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Abstract

We propose a new model for detecting visual relationships,

such as "person riding motorcycle" or "bottle on table". This

task is an important step towards comprehensive structured

image understanding, going beyond detecting individual ob-

jects. Our main novelty is a Box Attention mechanism that

allows to model pairwise interactions between objects using

standard object detection pipelines. The resulting model is

conceptually clean, expressive and relies on well-justified

training and prediction procedures. Moreover, unlike previ-

ously proposed approaches, our model does not introduce

any additional complex components or hyperparameters

on top of those already required by the underlying detec-

tion model. We conduct an experimental evaluation on two

datasets, V-COCO and Open Images, demonstrating strong

quantitative and qualitative results.

1. Introduction

The task of detecting visual relationships aims at local-

izing all pairs of interacting objects in an input image and

identifying relationships between them. The ability to rec-

ognize visual relationships is crucial for achieving compre-

hensive understanding of visual scenes. As a consequence,

the task of detecting visual relationships has recently at-

tracted a lot of attention in the computer vision commu-

nity [1, 5, 8, 12, 14, 15, 17, 19, 24, 26].

Naturally, currently available models for detecting vi-

sual relationships [5, 17, 1] heavily rely on object detection

pipelines. However, in order to enable the modeling of

pairwise relationships, they augment the object detection

pipelines with multiple additional components and thereby

introduce additional hyperparameters. In contrast, in this

paper we present a new model that almost exclusively re-

lies on readily available detection pipelines. Crucially, our

model does not require tuning any additional hyperparame-

ters and can be implemented by adding a dozen lines of code

to existing object object detection pipelines [16, 11].

∗Work partially done at IST Austria.
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Figure 1. Schematic illustration of the proposed model. It is based

on the general object detection pipeline augmented with our box

attention mechanism.

We formulate the task of detecting visual relationships as

a joint probabilistic model. Our key idea is to decompose

the probabilistic model into two simpler sub-models using

the chain rule. As a result of this decomposition the task of

detecting visual relationships breaks down into two consecu-

tive object detection tasks. A first detection model localizes

all objects in an input image. Then, for each detected object,

the second model detects all other objects interacting with it.

Our main contribution is the Box Attention mechanism that

augments the second model with the ability to be conditioned

on objects localized by the first one.

2. Related Work

Visual relationships have been previously studied in the

computer vision community. Earlier works leverage visual

relationships in order to improve performance of object de-

tection [21], action recognition and pose estimation [2], or

semantic image segmentation [6]. However, [17] was the

first work to formulate detection of visual relationships as

a separate task. It proposes to learn a composite likelihood

function that utilizes a language prior based on the word

embeddings [18] for scoring visual relationships. In [24]

the authors use external sources of linguistic knowledge and



the distillation technique [10] to improve modeling perfor-

mance, while [15] formulates the task of detecting visual

relationships as a reinforcement learning problem. Dai et

al. [1] proposes a multistage relationship detection process,

where they first run an object detector, and then apply a

light-weight network for selecting promising pairs of inter-

acting object detections. A similar approach was also lever-

aged by [25]. The work [14] introduces a triplet proposal

mechanism and then trains a multi-stage scoring function to

select the best proposal. A few works [19, 26] investigate a

weakly-supervised variant of the relationship detection task.

Further, several works focus on human-object relations. Ear-

lier works exploit probabilistic graphical models [7, 23] and

also investigate weakly-supervised settings [20]. Recently,

high-performing models [8, 5, 4] based on deep convolu-

tional neural networks have emerged. Finally, very recent

paper [12] proposes to use an attention mechanism for solv-

ing related task of referring relationships.

3. Box Attention for Detecting Relationships

In this section we describe our approach for detecting vi-

sual relationships, which we call BAR-CNN (Box Attention

Relational CNN). Our overall approach is illustrated in Fig 1.

Formally, the task of detecting visual relationships for a

given image can be formulated as detecting all triplets in a

form of 〈subject (S), predicate (P ), object (O)〉. The subject

S and object O are represented by bounding boxes bs and

bo, and their corresponding category labels by ls and lo. The

predicate P is represented by a label lp.

We derive our approach for modeling visual relationships

using a probabilistic interpretation of this task. The high-

level idea is to model the probability p(S, P,O|I) that a

triplet 〈S, P,O〉 is a correct visual relationship in the input

image I . It is challenging to model this joint probability

distribution, as it involves multiple structured variables in-

teracting in a complex manner. Thus, we propose to employ

the chain rule in order to decompose the joint probability

into simpler conditional probabilities:

p(S, P,O|I) = p(S|I) · p(P,O|S, I). (1)

The first factor p(S|I) models the probability that a sub-

ject (bs, ls) is present in the image I . Thus, this factor can be

modeled as a standard detection task of predicting bounding

boxes and category labels for all instances in the image. The

second factor, p(P,O|S, I), models the probability that an

object (bo, lo) is present in the image and is related to the

subject S through a predicate lp. Estimating p(P,O|S, I)
can be also seen as a detection problem. In this case the

model should output bounding boxes, object labels and the

corresponding predicate labels (bo, lo, lp) for all objects that

interact with S. We implement conditioning on S by treat-

ing it as an additional input that we call Box Attention. In

Section 3.1 we present this Box Attention mechanism in

detail.

Due to functional similarity of the two factors in Eq. (1)

we further propose to train a single unified model for both

p(S|I) and p(P,O|S, I). Note that our approach can be

implemented within any object detection model. From now

on we will refer to it as the base detection model.

3.1. Model details

Box attention representation. Consider an input image

I . The box attention map for this image is represented as a

binary image m of the same size as I , with 3 channels. The

first channel represents a subject bounding box (Figure 1).

Specifically, all pixels inside the subject bounding box are

set to 1 and all other pixels are set to 0. An attention map

can be empty: in this case the first channel is all zeros. The

second and third channels are used in the following way: if

the first channel is not empty, then the second channel is all

zeros and the third channel is all ones. Conversely, if the

first channel is empty, then the second channel is all ones

and the third channel is all zeros. These two extra channels

are useful because state-of-the-art detection models use deep

convolutional neural networks as feature extractors [9, 22].

Neurons of these networks have limited receptive fields that

might not cover the whole attention map. As a consequence,

these neurons have no information whether the attention map

is empty or not based only on the first channel.

Incorporating box attention maps in the base detection

model. In order to incorporate the additional box attention

input we use a simple and yet very effective strategy.

The proposed mechanism is illustrated in Figure 2. Con-

sider the output u of a certain convolutional layer of the

base detection model. Let’s assume u has spatial resolution

H×W and K channels. We condition the output u on the at-

tention map m by performing the following steps: 1) Obtain

m̂ by resizing m to the spatial size of H ×W using nearest

neighbor interpolation. 2) Obtain m̃ by passing m̂ through

a learnable convolutional layer with K output channels and

a kernel of size 3× 3. 3) Update u as u+ m̃. In principle,

we can apply this procedure to every convolutional layer of

the base detection model. In practice, we use ResNet-type

architectures with bottleneck units [9], and apply the above

conditioning procedure to the second convolution of every

bottleneck unit.

The proposed conditioning procedure has several appeal-

ing properties. First, it allows to seamlessly initialize the

BAR-CNN model using the pre-trained base detection model.

Second, if we initialize the convolutional kernels in step 2

with all zeros, in the beginning of training our conditioning

procedure does not have any effect on the outputs of the

base detection model. This helps preventing disruption of

the pre-trained base detection model and ensures numerical



Figure 2. Our proposed attention mechanism. This procedure is

applied to convolutional layers of the base detection model.

stability in the beginning of the training process.

Training. As described above, we want to learn a single

model able to a) output subject predictions when the atten-

tion map is empty, and b) output object and predicate predic-

tions when conditioned on a subject prediction through the

attention map.

To achieve a) we simply add an empty attention map to

each image in the training set and preserve all subject bound-

ing boxes as ground-truth. This forms one type of training

sample. To achieve b) for each subject annotated in a training

image we generate a separate training sample consisting of

the same image, box attention map corresponding to the sub-

ject, and all object and predicate annotations corresponding

to this subject. This is the second type of training sample.

Thus, given k annotated subjects in a training image, we

create k+1 training samples. We then use this training set to

train a BAR-CNN model. Note that storing multiple copies

of the image is not necessary, as the training samples can be

generated on the fly during the course of training.

The proposed model predicts two labels (i.e. lo and lp)

per detection instead of one. Therefore during training we

use a sigmoid multiclass loss instead of a cross-entropy

loss normally used for standard object detection. During

training we closely follow recommendations from the public

RetinaNet implementation (see Section 4 for more details).

Predicting visual relationships. Visual relationships for

a test image I are predicted using a natural two-stage proce-

dure. First, we run the BAR-CNN model by feeding it the

image I and an empty attention map. The model outputs a

scored list of subject detections. Each detection has a box

bs, a class label ls and a score ss.

Second, we form a scored list of all detected relation-

ships. Specifically, for every detection we apply the follow-

ing two-step procedure: 1) Construct an attention map for

bs and feed it to the BAR-CNN model together with the

image I . As a result BAR-CNN predicts a set of object

boxes (bo, lo, lp)i that interact with bs through the relation-

ship lp. 2) For every detection (bo, lo, lp) we first compute

the score p(P,O|S, I) = sp,o by multiplying the scores

of labels lo and lp obtained through multiclass prediction.

The final score s of the full visual relationship detection

〈(bs, ls), lp, (bo, lo)〉 is computed as s = sssp,o.

4. Experiments

Model C [8] InteractNet BAR-CNN

impl. [5] [5] (proposed)

Relation AProle AProle AProle

mean AP 31.8 40.0 43.6
Table 1. Quantitative comparison of the proposed model with com-

peting models on V-COCO.

We now present experimental evaluation of the proposed

BAR-CNN model. We evaluate on the two publicly available

datasets: V-COCO [8] and Open Images [13], reporting

strong quantitative and qualitative results.

4.1. Implementation details

As explained in Section 3, we build BAR-CNN by com-

bining the base detection model with the box attention input.

In our experiments we use the RetinaNet [16] model with

ResNet50 [9] backbone as the base detection model.

During finetuning we do not freeze any of the network’s

parameters. As an optimization algorithm we use stochastic

gradient descent with momentum set to 0.9 and the mini-

batch size is set to 256 images.

Before finetuning on the V-COCO dataset, we initialize

a BAR-CNN model from the RetinaNet detection model

pretrained on the MSCOCO train2014 split. For finetuning

on the Open Images dataset, we initialize our model from

the RetinaNet detection model pretrained on bounding boxes

of the training split of the Open Images dataset itself. We

conduct finetuning for 60 and 15 epochs for the V-COCO

and Open Images datasets, respectively. The initial learning

rate is always set to 8 · 10−3 and is decayed twice by a

factor of 10 after 50% and 75% of all optimization steps. All

other hyperparameters of the RetinaNet model are set to their

default values from the publicly available implementation1.

4.2. Results on the VCOCO dataset [8]

Data. The V-COCO dataset contains natural images anno-

tated by human-object relationships. There are 29 relation-

ships (also called actions), e.g. carry, drink, ride, cut, eat

(object), eat (instrument), etc. Overall, the dataset has 5, 400
images in the joint train and val splits, and 4, 946 images

in the test split. On average each image has 4.5 annotated

human-object relationships.

Metric. We evaluate performance on the V-COCO dataset

using its official metric: “AP role” [8]. This metric computes

the mean average precision (mAP) of detecting relationships

triplets 〈human box, action, target box〉 by following the

PASCAL VOC 2012 [3] evaluation protocol. A triplet pre-

diction is considered as correct, if all three of its components

1https://github.com/tensorflow/tpu/tree/master/models/official/retinanet



Figure 3. Example outputs of the top scoring detections by the proposed BAR-CNN model on V-COCO. The first row demonstrates correct

predictions outputted by the model. The second row shows failures: image 1, 2, 3 — wrong target, images 4, 5 — hallucinated object.

are correct. A predicted box is correct if it has intersection-

over-union with a ground-truth box of at least 50%. We use

the publicly available code for computing this metric2.

Qualitative results. Figure 3 show typical outputs of our

model. By analyzing these qualitative results, we make a

few observations. Most importantly, our model successfully

learns to use the box attention map. Even for complex im-

ages with many objects it learns to correctly assign humans

to their corresponding objects.

Interestingly, BAR-CNN can successfully predict that

the same object can correspond to different humans through

different actions (row 1, the right-most three images). More-

over, BAR-CNN can model long range interaction between

objects, e.g. in row 1 the two football players looking at the

ball are far from a ball and yet are predicted to be related to

it through the action look.

In the V-COCO dataset most errors are caused by complex

image semantics, which are hard to capture by a neural

network trained on very limited amount of data (row 2).

Quantitative results. Results are presented in Table 1. The

first two columns show quantitative comparison to the model

from [8] and the approach from [5]. Our method BAR-CNN

(third column) outperforms both of them.

The recently proposed ICAN model [4] achieves a 45.3
mean AP, which is slightly better than our model (43.6).

However, we stress that (1) our model handles the generic

visual relationship detection task, whereas ICAN focuses on

human-object interaction; (2) the ICAN model is much more

complex than ours, as it introduces numerous additional

components on top of the object detection pipeline.

4.3. Results on Open Images VRD Challenge 2018

Data. The Open Images Dataset (OID) is a very large-scale

dataset containing image-level labels, object bounding boxes,

and visual relationships annotations. In total it contains

329 distinct relationship triplets and 374, 768 annotations on

100, 522 images in the training set.

Metric. We evaluate the model on the hidden Open Images

2https://github.com/s-gupta/v-coco

Score(public) Score(private)

team MIL 21.8 19.7
team mission-pipeline 7.4 6.8

team toshif 25.6 22.8
BAR-CNN (proposed) 26.6 25.0

Table 2. Quantitative comparison of the proposed model with com-

peting models on Open Images.

Challenge 20183 test set using the official Kaggle server.

The metric is the weighted average of the three metrics:

mAP on phrase detection, mAP for relationship detection

and Recall@50 for relationship detection. The task of phrase

detection is to detect triplets of object with a single enclosing

bounding box and three labels ls, lp, lo. It was introduced

in [17]. The two other metrics require detecting separately

each object and their relationship label. For the mAP metrics,

the mean is computed over relationship predicate, i.e. lp.

Quantitative results. In Table 2 we compare the results of

our BAR-CNN to the results of Open Images VRD Chal-

lenge 2018, where comparable setting was used. We use

values of the public leaderboard on the Kaggle server for

validation and report the score both on the public and private

leaderboard for all methods. We note, that among all submit-

ted results, our model achieves the second best performance

despite us not training a separate model for "is" relationship.

5. Conclusion

We presented a new model, BAR-CNN, for detecting vi-

sual relationships that relies on a box attention mechanism.

Our model has several important benefits over previously

proposed models. First, it is conceptually simple and theo-

retically sound: we tackle visual relationship detection by

formulating it as a task of learning a probabilistic model and

then decomposing this model into simpler sub-models using

the chain rule. Second, our model does not introduce any

new hyperparameters on top of those already required by

the base detection model it builds on. Finally, BAR-CNN

delivers strong performance on two challenging datasets.

3https://storage.googleapis.com/openimages/web/challenge.html
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