
Triplet-Aware Scene Graph Embeddings

Brigit Schroeder∗

University of California, Santa Cruz

brschroe@ucsc.edu

Subarna Tripathi

Intel AI Lab

subarna.tripathi@intel.com

Hanlin Tang

Intel AI Lab

hanlin.tang@intel.com

Abstract

Scene graphs have become an important form of struc-

tured knowledge for tasks such as for image generation,

visual relation detection, visual question answering, and

image retrieval. While visualizing and interpreting word

embeddings is well understood, scene graph embeddings

have not been fully explored. In this work, we train scene

graph embeddings in a layout generation task with different

forms of supervision, specifically introducing triplet super-

vision and data augmentation. We see a significant perfor-

mance increase in both metrics that measure the goodness

of layout prediction, mean intersection-over-union (mIoU)

(52.3% vs. 49.2%) and relation score (61.7% vs. 54.1%),

after the addition of triplet supervision and data augmenta-

tion. To understand how these different methods affect the

scene graph representation, we apply several new visual-

ization and evaluation methods to explore the evolution of

the scene graph embedding. We find that triplet supervision

significantly improves the embedding separability, which is

highly correlated with the performance of the layout predic-

tion model.

1. Introduction

Scene graphs are a structured data format which encodes

semantic relationships between objects [22]. Objects are

represented as nodes in the graph and are connected by

edges that expresses relationship, in the form of triplets.

Each triplet is comprised of a <subject, predicate, object>

which semantically describes the relationship between two

objects such as <car, on, road> or <dog, left of, person>.

Scene graphs can be processed by graph convolutional

neural networks (GCNN) which are able to pass informa-

tion along graph edges[7]. Layout prediction models, such

as those used image generation [7], are multi-stage net-

works (see Figure 1) which predict scene layout masks and

object localization (bounding boxes), based upon the struc-

ture of the scene graph. The first stage of the layout predic-
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tion model is a GCNN that is used to learn a scene graph

embedding. Object embeddings are passed to the next stage

of the network to predict a bounding box and mask for each

object node in the scene graph. We are interested in lay-

out prediction models in particular because a scene graph

embedding is learned in the process of training a model.

The performance metrics used for evaluating the quality of

scene layout, namely mean intersection-over-union (mIoU)

and relation score [15], can be used to correlate with the

relative “quality” of the scene graph embedding. Relation

score is particularly relevant as it measures the compliance

of the generated layout to the scene graph, possibly giv-

ing insight into how well the embedding is structured, espe-

cially in terms of class separability.

In our work, we introduce several new supervisory

signals that are conditioned upon triplet embeddings to

train scene layout prediction models. We also apply data

augmentation by using heuristic-based relationships [15] to

maximize the number of triplets during training. The goal

is to learn a triplet-aware scene graph embedding with the

hypothesis additional supervision and data augmentation

will enrichen the embedding representation. To this end,

we also introduce several methods of embedding visu-

alization and evaluation that help understand the degree

of separability that is achieved from our improved layout

prediction models.

2. Related Work

Visual Genome [9], a human-annotated scene graph

dataset, has known issues of incomplete and incorrect anno-

tations. Additionally this only provides the bounding boxes

for object instances but not their segmentation masks. On

the other hand, the synthetic scene graphs generated from

COCO stuff [2] are limited to simple geometric relation-

ships (above, below, left, right, inside, surrounding) but are

not hampered by incorrect annotations. COCO stuff also

provides segmentation masks for instances. In this paper

we use synthetic scene graphs from COCO stuff [2] for our

experiments.

Generating scene graphs from visual features [22, 24,



23, 4, 3, 14, 26, 20, 13, 5] is a relatively explored task.

Wan et al. [19] specifically predicts new triplets for scene

graph completion using existing scene graphs and visual

features. Another line of work that emerged recently

[7, 15, 11, 16, 8, 12, 18] take scene graphs as input and

produce final RGB images. All of these methods perform

an intermediate layout prediction by learning embeddings

of nodes. In closely related work, Belilovsky et al. [1]

learn a joint visual-scene graph embedding for use in image

retrieval. None of the above explored utilizing <subject,

predicate, object> triplets as additional supervisory signal

for more effective structured prediction.

Few papers that aim to detect visual relations from im-

ages also analyze the learned embeddings qualitatively.

Dornadula et al. [3] visualizes learned object category em-

beddings using 2-dimensional t-SNE plots. In Graph-

RCNN [23] Yang et al. showed how common sense of

<object-predicate> co-occurrence [6] emerges as the top

scorers based upon the extracted weights that use visual

features. They show similar common sense also appears

for <object-object> co-occurrences. In VTransE paper

[25] utilizes t-SNE for visualizing the embeddings of pred-

icate vectors and speculate when the model learns only co-

occurrence vs. the actual meaning of the relationship by

inspecting the neighbors in the t-SNE space. Note all these

described models utilize visual features. In contrast, our

model is trained from scene graphs without access to visual

features. We provide quantitative and qualitative measures

on why the embeddings trained by the proposed model is

superior.

From an embedding introspection perspective, the clos-

est work is [21]. In this concurrent work, Xu et al. in-

troduced generic embeddings for common visual objects.

They visualized embeddings of most common objects using

t-SNE, and qualitatively studied results on vector decom-

position and projection on specific axes anecdotally. We

note that these embeddings are learned solely based on co-

occurrence and thus they are not able to deal with relation-

ships between objects.

3. Method

Layout Prediction with Triplet Supervision. As part

of our scene graph embedding introspection, we use a lay-

out prediction network inspired by the image generation

pipeline in [7]. Figure 1 gives an overview of the network

architecture. A GCNN processes an input scene graph to

produce embeddings corresponding to object nodes in the

graph. Singleton object embeddings are passed to the next

stage of the layout prediction network per [7].

We utilize the object embeddings to form a set of triplet

embeddings where each is composed of a <subject, pred-

icate, object> embedding. We pass these through a triplet

mask prediction network. Figure 2 highlights the details of

the triplet mask prediction process. Rather than just learn

individual class labels, the network learns to label objects

as either subject or object, enforcing both an ordering and

relationship between objects. We also pass triplet embed-

dings through a triplet superbox regression network, where

we train the network to do joint localization over subject

and object bounding boxes.

Ultimately, all of the outputs of the second stage of the

layout prediction model are used to compose a scene layout

mask with object localization.

Data Augmentation. We applied the method in [15]

which uses heuristics to augment scene graphs with new

spatial relations that induce a richer learned representation.

The depth order between objects from an observer’s view-

point is quasi-exhaustively determined, and for 2D images,

determining this order is non-trivial. Linear perspective-

based heuristics are utilized for augmenting spatial relation-

ship vocabulary.

Training. We train the layout prediction network to min-

imize two additional triplet-based losses in addition to those

used in [7]:

• Triplet mask loss, Ltriplet−mask, penalizing differ-

ences between ground truth triplet masks and predicted

triplet masks with pixelwise cross-entropy loss.

• Triplet superbox loss, Lsuperbox, penalizing the L2 dif-

ference between the ground truth and predicted triplet

superboxes.

4. Experiments

4.1. Dataset

COCO: We performed experiments on the 2017 COCO-

Stuff dataset [2], which augments the COCO dataset [10]

with additional stuff categories. The dataset annotates 40K

train and 5K val images with bounding boxes and segmen-

tation masks for 80 thing categories (people, cars, etc.) and

91 stuff categories (sky, grass, etc.). Similar to [7], we

used thing and stuff annotations to construct synthetic scene

graphs based on the 2D image coordinates of the objects,

encoding six mutually exclusive geometric relationships:

left of, right of, above, below, inside, surrounding. We ig-

nored objects covering less than 2% of the image, and used

images with 3 to 8 objects.

Table 1. Layout Prediction Model.

Model mIoU Relation Score

Baseline [7] 49.2% 54.1%

Triplet Supervision 50.3% 59.4%

Triplet Supervision + DA 52.3% 61.7%



Figure 1. Triplet-Supervised Layout Prediction Network. Here we show a multi-stage network which takes as input a scene graph and

outputs a scene layout prediction. A graph convolutional neural network processes the scene graph to produce object embeddings, which

can be used to form triplet embeddings composed of <subject, predicate, object>. Both single object and triplet embeddings are passed

to the next stage to predict object masks, triplet masks and triplet superboxes. Ultimately, these are combined to predict a scene layout.

Figure 2. Triplet Mask Prediction. Triplets containing a

<subject,predicate,object> found in a scene graph are used to pre-

dict corresponding triplet masks, labelling pixels either as subject

and object. The mask prediction is used as supervisory signal dur-

ing training.

4.2. Scene Layout Prediction

In order to evaluate the quality of scene layout predic-

tion, we compared the predicted layout with the ground

truth using intersection-over-union (mIoU) and relation

score. The relation score measures the percentage of scene

graph relations that are satisfied in the generated layout.

The additional supervision and data augmentation intro-

duced significantly improves over the baseline model [7] as

can be seen in Table 1.

4.3. Embedding Visualization and Separability

To visualize the results, we first visualized the scene

graph embedding using a t-SNE plot [17] (Figure 3) for

the three models. For clarity, we only show the five most

frequent classes in COCO-stuff dataset in the visualization.

With the triplet supervision and data augmentation, the in-

dividual classes become more separable, as seen in the pro-

gression of models. We quantified this observation by using

an SVM with a linear kernel to classify the class categories

(Table 2). The classification accuracy of the ten most fre-

quent classes along with the mean classification accuracy

across all classes is shown. The model trained with triplet

supervision and data augmentation shows significantly bet-

ter class separability over the baseline, as measured by clas-

sification accuracy. This is especially apparent in lower fre-

quency classes such as wall, building and pavement.

In Figure 4, the mean scene embedding nodes for the

fifty most frequent classes in COCO-stuff are visualized.

We can see that several semantically similar objects clusters

form, such as ones containing “animals” and “ground cov-

erings” (indicated by colored boxes). Higher-level clusters

such as “indoor/outdoor structural” (blue box) and “mate-

rials” (yellow box) which are also semantically similar at a

higher level, are found closer together in embedding space.

This kind of hierarchical clustering can also be seen in the

2d dendrogram in Figure 5 which visualizes a clustered

heatmap of mean embedding distances between the top fifty

most frequent classes. Distinct regions of blue (e.g. near-

zero distance, other than along diagonal) indicate clusters

of object classes that form correlated logical groupings in

embedding space, such as outdoor objects (e.g. tree, bush,

fence) and outdoor environments(e.g. sky, clouds, ground).



Table 2. Scene Graph Embedding Classification
Model person tree sky grass metal wall bldg pavement road clothes mean accur

Baseline 97.1% 75.6% 85.9% 64.6% 77.6% 51.5% 30.6% 32.5% 52.3% 79.5% 48.3%

Triplet Supervision + DA 98.1% 73.1% 89.4% 70.8% 84.8% 61.9% 50.9% 59.1% 58.8% 79.5% 59.4%

Figure 3. Triplet Supervision and Data Augmentation. A t-SNE plot of the top 5 highest frequency classes in the COCO-Stuff dataset

which shows (from left to right) that as supervision and data augmentation are added, clusters representing each class are tighter and more

distinct.

Figure 4. Mean Embedding Representation. A t-SNE plot of

mean embeddings for the top 50 highest frequency classes in the

COCO-Stuff dataset. The embedding forms logical clusters of

classes that are correlated.

5. Conclusion

In the course of our scene graph embedding introspec-

tion, we have identified many key findings. We find that

Figure 5. Scene Graph Embedding Dendrogram A dendrogram

represented as distance heatmap between the mean embeddings of

top 50 highest frequency in the COCO-Stuff dataset.

introducing triplet supervision and applying data augmen-

tation significantly improves the performance of layout pre-

diction models. We understand in turn that this correlates

with improved scene embedding separability, quantified by

measuring the classification accuracy of all nodes in the

scene graph embedding. We have identified that scene



graph embedding structure, sometimes expressed as sepa-

rability, can be influenced by both method of training and

richness of scene graph representation. We find overall

there is a strong correlation between scene graph embed-

ding structure and scene layout prediction model perfor-

mance. The metrics for this kind of model (or other models

trained with scene graph embeddings) may be useful in un-

derstanding future scene-graph related tasks.
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