cus on specific areas and ignore backgrounds by coupling
coefficients c.

Table 3. The upper images are from CIFAR10 dataset (randomly
cropped), and the lower images are their corresponding heatmaps
generated by coupling coefficients c.

4.3. Aff-NIST and Multi-MNIST Dataset

We use resnet-20 as a backbone which acts as a primary
capsule extractor, but we replace the last 2 layers(the aver-
age pooling and fully-connected layer) with dynamic rout-
ing, which route the tensor into 10 capsules, and squash is
used as activation. These 10 capsules are followed by a re-
construction module same as the original capsule network
architecture in [17], as described in Figure 2.

We replicate the experiment of Sabour ef al. [17] on the
aff-NIST! dataset. In which each example in the training
set is an MNIST digit placed randomly on a black back-
ground of 40x40 pixels. The model never trained with
affine transformations other than translation and any nat-
ural transformation seen in the standard MNIST, we com-
pare the results on both test sets of expanded MNIST and
aff-NIST to evaluate the model. The results on aff-NIST
showed in Table 4 indicate that the model is robust on aff-
NIST with the backbone of resnet, and model size is re-
duced largely (about 2.5M) compare to the original capsule
networks (about 13.4M).

We also replicate the experiment of multi-MNIST, the
dataset is created by merging each sample with the digit of
other class and both the samples are shifted up to four pixels
randomly in each direction, resulting in a 36x36 image. We
achieve a good result when set A as 5, with an error rate of

"http://www.cs.toronto.edu/~tijmen/affNIST/
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Figure 2. A CapsNet uses resnet as the backbone, which acts as a
primary capsule extractor.

error(%)
# method expanded MNIST | aff-NIST
baseline 0.77 21
R-1-32 1.70 5.12
R-5-32 1.76 5.37
R-10-32 2.29 6.59
R-15-32 3.81 9.59

Table 4. Results on aff-NIST dataset. R-x-y:routing with the A as
constant value X, and the number of neurons in each capsules is y.

4.6% on the training set and 5.2% on the test set, which is
similar to the result in the paper [17], but the model is much
smaller with a size of only 2.2M compared to the original
capsule network.

5. Conclusion

In this paper, we propose an implementation of dynamic
routing algorithm which can be flexibly applied to tradi-
tional CNN architecture as a pooling layer. We do experi-
ment on different kinds of models by applying our proposed
dynamic routing as a pooling layer, the results indicate that
our dynamic routing can achieve better performance com-
pared to the max/average pooling layer. And with the cou-
pling coefficients ¢ generated by the routing, our method
can provide visual explanations to some extent. The repli-
cated experiment on aff-NIST and multi-MNIST datasets
indicate that the model does pooling with dynamic routing
is also robust to affine transformations, with less model size
than the original capsule network. Our future works include
better understand the nature of routing-as-pooling, and this
might lead to new ideas of building models with better in-
terpretability.
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