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Abstract

Recent research has shown that modeling the dynamic

joint features of the human body by a graph convolutional

network (GCN) is a groundbreaking approach for skeleton-

based action recognition, especially for the recognition of

the body-motion, human-object and human-human inter-

actions. Nevertheless, how to model and utilize coherent

skeleton information comprehensively is still an open prob-

lem. In order to capture the rich spatiotemporal information

and utilize features more effectively, we introduce a spatial

residual layer and a dense connection block enhanced spa-

tial temporal graph convolutional network. More specifi-

cally, our work introduces three aspects. Firstly, we extend

spatial graph convolution to spatial temporal graph convo-

lution of cross-domain residual to extract more precise and

informative spatiotemporal feature, and reduce the training

complexity by feature fusion in the, so-called, spatial resid-

ual layer. Secondly, instead of simply superimposing multi-

ple similar layers, we use dense connection to take full ad-

vantage of the global information. Thirdly, we combine the

above mentioned two components to create a spatial tem-

poral graph convolutional network (ST-GCN), referred to

as SDGCN. The proposed graph representation has a new

structure. We perform extensive experiments on two large

datasets: Kinetics and NTU-RGB+D. Our method achieves

a great improvement in performance compared to the main-

stream methods. We evaluate our method quantitatively and

qualitatively, thus proving its effectiveness.

1. Introduction

Action recognition is an important foundational work in

visual understanding. It has extremely extensive applica-

tion scenarios in automatic driving, human-computer inter-

action, crime detection and so on. Different from recogni-

tion tasks involving static pictures, video often contains a

Figure 1. Illustration of our proposed method, which integrates 2D

spatial convolution with 1D temporal convolution for spatiotempo-

ral feature representation for a skeleton-based action recognition.

The blue squares represent spatial graph convolution, and the yel-

low represent temporal convolution.

large number of frames, including many interference or re-

dundant information frames, among which there is a certain

spatiotemporal relationship. In other words, action is dy-

namic and consequently it is also manifested by a motion

feature. Action recognition in video is difficult, with many

open problems. In this paper we focus on modelling a long

sequence of video frames, and on extracting and utilizing

spatiotemporal information under the assumption that the

imaging conditions do not change rapidly over time.

For video understanding, unlike image understanding,

which only needs to pay close attention to static spatial char-

acteristics, the modeling of spatiotemporal information is

very critical. In order to incorporate spatiotemporal con-

text, different structures are required [32, 43, 2] leading to

different types of features. Among these, skeleton features

have received considerable attention [41, 26, 16, 3]. For

human-related action recognition, the skeleton is a robust

source of information. Compared to RGB images or optical

flow, the skeleton features have many advantages, such as

being easy to calibrate and understand, and being concise,

yet powerful. Clearly, if these powerful features are com-

bined with other forms of information by a suitable fusion

strategy, the action recognition accuracy may be expected



to improve even further.

How to efficiently exploit skeleton features is still an

open problem. [3] used RNNs with a pose-attention mecha-

nism to learn a spatiotemporal representation, but as is well

known, RNNs are hard to optimize, and non-Euclidean spa-

tial graph-structured data is incongruent with the input of a

simple convolutional network, as it tends to lose the relation

information among different joints, which is very crucial for

skeleton-based action recognition. The problem of combin-

ing skeleton features with the graph convolution was con-

sidered in [41, 26, 16]. It is a promissing approach to mod-

eling the non-Euclidean data. The mainstream approach is

to use the graph structure to model the joint information of

the skeleton, which can then be directly processed by graph

convolution. This method is groundbreaking, but there are

still many issues that need addressing.

Here we propose a general graph convolutional network

structure to process the skeleton features. In this way, we

capture the dependencies among joint points. Specifically,

we introduce a spatial residual layer to capture and fuse spa-

tiotemporal features. In the previous work, a spatial tempo-

ral layer included a spatial graph convolution and a temporal

convolution. But serial superposition of different convolu-

tions mixes the information of different domains, leading

to inaccurate recognition. By introducing a cross-domain

spatial residual convolution, the spatiotemporal information

can be enhanced. Furthermore, we propose a dense connec-

tion block to extract the global information. It consists of

multiple spatial residual layers. Among these layers, the

information can be passed by means of dense connections.

The benefit of adopting this approach are multifaceted [9].

The final structure developed in this paper consists of ser-

val dense blocks. To verify the effectiveness of the pro-

posed method, we test the model on two datasets: Kinet-

ics [10] and NTU-RGB+D [22]. The experimental results

prove that the cross-domain spatial residual layer and the

dense connection block in a graph convolutional network

bring notable performance gains for skeleton-based action

recognition.

The main contributions in this paper are summarized as

follows:

• We propose a cross-domain spatial residual layer

which captures spatiotemporal information effectively

and efficiently; see Fig. 2.

• We propose a dense connection block for ST-GCN to

learn global information, and to improve the robust-

ness of features; see Fig. 3.

• The spatial residual layer and the dense connec-

tion block enhanced spatial temporal graph convolu-

tional network is comparable or outperforms state-of-

art methods on two benchmarking data sets.

2. Related Work

2.1. Action Recognition.

Action recognition is a crucial but complex problem in

visual understanding. For the task of action recognition, the

mainstream works mainly focus on two aspects: feature se-

lection and model design. Around these two aspects, many

excellent methods have emerged.

Regarding features selection, RGB image is the most

commonly used feature in static visual understanding.

Clearly, it can also be used for video analysis [2, 30, 38].

In order to capture the dynamic characteristics of the video,

optical flow is widely used as a feature [32, 43, 28] to repre-

sent motion information. Optical flow methods measure the

change in pixel values in successive frames of the video.

From the correspondence between the previous frame and

the current frame, one can estimate the object motion. How-

ever, the calculation of optical flow is very time consuming,

so some methods attempt to simulate optical flow by mea-

suring image difference. Image difference can be obtained

from adjacent frames, or directly from the video encoding

information [42, 36, 25], but compared to optical flow, it

is not fine enough and contains noise. Other more effec-

tive features are being sought. Recently, due to its char-

acteristics, the skeleton feature has attracted the attention

of the research community. As some features complement

each other in the frame work of a multi-stream network, the

accuracy of recognition can further be improved by fusion

strategies [32, 43].

For the model design, the structures used for action

recognition can be divided into 2D, 3D network and LSTM.

Representatives of 2D networks include TSN [32], TRN

[43], etc.. The 3D variations include I3D [2], R(2+1)D [30],

S3D [38], etc.. However, for a 2D network, it is difficult to

extract the information in a time series. Usually, the in-

formation is often supplemented by algorithm design and

using multiple features [32, 43]; As a 3D network learns

the information in space and time at the same time, but the

optimization is complicated, and the hardware requirements

are challenging. Usually, a lightweight 3D convolution can

alleviate this problem to a certain degree [30, 38]. LSTM

can also capture the spatiotemporal information [39, 26],

but it is hard to train and optimize. Furthermore, it can not

capture the graph structure of some specific datasets. Gen-

erally speaking, the design of the model and the selection

of features are closely related [40, 15]. For a particular fea-

ture, we should select the appropriate model. Accordingly, a

spatial-temporal graph convolutional network has been pro-

posed for skeleton base action recognition [41, 37]. It has

been shown that by optimizing the graph model, the perfor-

mance can be improved.



2.2. Graph Convolutional Network.

Recently, the graph convolutional network (GCN) has re-

ceived a lot of attention and has been the subject of in-depth

research. GCN is mainly used to model non-Euclidean spa-

tial graph-structured data. The topological graph adopted

here uses vertices and edges to establish relationships, in

which the number of neighbor nodes is usually not fixed.

Through an iterative update of the data during the con-

volution process, the edges of the graph capture the rela-

tionship and structural information between the adjacent

nodes. GCN is currently being applied to multiple tasks,

such as clustering [35], detection [21], situation recognition

[17], point clouds data analysis [7, 34], action recognition

[41, 26, 37, 16], and so on.

The essential task of GCN is to extract the spatial fea-

tures of a topological graph. The spatial domain and the

spectral domain are the two main implementations used in

the architecture. The spatial GCN [20] first selects adjacent

points, and then the subgraphs are normalized so that they

can directly be subject of a convolution operation. For the

spectral GCN, which defines the Laplace transform and the

Laplace inverse transform on the original data matrix, we

can compute its Fourier transform by applying the convolu-

tion theorem to the graph. Accordingly, the Fourier trans-

form of the convolution of two functions is the product of

the Fourier transforms of the two functions. As an exam-

ple of this approach, [13] introduced the spectral GCN for

semi-supervised classification. In this work, we adopt GCN

to model the relation among adjacent joints, which can be

considered as skeleton features. It is an important method

for recognizing human actions and interactions. In order to

extract the spatiotemporal information of the skeleton fea-

tures, and at the same time, keep the calculation efficient,

we concatenate a temporal convolution after each spatial

graph convolution. This structure is called a spatial tem-

poral graph convolution network, abbreviated as ST-GCN.

3. Background

Before describing our work, in this section, we first in-

troduce the basic concepts of spatial temporal graph convo-

lutional network for skeleton-based action recognition.

3.1. Graph definition

In a graph G = (V,E), V is the set of points, E is the

set of edges which connect the adjacent points. The graph

G represents the entire data distribution. The information

about each data is represented by a specific point in the

graph, and each edge between two points in the graph rep-

resents correlation between the data points. A is the adja-

cency matrix of the graph. If the i-th and the j-th points are

connected, Ai,j = 1; Otherwise,Ai,j = 0. The normalized

adjacency matrix of G is defined as Ã = D−1/2AD−1/2,

where D is the degree matrix of the graph , Di,i =
∑

j Ai,j .

For the skeleton data X ∈ R
n×d×T , the entire human

skeleton constitutes a graph structure, where the joints and

the bones of skeleton are points and edges of the graph. In

order to model group operations, we define the feature ma-

trix and adjacency matrix. The feature matrix can be ex-

pressed as the coordinates information of the joints. During

implementation, n is the number of joints in one frame, d is

the dimension of the joint spatial coordinates, which can be

2D or 3D coordinates ((x, y) or (x, y, z)), and T denotes the

number of frames in one video. Xt = X:,:,t ∈ R
n×d is the

joint position information at the t-th frame, Xi
t = Xi:,:,t ∈

R
d is the joint position information of the i-th joint at t-th

frame.

3.2. Spatial temporal graph convolution network

Spatial temporal graph convolution network includes

many GCN layers. Each layer consists of a spatial convolu-

tion and a temporal convolution operation, which model the

spatiotemporal feature. They can be seen as 2D convolution

and 1D convolution respectively. This form is similar to the

R(2+1)D [30] and S3D [38] network, which decouples the

3D convolution into 2D spatial convolution and 1D tem-

poral convolution. In this way, we can not only reduce the

computational complexity, but also reduce the entanglement

of spatial and temporal information. Thus the spatiotempo-

ral information can be effectively extracted.

Let X ∈ R
n×din be the input feature of the joints,

Y ∈ R
n×dout be the output feature obtained by the graph

convolution operation, where n is the number of data points,

and din and dout are the input and output feature dimension-

ality. Under normal circumstances, din = dout , the graph

convolution operation is generally computed as:

Y = ÃX, (1)

Ã is the normalized adjacency matrix, which can be com-

puted as Ã = D−1/2AD−1/2.

The attention mechanism can also be applied to this ex-

pression, and for possible changes in dimensions, an auxil-

iary matrix is needed. For example,

Y = M ◦ ÃXW, (2)

where ◦ is the Hadamard product, M ∈ R
n×n and W ∈

R
n×dout are trainable weights to indicate the importance of

edges and points of the graph respectively, which can be

seen as a simple attention mechanism. W also plays the

role of dimensional transformation.

A complete spatial temporal convolution module in-

cludes spatial convolution and temporal convolution. Spa-

tial convolution is achieved by the above-mentioned graph

convolution. For the temporal convolution, since the skele-

ton structure in each frame is fixed, that is, the selected joint
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Figure 2. Spatial residual ST-GCN layer. The lower part is the ST-GCN layer, which consists of spatial graph convolution and temporal

convolution, and the upper is a spatial graph convolution. Just like in the ResNet, the input of the residual connection is the same as

ST-GCN layer, and the output obtained from the residual connection is then added to the output of the ST-GCN layer, the result of the

addition is the final output.

points are invariable, we can use the traditional convolution

for the temporal convolution operation. Analogous to the

convolution operation in the image domain, the feature map

here usually corresponds to the feature map X ∈ R
C×W×H

(C,W,H are the number of channels, width and height re-

spectively) in an image, which is X ∈ R
D×N×T (D,N, T

are the joint feature dimensionality, the number of joint

points and the number of frames respectively). In temporal

convolution, temporal features are obtained by convolving

the same joints of different frames..

4. New Structure of ST-GCN

In this section, we introduce our main work: the spatial

residual layer and the dense connection block enhanced spa-

tial temporal graph convolutional network. The proposed

structure, SDGCN, is described in detail.

4.1. Spatial Residual Layer (SRL)

The concept of residual connection was first proposed in

ResNet [8], by introducing a residual structure, where the

input node information is passed through an identity map-

ping. The idea of residual mapping is to remove the same

main part, thus highlight minor changes. By introducing

residual mapping, the entire structure is more sensitive to

changes in output. The residual layer can be regarded as an

amplifier, subject to reasonable settings, the sensitive infor-

mation is amplified, so the residual connection only needs

to care about what it needs to learn.

The GCN with cross domain spatial residual connection,

can be regarded as a spatial residual ST-GCN layer, abbre-

viated as ST-GCN, with SRL, as illustrated in Fig. 2. We

introduce a 2D spatial residual structure between the input

and output of the spatial temporal GCN layer, to learn the

spatiotemporal information more efficiently. Let the tempo-

ral convolution kernel be denoted by B, the input feature of

this layer by Xin, and the output feature by Y . Other sym-

bols are the same as aforementioned. Then we can write

Y = B(M ◦ ÃXW ) +M ◦ ÃXW. (3)

It is desirable to decompose space-time convolution to

avoid the prohibitive cost of the calculation, but making it a

simple tandem structure lacks the capability to extract joint

spatiotemporal features. In order to overcome this prob-

lem, we incorporate the residual connection into our net-

work. Unlike in the previous works [8, 5], the spatial resid-

ual connection is cross domain. The spatial temporal fusion

network is composed of a spatial graph convolution branch

and a spatial temporal convolution branch. The identity

mapping is the lower stream in the figure. We introduce

this cross domain residual connection, acknowledging that

video usually contains a lot of redundancy information in

the time dimension, which needs to be suppressed. As the

spatiotemporal information is different from both the spa-

tial feature, and the temporal feature, the simple solution

of superimposing the two convolutions to produce the final

result is not very effective. In contrast, the residual con-

nection can help to solve this problem. Unlike the original

ResNet, the identity map here is composed of a graph con-

volution, that can also be seen as a special two-stream struc-

ture, where one stream learns static features and the other

learns spatiotemporal features. By the means of the 2D spa-

tial graph convolution, the static spatial feature can be ex-

tracted. Thanks to the residual connection, the residual map

will pay attention to the static spatial information. How-

ever, the original layer only needs to attach importance to

spatiotemporal information. This design makes GCN learn

the important information from video more effectively.

4.2. Dense Connection Block (DCB)

DenseNet [9] is a groundbreaking concept. Its struc-

ture is very simple, consisting of several dense connection

blocks. In each block, the feature map from each layer is

concatenated with all previous features of the same scale.

By introducing a dense connection, the features of each

layer will be reused. On one hand, using a small amount

of computation we obtain a much richer feature map. On

the other hand, the reused feature is more robust, so that the

dependence between different layers is reduced. However,

the excessive GPU memory usage of Dense Connection is
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Figure 3. Dense connection block. Each dense connection block consists of several spatial residual layers as described in the previous

section. Here, except the first layer or the last layer, the size of the input feature of each layer is exactly the same as the output size of the

previous layer, as in the dense block in [9]. Therefore, in addition to the normal sequential connection, the four layers also have three dense

connections, as shown in the picture.

a serious problem. Here we introduce a dense connection

into the spatial temporal graph convolutional network at the

same time, while keeping the structural efficiency.

The ST-GCN with dense connection blocks, which is re-

ferred to as ST-GCN with DCB, is illustrated in Fig. 3. In

each dense connection block, each layer has been connected

to all subsequent layers. Let the lth layer receive all features

from its previous layers, x0, x1, ..., xl−1 as input features of

this layer. Let C be the SRL operation. Then for the output

of lth layer, we have

xl = C([x0, x1, ..., xl−1]), (4)

where [x0, x1, ..., xl−1] is the concatenation of all the fea-

ture outputs from layers 0, 1, . . . , l− 1. After concatenating

them all together in a channel, the final feature is used as

the input to the xl layer. All these operations together make

up a dense connection block. Through this block, most in-

formation exacted by the previous layers can be reused in

later layers. Just as the DenseNet, this block allows the en-

tire network to take full advantage of global information.

Above all, from the perspective of features, through the fea-

ture reuse and bypass settings, the number of parameters of

the network is greatly reduced, and the vanishing gradient

problem is alleviated to some extent. On the other hand, the

input of each layer includes not only the output from the

previous layer, but also other preceding layers. This also

improves the robustness of the network.

4.3. Model Architecture

By introducing the spatial residual layer and the dense

connection block, we create a generic spatial temporal

GCN, as can be seen from Fig. 4.

Here we combine the spatial residual layer and dense

connection block together to make the final architecture,

denoted as SDGCN. Note that several spatial residual lay-

ers make up a block. We introduce the dense connection

to connect these layers in each block. The entire network

structure consists of 3 dense connection blocks. In each

block, the settings of channel size allow us to make full use

of dense connections. We adopt the original ST-GCN’s set-

tings. This ensures that the proposed method can be applied

to the commonly used ST-GCN structure. In order to ex-

plore the final impact of dense connections on the model,

we set up the above two frameworks, as shown in the Fig. 4.

The right model follows a standard setup, where each block

consists of four layers and three dense connections. Com-

pared with that, except the first block, each block in the left

model has a reduced number of layers. The detailed com-

parison is carried out in the experimental section. Through

this design, on the one hand we try to explore the impact

of dense connections on the model, on the other hand, we

try to balance the amount of computation and the beneficial

impact as much as possible.

5. Experiments

5.1. Datasets

Kinetics. Kinetics [10] is a very large action recogni-

tion dataset collected from YouTube, which contains 400

classes, over 240K training samples and 20K validation

samples, which have been trimmed. Here we obtain the

skeleton data of Kinetics by OpenPose [1] toolbox. Specif-

ically, we first extract frames at video rate (30 frames per

second), and resize them to 340×256. We then enter the

resized data into OpenPose. The output data of each frame

includes two-dimensional coordinates of 18 joint points and

a confidence score. If the number of people in a frame is

more than two, we choose two people with the highest av-

erage confidence score for the joint points.

NTU-RGB+D. NTU-RGB+D [22] contains 56,800 ac-

tion samples, including three categories: daily actions, mu-

tual actions and medical conditions. These samples are

captured by three cameras. The data have 4 modalities:

RGB videos, depth map sequences, 3D skeleton and in-

frared videos. Here we focus on the skeleton data set. The

3D skeleton includes three-dimensional coordinates of the

spatial locations of the 25 joint points marked in each frame

of the video. Two evaluation standards are recommended

for this data set: Cross–Subject and Cross-View. For Cross-
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Figure 4. Example Model Architecture. Left: SDGCN based on

DCB1. We follow the standard ST-GCN model to design our

model. We do not introduce additional structural elements. Right:

SDGCN based on DCB2. Compared to left, in order to fully ex-

plore the role of dense connections, we introduce more layers and

dense connections. We conduct a detailed analysis of their effect

in the experimental section. As shown in the figure, for the sake of

brevity, SRL is represented as a hollow circle.

Subject, there are 40,320 samples including 20 subjects,

which make up a training set. The rest are used as a test

set; For Cross-View, there are 37,920 training samples and

18,960 test samples. The samples captured by the first two

cameras form the training set. The rest serve as test sam-

ples. We conduct experiments on these sets separately.

Methods Top-1 Top-5

ST-GCN 30.7 52.8

ST-GCN with SRL 33.31 55.9

ST-GCN with DCB1 32.21 54.64

ST-GCN with DCB2 33.18 55.99

Table 1. Ablation study on the Kinetics data set. The SRL means

spatial residual layer, DCB means dense connection block (DCB1

and DCB2), as detailed in Fig. 4 . We report TOP-1 and TOP-5

accuracies on the Kinetics data set.

Methods Cross Subject Cross View

ST-GCN 81.5 88.3

ST-GCN with SRL 83.25 91.06

ST-GCN with DCB 83.04 90.33

Table 2. Ablation study on the NTU-RGB+D data set. We report

the accuracies on the Cross-Subject and Cross-View data. Other

symbols are the same as Tab. 1. Only the TOP-1 accuracy is re-

ported.

5.2. Implementation Details

We use the Kinetics and NTU-RGB+D data sets to com-

pare the proposed algorithms with two baseline methods:

ST-GCN [41], and 2s-AGCN [24]. The main difference be-

tween those models is in the modeling of the graph. The

ST-GCN introduces a spatial temporal convolutional net-

work to model the spatiotemporal information of skeleton.

2s-AGCN exploits an adaptive mechanism capable of cap-

turing multi-scale joint information and a two stream pro-

cessing method based on bone flow and joint flow, which

is inspired by Non-Local network [33] and two-stream net-

work [28]. Even though they are different in terms of the

graph model, and some other aspects, their main framework

is still the superposition of separate layers. The feature scale

of the multiple adjacent layers is the same, which contrasts

with the versatility of our method. In the experiments, if

there is no special mention, we use the original structure.

We did all the experiments on two GeForce RTX2080Ti.

5.3. Ablation Studies

In this section, we perform a detailed experimental com-

parison on Kinetics and NTU-RGB+D to analysis our meth-

ods.

Spatial residual layer. We first explore the effective-

ness of the cross-domain spatial residual layer, using ST-

GCN [41] as a baseline. As described in Section 4.1, com-

pared with the original structure, for each spatial temporal

structure, which consist of spatial graph convolution oper-

ation and temporal convolution in series, we introduce a

spatial residual connection to the original network, abbre-

viated as SRL, and keep other conditions unchanged. Re-

ferring to Tab. 1 2, we find that compared with the baseline



Methods Top-1 Top-5

Feature Enc. [6] 14.9 25.8

Deep LSTM [22] 16.4 35.3

TCN [12] 20.3 40.4

ST-GCN [41] 30.7 52.8

AS-GCN [16] 34.8 56.5

Js-AGCN [24] 35.1 57.1

Bs-AGCN [24] 33.3 55.7

2s-AGCN [24] 36.1 58.7

DGNN [23] 36.9 59.6

SDGCN (ours) 34.06 56.33

Js-SDGCN (ours) 35.25 58.21

Bs-SDGCN (ours) 35.35 58.16

2s-SDGCN (ours) 37.35 60.38

Table 3. Comparison with the state of the art methods on Kinet-

ics. ’Js’ and ’Bs’ mean the joint-based and bone-based stream

networks, ’2s’ is the final fusion result.

method, ST-GCN with SRL exhibits a clear improvement.

On Kinetics, the performance has increased by 2.61%, and

for NTU-RGB+D, the performance has increased by 1.75%

and 2.76% for Cross-Subject and Cross-View respectively.

This verifies the merits of our SRL structure .

Dense connection block. We also evaluated the perfor-

mance of the Dense connection block of our network. For

the details of the design, the reader can refer to Section 4.2.

We call it DCB for short. Dense connection is a very im-

portant structure, which has been applied in many differ-

ent areas. Based on a previous design, we build ST-GCN

with DCB. The results achieved with this enhancement are

listed in Tab. 1 2. Note, there are two dense blocks, DCB1

and DCB2, as introduced in the previous section. DCB1 is

based on the original structure, which consists of 10 lay-

ers. In order to demonstrate the role of dense connection,

we designed DCB2, which contains 12 layers. In Tab. 1,

the performance of ST-GCN with DCB1 has increased by

1.51%, and with DCB2 by 2.48%. Clearly, the dense con-

nection contributes a lot to our network. However, with the

increase of dense connections, the number of network pa-

rameters increases rapidly. In addition, the blind cumula-

tive network complexity may cause model over-fitting on

certain data sets. So in the following experiment, we do not

make a distinction, but adopt the DCB1 structure as DCB.

As shown in Tab. 2, the performance of ST-GCN with DCB

has reached 83.04% in the Cross-Subject and 90.33% in the

Cross-View tests.

5.4. Comparison with the State of the Art

Here we compare our method with the state of the art

methods. For a comprehensive comparison, we choose to

relate our methods to two important baselines: ST-GCN

[41] and 2s-AGCN [24]. The first baseline is the ground-

Methods Cross Subject Cross View

Lie Group [31] 50.1 52.8

H-RNN [4] 59.1 64.0

Deep LSTM [22] 60.7 67.3

PA-LSTM [22] 62.9 70.3

ST-LSTM+TS [18] 69.2 77.7

TCN [12] 74.3 83.1

Visualize CNN [19] 76.0 82.6

C-CNN+MTLN [11] 79.6 84.8

ST-GCN [41] 81.5 88.3

DPRL [29] 83.5 89.8

SR-TSL [27] 84.8 92.4

HCN [14] 86.5 91.1

AS-GCN [16] 86.8 94.2

Js-AGCN [24] - 93.7

Bs-AGCN [24] - 93.2

2s-AGCN [24] 88.5 95.1

DGNN [23] 89.9 96.1

SDGCN (ours) 84.04 91.43

Js-SDGCN (ours) 87.54 94.34

Bs-SDGCN (ours) 88.10 94.54

2s-SDGCN (ours) 89.58 95.74

Table 4. Comparison with the state of the art methods on NTU-

RGB+D. Other symbols are the same as Tab. 3.

breaking work on skeleton based action recognition, and 2s-

AGCN is the latest best performing method. We combine

the SRL and DCB together to report the final result. The fi-

nal model is denoted as SDGCN. As shown in the Tab. 3 4,

compared to the ST-GCN based method, our method has

improved the accuracy to 34.06% on Kinetics, 84.04% and

91.43% in the Cross-Subject and the Cross-View tests re-

spectively. Compared with the original method, the im-

provements achieved are 3.36%, 2.54% and 2.1% respec-

tively, which have surpassed most methods. When we

choose 2s-AGCN as the baseline, the final performance is

further improved. On Kinetics, the proposed method has

achieved the accuracy of 37.35%. On NTU-RGB+D, the

accuracy is 89.58% and 95.74% in the Cross-Subject and

the Cross-View data respectively. The model developed is

superior to most mainstream approaches.

6. Conclusion

We have proposed a unified spatial temporal graph con-

volution network framework, referred to as SDGCN, to im-

prove the performance of skeleton based action recognition.

By introducing a cross-domain spatial graph residual layer

and a dense connection block, our method fully utilizes spa-

tiotemporal information. It enhances the effectiveness of

spatiotemporal information processing. It can easily be in-

corporated in a mainstream spatial temporal graph network.
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