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Abstract

We find that most Scene Graph Generation approaches

suffer from two limitations as they: 1) use generic atten-

tion mechanisms and dataset-specific statistics that super-

sede visual features and 2) treat “no interaction” as an ex-

tra, both noisy and dominant, class and prune graph edges

manually or applying simple filters. As a result, such ap-

proaches do not scale up on different settings and specifica-

tions. We propose a three-stage pipeline that employs multi-

head attention driven by language and spatial features,

Translation Embeddings (TransE) and multi-tasking to de-

tect an interacting pair of objects. Our attentional scheme

is able to maximize the visual features’ interpretability, as

well as to capture the nature of datasets of different scales,

while multi-tasking robustly resolves the bias of the back-

ground class. We present an experimental overview of the

related literature, unveil a multitude of evaluation incon-

sistencies and provide quantitative and qualitative support

with experiments on a variety of datasets, where our ap-

proach performs on par or even outperforms current state-

of-the-art.

1. Introduction

“A picture is worth a thousand words”, but how can we

read them? Parsing an image to create a structured rep-

resentation, namely Scene Graph Generation, has recently

captured the interest of researchers, aiming on bridging the

gap between visual and semantic perception and expanding

the range and capabilities of Computer Vision applications

[24, 62, 54, 59, 15]. The task involves detecting visual rela-

tionships [43], i.e. < S,P,O > triplets, with the predicate

P being the interaction of subject S and object O, and inte-

grating them to a graph (Fig. 1).

Former approaches have shown that, due to the density of
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Figure 1: Scene Graph Generation refers to the formation

of a visually-grounded graph structure, where related object

nodes are connected via predicate edges. Despite the den-

sity of object annotations, the constructed graph is sparse.

object annotations and the large intra-class variance of pred-

icates, pure visual information is not sufficient for modeling

relationships [43, 49]. Thus, they adopt attention mecha-

nisms [74, 77] and language priors [36, 43, 77] or benefit

from the datasets’ statistics [12, 65, 66, 71]. Nonetheless,

we find that such strategies impose biases on the networks’

focus towards visually-irrelevant predictions: as we quanti-

tatively and qualitatively show (Section 4.3 and Fig. 5), the

network fails to disambiguate between multiple pairs inter-

acting in the same way [71] due to misleading attention.

Moreover, scene graphs tend to be sparse: only a few

object pairs are related. Contemporary works often learn a

spatial-semantic pair filtering network [12, 60] or consider a

background class [58, 50] and sample not-interacting pairs

[8, 65]. However, objects’ labels and positions are not suf-

ficient to determine their relevance without focus on spe-

cific visual cues (Fig. 2). Even worse, the two most popular

datasets for visual relationships [43, 31] are sparsely and

inconsistently annotated (Fig. 2): relevance is not a binary



Figure 2: (a)-(b): Spatial and semantic features alone are

not sufficient for relationship detection. (c)-(d): The same

relationship, “person - in front of - car” is annotated only

in image (d). Employing visual features and decodings

dataset’s “preferences” is essential to edge pruning.

classification problem and an effective pair filter has to de-

code the annotators’ “preferences” as well [42]. Yet, the

unrelated pairs largely overpopulate the related ones and

dominate the classification task, while sampling for nega-

tive pairs obscures the underlying distribution of relations.

Manually encoding statistics and pruning edges does not

scale effectively across different datasets and challenges.

Motivated by these observations, we propose a scene graph

generation pipeline, where the classification of a detected

pair of objects can be factorized in three steps: Attention:

We learn a multi-head attentional scheme [55], one head per

predicate class, that fuses linguistic and spatial information

to mine and properly encode the most meaningful visual

features. Translation: Predicate and subject/object features

are projected to a common score space so that P ≈ O − S

[67]. Relation: We perform the final classification, fusing

the translated scores of the previous stage. We solve two

separate tasks, one for predicate classification and one for

objects’ relevance, that share a similar architecture. In this

way, pair filtering benefits from deep attention on visual fea-

tures and is able to capture the dataset’s structure without

overshadowing the predicate classification task.

Our topology, the Attention-Translation-Relation Net-

work (ATR-Net), is evaluated on the widely used VRD [43]

and VG [31] datasets, using a variety of available splits for

the latter [58, 35, 12, 67, 69], with different specifications

and scales. We also shed light to several inconsistencies in

the tasks’ and metric’s definition that make prior works in-

comparable and we refine literature results in order to fairly

compare. Under multiple evaluation settings, ATR-Net is

still compelling and outperforms most existing methods,

demonstrating the efficacy of the proposed approach.

For the rest of this paper, the term “relevance” refers to

the probability that two objects are related/interact. A “pair

filter” is a network that outputs two objects’ relevance.

2. Related Work

Visual Relationship Detection has lately emerged as

a separate problem [43]. The majority of prior literature

follows the two-step pipeline that first detects objects and

then solves a classification task for the predicate of each

object pair [11, 36, 43, 63, 70, 76, 75, 77]. Other works

use a Region Proposal Network [51] to obtain candidate ob-

ject regions and then jointly classify objects and predicates

[12, 37, 69] or train end-to-end networks to directly predict

relationships [30, 17, 67]. We follow the two-step detection

method in order to disjoin the errors of object and relation-

ship detection.

Scene Graph Generation [58] constrains visual rela-

tionship detection on a graph, opening new perspectives

for the task. Works like [8, 39, 58, 60] perform message-

passing between nodes and edges, while others employ con-

text from neighboring instances in order to improve a single

instance’s recognition, using Recurrent Neural Networks

[65], self-attention [50, 53, 57] or iterative reasoning with

memory [9, 56]. Complementary to these approaches, our

goal is to improve single-instance prediction.

Attention has already been applied on scene graph gen-

eration [8, 16, 19, 30, 50, 74, 73, 77] in order to deal with

noisy and overlapping object regions (Fig. 1). Close to us in

terms of features, [19, 74, 73] combine bottom-up and top-

down attention [2] with spatial and linguistic features, yet

they use single-head attention, irrespective of class. On the

other hand, [77] employs a per-predicate-class attentional

schema, but only language-based. As we experimentally

show in Sec. 4.3, such mechanisms may in fact misguide

the network. Lastly, [8, 50] employ multi-head and per-

class self-attention to relate object nodes in a sparse scene

graph. Combining the above, we implement per-predicate

class attention conditioned on language and spatial features.

Visual Translation Embeddings (VTransE) [67] are a

mapping of S, P and O in a vector space where valid rela-

tionships satisfy S + P ≈ O. [67] uses subject and object

features and aligns O − S with the desired P inside the

loss function. [50] employs predicate features as well and

applies an L2 constraint to minimize ‖S + P −O‖
2
. [21]

extends the formulation into Union Visual Translation Em-

beddings such that P ≈ U − S − O, where U stands for

the union of subject and object regions. Contrary to these

approaches, we do not directly align P and O − S, instead,

we employ constraints in a score space to force both P and

O − S to match with the ground-truth.

Relevance of objects in a scene graph plays a crucial

role on detection performance. Traditional approaches use



Figure 3: (a) Given an image, we first detect objects and construct a fully-connected graph (b). Then, ATR-Net solves two

separate tasks to classify each edge and assign it with a relevance score that measures the probability the two objects interact

(c). (d) The two scores per edge are multiplied and only the top-scoring edges are not pruned. (e) The output graph is sparse

and each edge corresponds to a relationship.

ranking loss functions and filter the lowest-scoring relation-

ships [43, 36, 71], while others train a pair filtering network

based on semantic and/or spatial features [12, 39, 60, 74].

Graph-based works often consider an extra background

class [58, 50] and obtain extra performance gain by man-

ually filtering pairs with not intersectant boxes [8, 57, 65].

Our work lies close to those of [47, 66] that view relevance

as an auxiliary task, yet, opposite to them, we multiply rele-

vance and classification probabilities only during inference,

avoiding the need for an extra class. Also close to us, [53]

computes a pair “validity” score and applies tree-based al-

gorithms to prune low-scoring edges. Instead, ATR-Net

compares scores across the whole graph, rather than in tree

neighborhoods.

3. Approach

We tackle Scene Graph Generation by detecting and

ranking all < S,P,O > triplets in an image and then

integrating them into a sparsely-connected graph (Fig. 3).

When inferring an image, we first detect objects using

Faster-RCNN [51]. Considering that all objects could pos-

sibly interact, we form a fully-connected graph. Then,

ATR-Net focuses on each edge to solve two tasks: assign

a predicate probability P(P |related) assuming the two ob-

jects are related and predict a relevance score P(related)
that measures the probability of interaction. The final pred-

icate score is P(P ) = P(P |related)P(related) and the

edge’s score is P(S, P,O) = P(S)P(P )P(O), combining

the predicate score and Faster-RCNN’s scores for the sub-

ject and the object. We then rank the edges’ scores and

keep the top-N , where N is a threshold. We now describe

how ATR-Net handles a single edge in three steps, in order

to compute P(P ) using multi-head attention and translation

embeddings. The pipeline can be viewed in Fig. 4.

3.1. Attention

Given a detected pair, we extract convolutional features

for both objects and the predicate region, i.e. the minimal

closure of their bounding boxes. The objects’ features con-

dition the detection on the objects of interest, while pred-

icate features view the objects in the context of the image

and mine patterns of interaction or geometry. These types

of features, without proper attention, fall for two shortcom-

ings: objects’ features tend to focus on class information

and ignore relationship cues, e.g. in Fig. 2 (a) and (b), the

persons’ poses are more significant than classifying them as

people; predicate features are noisy and often highly over-

lapping across different pairs of objects, e.g. in Fig. 1, the

predicate box of the bed and the lamp includes all other ob-

jects.

Multi-head attention [55], one head for each predicate

class, is employed to concentrate the network’s “focus” on

the discriminative visual cues that may only appear in a

small fraction of the image. We constrain the attention func-

tion on the objects’ classes and their spatial configuration.

More specifically, we use word embeddings of the objects’

categories [45], binary mask features [12] and box deltas

[70]. We avoid manually precomputed probabilities [65] as

they provoke dataset-specific biases. Instead, word embed-

dings capture both the class and the semantics of the objects,

while spatial features are class-agnostic and able to gener-

alize in unseen setups [49, 21]. Combining these two fea-

tures, we have a strong discriminative attention that is able

to capture the dataset’s nature and scale up in open-world

vocabularies [1].



Figure 4: ATR-Net classifies and ranks separately each edge on a dense scene graph. Visual features from the subject,

the object region and their union are projected in a score space as S, O and P , guided by multi-head language and spatial

attention. A separate score space is created for predicate classification and object relevance, while loss constraints are imposed

so that both P and O − S match with the task’s ground-truth. The total loss is the weighted sum of the two tasks’ losses.

Language and spatial features are fused to compute a

low-dimensional attention vector AP for each predicate

class P . We denote as A the attention matrix of all pred-

icates, having as many rows as the number of classes. Con-

ditioned on this attention, we perform attentional pooling

[77] and compute weights WS(A), WP (A) and WO(A)
for the subject, predicate and object features respectively.

3.2. Translation

Having computed the attention weights, we represent

S, P and O as projections WS(A)xS , WP (A)xP and

WO(A)xO of their visual features xS , xP , xO into a score

space. Thus, we reformulate VTransE equation into:

WP (A)xP ≈ WO(A)xO −WS(A)xS (1)

Instead of directly minimizing ‖P + S −O‖, we impose

loss constraints, LP and LOS , so that both WP (A)xP and

WO(A)xO −WS(A)xS come closer to the ground-truth.

3.3. Relation

For each object pair we have to decide both about its

relevance and its predicate. We view this procedure as

two independent tasks and learn per-task attention weights,

W
r(A) = (Wr

S(A), Wr
P (A), Wr

O(A)) for relevance and

W
p(A) = (Wp

S(A), Wp
P (A), Wp

O(A)) for predicate clas-

sification. Consequently, two score spaces are created, one

for each task, with the respective losses Lr
P , Lr

OS and Lp
P ,

Lp
OS .

Scores per task are fused and a meta-classifier is trained

to return the output scores. Let Lr
f and Lp

f be the fu-

sion losses for the relevance and predicate task respectively.

Then the total relevance loss obtains the form:

Lr(Wr) = Lr
f (W

r) +Lr
P (W

r
P ) +Lr

OS(W
r
O,W

r
S) (2)

while the predicate classification loss

Lp(Wp) = Lp
f (W

p)+Lp
P (W

p
P )+Lp

OS(W
p
O,W

p
S) (3)

During training, we minimize the weighted sum of losses

for both tasks:

L(Wr,Wp) = λrL
r(Wr) + λpL

p(Wp) (4)

where λ hyperparameters balance each term’s importance.

The optimization problem is solved using Adam optimizer

[28]. All losses are Cross-Entropy losses.

4. Evaluation and Results

4.1. Datasets, Metrics and Inconsistencies

The two most widely benchmarked datasets for Scene

Graph Generation and Visual Relationship Detection are

VRD [43] and Visual Genome (VG) [31]. However, we

notice that current work in the field is often inconsistent

in terms of dataset annotations, tasks evaluated and metrics

used. We present here a literature taxonomy around the dif-

ferent aspects that make prior results incomparable and then

we evaluate our method considering all different settings.

Datasets: VG does not offer a standard train/test split

and is noisily and inconsistently annotated [58, 67, 35, 12],

resulting in an immense range of classes with little variation

and few examples. As an attempt to clean these annotations,

prior works have explored semi-automatic ways (e.g. class

merging and filtering) to construct their own VG versions.

Of these, [58, 67, 35, 12] have released their cleansed an-

notations and are the most frequently used. Other works

[33, 37, 48, 76, 64, 63, 10] use a paper-specific and non-

publicly available split, disabling direct future comparisons

with their experiments. Lastly, [69] presents experiments

on a large-scale version of VG and [38] proposes a new split

that has not been benchmarked yet.



Figure 5: Visualization of attentional pooling weights for the same predicate region and for different mechanisms. To map

weights back to the image we upsample and add random noise. Single-head attention captures generic concepts of interest

irrespective of class. Multi-head Attention with language confuses the two men and gives high score to “ride”. Spatial

information helps to disambiguate between the two men and predict the correct predicate “behind”.

Dataset Train/test images Pred. Classes Obj. Classes

VRD [43] 4k/1k 70 100

VG-MSDN [35] 46.2k/10k 50 150

VG-VTE [67] 73.8k/25.8k 100 200

sVG [12] 64.7k/8.7k 24 399

VG200 [58] 75.6k/32.4k 50 150

VG80K [69] 99.9k/4.8k 29086 53304

Table 1: Statistic of different datasets we use for evaluation.

The effectiveness and scalability of the proposed method

is validated on VG200 [58], VG-VTE [67], VG-MSDN

[35], sVG [12], VRD [43] and VG80K [69]. The statis-

tics of these datasets are summarized in Table 1, where it

becomes clear that they have distinct annotations and sizes.

Tasks: There are totally 5 tasks evaluated in Scene

Graph Generation, but prior works often evaluate on less.

We preserve the tasks’ names as defined in [43] and [58],

despite inconsistencies on whether they are in fact classifi-

cation or detection tasks:

Predicate Detection (PredDet) [43]: given objects’ cate-

gories and boxes, as well as which pairs do interact, classify

each pair’s predicate.

Predicate Classification (PredCls) [58]: given objects’

categories and boxes, decide which pairs interact and clas-

sify each one’s predicate.

Scene Graph Classification (SGCls) [58]: given objects’

boxes, classify objects, decide which pairs interact and clas-

sify each one’s predicate.

Scene Graph Generation (SGGen) [58], also mentioned

as Relationship Detection (RelDet) [43]: nothing is known

in prior, detect objects and classify the predicates of the in-

teracting pairs.

Phrase Detection (PhrDet) [43]: same to SGGen but

evaluates the IoU of the predicate box for each pair.

We evaluate ATR-Net on all the above tasks per dataset,

provide comparisons where available and present results for

the rest of the tasks in Table 8.

Metrics: As explained in [43], a suitable metric for these

problems is Recall@x, that counts the fraction of times the

correct relationship is included in the top x confident pre-

dictions. A hyperparameter k, often not specified by prior

works, measures the maximum predictions allowed per pair.

Most works have seen Predicate Detection as a multiclass

problem and they use k = 1 to reward the correct top-1

prediction for each pair [43, 46, 76, 67, 77]. Motivated by

the fact that there are pairs annotated with more than one

predicate classes, other works [12, 36, 11] tackle this as a

multilabel problem and they use a k equal to the number of

predicate classes to allow for predicate co-occurrences.

We re-formulate the metric as Recallk@x (Rk@x): for

n examined subject-object pairs in an image, Rk@x keeps

the top-k predictions per pair and examines the x most con-

fident out of nk total. Some past works [65, 69] have also

identified this inconsistency and interpret k as the maximum

number of edges allowed between a pair of object nodes.

Thus, k = 1 is equivalent to ‘graph constraints” and a larger

k to “no graph constraints”.

Notably, there is another inconsistency in Recall’s def-

inition: whether it is a micro- or macro-Recall. Let N

be the number of testing images and gti the number of

ground-truth pair annotations (directed scene graph edges)



PredDet PhrDet SGGen

Method k = 1 k = 70 k = 1 k = 70 k = 1 k = 70

50 100 50 100 50 100 50 100 50 100 50 100

[67] 44.76 44.76 - - 19.42 22.42 - - 14.07 15.2 - -

[68] 47.43 47.43 - - 19.62 23.15 - - 14.41 15.72 - -

[43] 47.87 47.87 - - 16.17 17.03 - - 13.86 14.7 - -

[61] 48.03 48.03 - - - - - - - - - -

[10] 49.16 50.47 - - - - - - - - 24.98 25.48

[19] 49.22 49.22 - - 19.07 21.65 - - 16.03 17.74 - -

[76] 51.5 51.5 - - 16.94 18.89 - - 14.31 15.77 - -

[22] 52.3 52.3 - - 17.4 19.1 - - 15.2 16.8 - -

[46] 52.6 52.6 - - 17.9 - - - 15.8 - - -

[3] 53.14 53.14 - - 18.25 19.36 - - 16.03 17.12 - -

[77] 53.59 53.59 - - 23.88 25.26 - - 20.14 23.39 - -

[74] 56.56 56.56 - - 20.82 24.5 - - 13.81 16.01 - -

[66] 58.2 58.2 - - 31.5 36.1 - - 23.9 26.8 - -

[5] - - 61.19 - - - - - - - 16.71 17.58

[12] - - 80.78 81.9 - - 19.93 23.45 - - 17.73 20.88

[17] - - - 82.1 - - - 23.5 - - - 15.98

[48] - - 78.6 87.6 - - - - - - - -

[13] - - 85.21 90.33 - - - - - - 20.41 24.17

[4] - - 86.58 92.58 - - 26.32 28.96 - - 19.06 20.96

[40] - - 84.92 92.65 - - - - - - 20.81 22.22

[36] - - 86.01 93.18 - - - - - - 19.03 23.29

[11] - - 87.57 93.76 - - - - - - 21.46 26.14

[64] 55.16 55.16 85.64 94.65 23.14 24.03 26.32 29.43 19.17 21.34 22.68 31.89

[63] 55.98 55.98 89.03 94.56 25.21 28.89 29.64 38.39 19.54 22.39 22.34 28.52

[25] 55.16 55.16 88.88 95.18 17.0 19.03 18.95 23.06 15.05 16.73 16.83 20.54

[16] 56.14 56.14 89.79 96.26 - - - - - - - -

[73] 56.6 56.6 90.65 96.66 - - - - - - - -

[26] - - - - 14.5 18.3 - - 8.6 11.3 - -

[75] - - - - 22.67 23.95 - - 17.4 18.33 - -

[32] - - - - 20.53 24.12 - - 14.23 16.26 - -

[49] - - - - - - - - 15.08 18.37 - -

[33] - - - - 22.78 27.91 - - 17.32 20.0 - -

[37] - - - - 21.37 22.6 - - 18.19 20.79 - -

[34] - - - - - - 26.03 30.77 - - 18.32 21.2

[6] - - - - - - 28.92 33.48 - - 22.9 26.01

Ours

micro
58.4 58.4 91.0 96.97 29.74 34.63 33.2 41.01 22.83 24.87 26.04 31.94

[21] 55.5 55.5 - - 30.11 36.1 31.76 39.77 25.74 29.82 27.38 34.12

[18] - - - - 27.39 34.38 - - 20.31 25.01 - -

[70] - - - - 31.09 36.42 33.29 41.25 24.3 27.91 26.67 32.55

[69] - - - - 28.93 32.85 32.9 39.64 23.68 26.67 26.98 32.59

[71] - - - - 31.34 36.42 34.45 42.12 25.29 28.62 28.15 33.91

Ours

macro
58.78 58.78 95.32 98.47 31.96 36.54 36.06 43.45 25.32 26.57 28.28 33.26

Table 2: Comparison with state-of-the-art on VRD [43],

bold font indicates best results, underlined second-best. We

compare using micro-Recall and macro-Recall (bottom ta-

ble) with the respective methods.

in each image i. Then, having detected tpi true positives

in the image i, micro-Recall micro-averages these positives

as
∑

N

i
tpi∑

N

i
gti

and rewards correct predictions across dataset.

Macro-Recall macro-averages detections in terms of im-

ages 1

N

∑N

i
tpi

gti
, favoring correct predictions in images

with fewer ground-truth annotations. Early works evalu-

ate micro-Recall on VRD [43] and macro-Recall on VG200

[58], but later works often use the two types interchange-

ably and without consistency.

4.2. Results

We present and discuss evaluation results of ATR-Net on

6 datasets/splits. In all experiments we set λr = λp = 1,

leaving further fine-tuning for future work. Our PyTorch

code is publicly available1.

Results on VRD [43]: Comparative results on VRD are

presented on Table 2. Due to inconsistencies to the met-

ric’s definition, we make our best attempt to split the re-

sults into those that use the original micro-Recall [43] and

1https://github.com/deeplab-ai/atr-net

PredDet PhrDet SGGen

Method k = 1 k = 50 k = 1 k = 50 k = 1 k = 50

50 100 50 100 50 100 50 100 50 100 50 100

[17] - - - 77.18 - - - 14.96 - - - 10.95

[13] - - 84.96 91.5 - - - - - - 20.77 22.12

[40] - - 85.21 91.56 - - 28.58 31.69 - - 21.49 23.51

[35] - - - - - - - - 10.72 14.22 - -

[52] - - - - - - - - 12.66 14.85 - -

[34] - - - - 22.84 28.57 - - 13.06 16.47 - -

[18] - - - - 23.51 30.04 - - 13.65 17.57 - -

Ours
66.31 66.52 90.6 95.97 28.13 33.91 29.98 37.75 16.66 19.35 20.86 23.66

micro

Ours
66.44 66.44 95.53 98.52 37.13 42.54 40.43 48.51 24.06 27.29 26.47 31.67

macro

Table 3: Comparison with state-of-the-art on VG-MSDN

[35], bold font indicates best results, underlined second-

best. We compare using micro-Recall but include macro-

Recall results as well for future reference.

PredDet PhrDet SGGen

Method k = 1 k = 100 k = 1 k = 100 k = 1 k = 100

50 100 50 100 50 100 50 100 50 100 50 100

[67] 62.63 62.87 - - 9.46 10.45 - - 5.52 6.04 - -

[61] 62.71 62.94 - - - - - - - - - -

[19] 64.41 64.53 - - 9.72 9.97 - - 6.02 6.28 - -

[68] 64.17 64.86 - - 10.62 11.08 - - 6.02 6.91 - -

[5] 65.27 66.45 - - - - - - 12.64 14.62 - -

[74] 68.63 68.91 - - 10.6 12.05 - - 5.96 6.64 - -

[66] 71.9 72.2 - - 26.6 32.1 - - 14.4 16.5 - -

[75] - - - - 13.08 15.61 - - 6.82 8.0 - -

[36] - - 69.06 74.37 - - - - - - - -

[11] - - 70.42 74.92 - - - - - - - -

[6] - - - - 14.62 18.13 - - 7.93 9.41 - -

[21] - - - - 17.53 21.92 - - 9.55 11.74 - -

Ours
71.92 72.23 91.65 96.61 27.84 33.47 29.49 36.99 15.81 18.27 17.31 21.08

micro

Ours
72.3 72.32 96.74 98.8 36.05 41.32 38.85 46.37 21.99 24.86 24.13 28.66

macro

Table 4: Comparison with state-of-the-art on VG-VTE [67],

bold font indicates best results, underlined second-best. We

compare using micro-Recall but include macro-Recall re-

sults as well for future reference.

PredDet PhrDet SGGen

Method k = 1 k = 24 k = 1 k = 24 k = 1 k = 24

50 100 50 100 50 100 50 100 50 100 50 100

[12] - - 88.26 91.26 - - 23.95 27.57 - - 20.79 23.76

[34] - - - - - - 26.91 32.63 - - 19.88 23.95

Ours
77.12 77.32 98.72 99.76 37.15 43.3 39.6 47.39 26.12 29.58 28.33 33.16

micro

Ours
76.2 76.21 99.94 99.99 44.91 51.17 48.1 56.01 34.67 39.25 37.55 43.63

macro

Table 5: Comparison with state-of-the-art on sVG [12],

bold font indicates best results, underlined second-best. We

compare using micro-Recall but include macro-Recall re-

sults as well for future reference.

Predicate Accuracy

Method top-1 top-5 top-10

[69] 52.0 79.37 85.6

Ours 59.81 84.23 89.24

Table 6: Comparison with state-of-the-art on VG80K [69],

bold font indicates best results, underlined second-best. We

compare using predicate accuracy as in [69].

those who use macro-Recall [58]. In the first setting, we

outperform most other methods or achieve second-best re-

sults on all tasks. The main competitor [66] uses a similar

strategy with multi-tasking, but employs external training



PredDet PredCls SGCls SGGen

Method

k = 1 k = 50 k = 1 k = 50 k = 1 k = 50 k = 1 k = 50

50 100 50 100 50 100 50 100 50 100 50 100 50 100 50 100

w/o context

[29] - - - - - - - - - - - - 6.84 9.85 - -

[47] - - - - - - 67.71 77.6 - - 35.55 42.74 - - - -

[48] - - - - - - 72.5 81.7 - - - - - - - -

[72] - - - - 65 67.1 - - 36.3 37.1 - - 26.6 29.5 - -

[21] - - - - 65.3 67.3 - - 35.9 36.6 - - 30.1 33.6 - -

[70] 68.3 68.3 93.7 97.7 - - - - 36.7 36.7 48.9 50.8 28.1 32.5 30.1 36.4

[69] 68.4 68.4 - - - - - - 36.7 36.7 - - 27.9 32.5 - -

[71] 68.4 68.4 93.8 97.8 - - - - 36.8 36.8 48.9 50.8 28.3 32.7 30.4 36.7

Ours 68.61 68.61 98.34 99.52 65.87 67.8 81.63 89.03 36.0 37.01 44.71 48.24 21.43 26.39 22.7 28.14

w/ context

[58] - - - - 44.75 53.08 - - 21.72 24.38 - - 3.44 4.24 - -

[41] - - - - 45.55 53.66 - - 23.37 26.29 - - 4.33 5.57 - -

[27] - - - - 46.85 55.63 - - 23.8 26.78 - - 6.36 7.54 - -

[14] - - - - 56.65 57.21 - - 23.71 24.66 - - 13.18 13.45 - -

[56] - - - - 53.2 57.9 - - 27.8 29.5 - - 11.4 13.9 - -

[22] - - - - 51.9 58.3 - - 24.3 26.6 - - 4.8 6.0 - -

[60] - - - - 54.2 59.1 - - 29.6 31.6 - - 11.4 13.7 - -

[50] - - - - 56.6 61.3 - - 38.2 40.4 - - - - - -

[20] - - - - 65.1 66.9 80.8 88.2 36.5 38.8 45.5 50.8 - - - -

[65] - - 96.0 98.4 65.2 67.1 81.1 88.3 35.8 36.5 44.5 47.7 27.2 30.3 30.5 35.8

[8] - - - - 65.8 67.6 81.9 88.9 36.7 37.4 45.9 49.0 27.1 29.8 30.9 35.8

[39] - - - - 64.2 66.4 - - 38.6 39.7 - - 32.3 35.4 - -

[53] - - - - 66.4 68.1 - - 38.1 38.8 - - 27.9 31.3 - -

[7] - - - - 66.4 68.1 - - 38.5 39.3 - - 27.9 31.2 - -

[57] - - - - 67.0 68.5 - - 41.0 41.7 - - 27.4 30.1 - -

[44] - - - - - - 68.0 75.2 - - 26.5 30.0 - - 9.7 11.3

[23] - - - - - - 80.4 88.4 - - 43.7 47.6 - - - -

Table 7: Comparison with state-of-the-art on VG200 [58], bold font indicates best results, underlined second-best. We use

only macro-Recall as all other methods in VG200 do. The table splits methods from those that do not, including us. Our

results on PredDet and PredCls are better than or comparable to other methods, even those that employ context.

data (Wikipedia). However, we still outperform them on

PredDet, due to our attentional scheme that allows ATR-

Net to optimally exploit visual features. We notice a similar

trend in macro-Recall results, outperforming other works

on PredDet and PhrDet and performing on par on SGGen.

Again, the main competitor [21] uses external data (VG) to

train their object detector. VRD is a small dataset and using

external data highly boosts performance.

Results on VG-MSDN [35]: Table 3 shows compara-

tive results on VG-MSDN, where the original metric used

is micro-Recall [35]. Our method clearly outperforms all

other methods across tasks, with the margins being higher

on PredDet and PhrDet, indicating that ATR-Net captures

higher-level concepts of relationships. The main competi-

tor [40] achieves higher R50@50 on SGGen, but our differ-

ence depends on the training of the object detector, which is

beyond our focus.

Results on VG-VTE [67]: VG-VTE is a much larger

dataset and our method is able to scale up and achieve state-

of-the-art results across tasks (Table 4), even outperforming

[66] and [21] that were the main competitors on VRD using

external data.

Results on sVG [12]: sVG is a peculiar dataset that has

a wide variety of object categories and a large number of

training images but only 24 predicate classes. ATR-Net at-

tentional mechanism that uses language and spatial features

proves that it can scale up to such a setting and dramatically

improve over the current state-of-the-art (Table 5).

Results on VG200 [58]: VG200 is the most widely used

VG split on Scene Graph Generation. Most related works

solve the problem from a graph perspective and often em-

ploy context to improve their predictions. Since our work

does not use context, we split Table 7 in two parts. ATR-Net

belongs to first part, the methods that do not use context,

achieving better or on par results on most tasks. We notice

that although ATR-Net achieves the best results on Pred-

Det and PredCls, it malperforms on SGCls and especially

on SGGen. Following [65]’s observations, recent works

on VG200 train a scene graph generator using perturbed

bounding boxes. This approach both augments the data and

provides robustness to noisy object detections. On the other

hand, [71, 70, 69] train two Faster-RCNNs, one for objects

and one for predicates. Far from our goal, we do not adopt

any of these strategies and instead focus on improving the

attentional scheme and pair filtering, managing to outper-

form or perform on par on PredDet and PredCls with most

methods, independently of whether they use context or not.

Results on VG80K [69]: Lastly, we evaluate ATR-

Net on the large-scale VG80K, where the metric is predi-

cate accuracy. To handle the immense number of classes,

[69] avoid cross-entropy and instead use a nearest-neighbor

search on a multimodal space. We insist on softmax and



PredCls SGCls

Recall Dataset k = 1 k = max k = 1 k = max

50 100 50 100 50 100 50 100

micro

[35] 60.12 64.34 68.77 79.76 31.18 32.9 35.99 40.96

[67] 60.3 66.88 66.56 78.56 33.3 36.53 37.06 43.19

[12] 77.09 77.32 96.54 98.88 41.0 41.05 51.2 52.33

[43] 56.37 57.55 73.18 83.92 39.09 39.85 51.01 58.83

macro

[35] 62.35 65.27 74.99 84.35 31.58 32.72 38.42 42.39

[67] 65.73 69.51 78.0 86.51 33.7 35.45 40.3 44.37

[12] 76.2 76.21 99.05 99.71 38.04 38.05 49.59 49.87

[43] 57.09 57.7 80.16 88.71 39.42 39.75 55.88 61.78

Table 8: Results of ATR-Net on tasks that other methods do

not evaluate on VG-MSDN [35], VG-VTE [67], sVG [12]

and VRD [43], where “max” is the maximum value of k per

dataset, equal to the number of predicate classes.

Ablation

PredCls SGCls

k = 1 k = 50 k = 1 k = 50

50 100 50 100 50 100 50 100

A

No attention 56.43 59.8 68.69 78.28 32.44 33.91 39.4 43.85

Single-head 62.39 64.76 76.6 84.81 34.5 35.55 42.43 46.22

Spatial only 58.81 61.39 73.54 82.59 33.59 34.7 41.57 45.66

Language only 64.24 66.77 78.41 86.33 35.17 36.26 43.27 46.97

T W/o extra losses 64.58 66.79 79.58 87.32 35.37 36.28 43.67 47.35

R
W/o relevance task 53.12 61.86 57.6 70.34 29.55 33.84 32.24 38.62

Filter of [12] 60.23 64.84 71.13 82.07 31.2 35.61 39.04 45.98

ATR-Net Full 65.87 67.8 81.63 89.03 36.0 37.01 44.71 48.24

Table 9: Ablations of ATR-Net on VG200 [58]. A, T and R

denote the respective pipeline steps under study, Attention,

Translation and Relation respectively.

cross-entropy, achieving noticeably better results (Table 6),

proving that our approach can scale up to settings with 300

times more classes than standard datasets.

Filling the gaps: For future reference, we report micro-

and macro-Recall results of ATR-Net on tasks previously

not evaluated across all datasets on Table 8.

4.3. Ablation Study

We question the importance of all steps in ATR-Net’s

pipeline both quantitatively and qualitatively. The variants

and their comparison to our full model are summarized on

Table 9. We present ablative results on VG200 [58], for

PredCls and SGCls, as these settings exploit all ATR-Net’s

components and are not prone to object detection errors.

Attention: Attention is vital to ATR-Net since it leads

the network’s “focus” on the most discriminative visual fea-

tures, while removing it results in an absolute 8% and 3.1%

R1@100 drop on PredCls and SGCls respectively. Single-

head attention, conditioned on language and spatial features

tends to focus on the specific details of the objects, yet ir-

respectively of class (Fig. 5) and thus does not capture the

per-class important details of interaction, causing a 3.04%

R1@100 drop on PredCls. Multi-head attention with spa-

tial features captures per-class important regions of the ob-

jects of interest, but ignoring the semantic information re-

sults in large drops in recall. Lastly, multi-head attention

conditioned on language only is the strongest attentional

variant, but focuses on per-class important characteristics

of all present objects of the same category as the objects

of interest, struggling to disambiguate cases when there are

multiple instances of the same class (Fig. 5).

Translation: Do all losses contribute to the overall re-

sult? We train a variant without Lr
P , Lr

OS and Lp
P , Lp

OS ,

thus supervising only the fusion (Lr
f and Lp

f ). We notice an

absolute 1.01% and 0.73% R1@100 drop on PredCls and

SGCls respectively (Table 9), as these losses are responsi-

ble for supporting Eq. 1.

Relation: Another crucial factor of ATR-Net’s effective-

ness is that it separately handles the relevance task. If we

instead train a single-task with the extra background class,

we measure a significant drop in all recall and task settings,

often worse than the (Table 9). This shows that the classifier

cannot effectively minimize false positives without extra su-

pervision. It is interesting that multi-tasking provides much

larger gains in smaller recall thresholds (R1@50, R50@50),

indicating that it forces the network to properly rank the dif-

ferent relationships. Note that without the relevance task we

obtain close results to [50] (Table 7), that, similar to us, does

not manually filter background pairs. Lastly, we train a vari-

ant of the pair filter of [12, 39] that employs only semantic

and spatial information. Although reasonably more robust

than with no filtering, this network fails to compete with the

full ATR-Net, since the latter employs visual features with

attention.

Discussion: Comparing the variants altogether, it be-

comes clear that language attention is the core component

of ATR-Net. Combining with spatial attention boost the net-

work’s capability to deal with difficult examples where mul-

tiple object instances of the same classes occur, while multi-

head shifts the focus of each head to class-specific charac-

teristics. Multi-tasking for the relevance task is essential in

order to avoid dataset-specific filters of negative samples,

while the translation losses offer an extra recall margin by

approximating the formulation of Translation Embeddings.

5. Conclusion

Misleading attention and dataset-specific biases ham-

per networks’ scalability to significantly different settings.

We address these challenges with a three-step pipeline that

employs multi-head attention conditioned on language and

spatial features, translation embeddings and multi-tasking

to vote whether two objects interact and classify their in-

teraction. We demonstrate the proposed approach’s benefits

on multiple datasets, metrics and task settings that capture

the wide range of prior literature experiments. Interesting

future directions would be to integrate ATR-Net’s concepts

with context or investigate ways to exploit the not annotated

data to further boost single-instances’ prediction.
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