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Abstract

Current deep domain adaptation methods used in com-

puter vision have mainly focused on learning discrimi-

native and domain-invariant features across different do-

mains. In this paper, we present a novel approach that

bridges the domain gap by projecting the source and target

domains into a common association space through an un-

supervised “cross-grafted representation stacking” (CGRS)

mechanism. Specifically, we construct variational auto-

encoders (VAE) for the two domains, and form bidirectional

associations by cross-grafting the VAEs’ decoder stacks.

Furthermore, generative adversarial networks (GAN) are

employed for domain adaptation (DA), mapping the tar-

get domain data to the known label space of the source

domain. The overall adaptation process hence consists of

three phases: feature representation learning by VAEs, as-

sociation generation, and association alignment by GANs.

Experimental results demonstrate that our CGRS-DA ap-

proach outperforms the state-of-the-art on a number of un-

supervised domain adaptation benchmarks.

1. Introduction

In machine learning, domain adaptation aims to transfer

knowledge learned previously from one or more “source”

tasks to a new but related “target” domain. As a special

form of transfer learning, it helps to overcome the lack

of labelled data in computer vision tasks by utilizing la-

belled data of the source domain and trying to automat-

ically annotate unlabelled data in the target domain [26].

It may also be used to recognize unfamiliar objects in

a dynamically changing environment in robotics. There-

fore, in recent years domain adaptation, especially unsuper-

vised domain adaptation, has become an appealing research

topic [3, 2, 23, 11, 36, 30, 13].

For domain adaptation to occur, it is assumed that the

source and target domains are located in the same label

space, but there is a domain bias. The challenge is to extract

the domain-invariant representations from the data, and find

an effective mechanism to overcome the domain bias and

map the unlabelled targets to the label space.

To address the challenge, we propose to recruit different

levels of deep unsupervised receptive fields from both the

source and target domains and construct grafted represen-

tations for domain adaptation. Our approach is inspired by

UNIT [20], but we generate the cross-domain association

differently, employing grafted deep network layers. Specif-

ically, we construct two parallel variational auto-encoders

(VAEs) [16] to extract the latent encodings of the source

and target. Then we recruit the different parts of the de-

coders to construct some cross-grafted representation stacks

(CGRS), which produces bi-directional cross associations

between the two domains. Furthermore, generative adver-

sarial networks (GANs) [10] are employed to carry out as-

sociation alignment, so that associations between the source

and target contribute to accurate classification.

Due to these treatments our proposed CGRS-DA frame-

work gives a promising direction for domain adaptation.

Building cross associations between the domains, feature

learning is hence achieved across domains, reducing do-

main dependency and increasing domain-invariance, while

adversarial networks further push feature representations

away from the differences between domains, contributing

to robust domain adaptation performance. Also, the cross-

grafting process is entirely symmetric, leading to similar

performance regardless of the adaptation direction, as re-

vealed by our experiment results. Another advantage re-

vealed by our experiments is that the CGRS is transferable

across different tasks, which is an attractive trait for devel-

oping practical applications.

The rest of the paper is organized as follows. In Section

2, we will briefly review some related work. In Section 3,

we outline the overall structure of our proposed model, in-

troduce the CGRS scheme, and present the learning metrics

used by the model. The experimental results are presented

and discussed in Section 4. We conclude the paper in Sec-



tion 5, indicating our plan of future work.

2. Related Work

There are existing works that utilize intermediate feature

representations to transfer previously learned knowledge to

the target tasks. Self-taught learning [27] uses unsupervised

learning trained on natural images to construct a sparse cod-

ing space, to which targets are projected to complete the

recognition. In geodesic flow kernel [9, 12], the source and

target datasets are embedded in a Grassman manifold, and a

geodesic flow is constructed between the domains. A num-

ber of feature subspaces are sampled along the geodesic

flow, and a kernel can be defined on the incremental feature

vector, allowing a classifier to be built for the target dataset.

DLID [6] uses deep sparse learning to extract the inter-

polated representation from a set of intermediate datasets

constructed by combining the source and target datasets us-

ing progressively varying proportions, and the features from

these intermediates are concatenated to train a classifier.

Recent works have shown that deep networks involved in

domain adaptation have achieved impressive performance

due to their strong feature learning capacity. This provides

a considerable improvement for some cross-domain recog-

nition tasks [34, 22, 31, 24, 28, 20, 5, 8]. A number of

deep domain adaptation models have applied the adversarial

training strategy [32, 33, 7, 20, 4, 19, 21]. DANN [7] em-

ploys a gradient reversal layer between the feature layer and

the domain discriminator, causing feature representation to

anti-learn the domain difference and hence adapt well to

the target domain. ADDA [32] firstly trains a convolutional

based classifier using source dataset. And an additional fea-

tures extractor is built for target. Then a discriminator is uti-

lized to confuse the features extracted by features extractor

of source and target. Finally the target encoder is combined

with the source classifier to achieve the adaptation.

Using generative adversarial networks (GAN), the Pix-

elDA framework [4] generates synthetic images from

source-domain images that are mapped to the target domain.

A task classifier then is trained by the source and synthetic

images using the source labels. UNIT [20] introduces an

unsupervised image-to-image translation framework based

on couple of variational auto-encoders (VAEs) and GANs.

To achieve this, a pair of corresponding images in different

domains are mapped to a shared latent representation space.

Inspired by these previous works, our proposed CGRS-

DA framework combines two ideas: constructing cross-

domain feature representations, and employing adversar-

ial networks for association alignment. Specifically, it in-

corporates VAEs to learn feature representations, a cross-

grafting step to generate bidirectional cross-domain asso-

ciations, and a generative adversarial approach that carries

out classification on source-target associations. A detailed

description of our framework is given next.

3. The CGRS-DA Framework

3.1. Model Description

For domain adaptation, we consider two domains: one

is a source domain Ds, which is constructed by ns images

Xs = {xxxs
i}

ns

i=1 and their correspond labels yyys = {ysi }
ns

i=1;

the other is a target domain Dt = {Xt, yyyt}, where Xt =
{xxxt

i}
nt

i=1 and their labels yyyt = {yti}
nt

i=1 are not available

during adaptation. Our goal is to learn some representa-

tions bearing similarity to both domains, i.e. some joint dis-

tribution between source distribution P and target’s Q as a

bridge for the adaptation.

Our framework is shown in Figure 1, split into five mod-

ular sub-tasks based on the ideas outlined as above. Firstly,

in module A, a pair of VAEs are implemented by CNNs.

Both the encoders and decoders are divided into high and

low level stacks. The high-level layers of the encoders are

shared between domains. We assume that they have the

same latent space with normal prior N (0, I).

Secondly, the latent encodings pass through the cross-

grafted stacks, forming cross-domain associations that are

aligned to the association space. In module B, we construct

two parallel CGRS by grafting the decoder stacks of the

source and the target. Therefore, the cross-domain associ-

ation images (Xst
s ,Xst

t ,Xts
s ,Xts

t ) are generated when the

latent encodings from different domains (indicated by sub-

scripts) pass through the CGRS (order indicated by super-

scripts). In the domain alignment module C, G1 and G2 are

two adversarial generators for associations. They are used

to generate the target association adversarial to the source’s

association, and vice versa. The situation when the source

associations works as the “real player” for the adversarial

generation is shown in Figure 11. Here the adversarials of

the corresponding target associations are X̃st
t , and X̃ts

t . The

discriminators D1, D2 are used to distinguish associations

of Xst
s from X̃st

t , and Xts
s from X̃ts

t respectively.

Finally, LG and LT in modules D and E are the learning

metrics for domain confusion and task classification. Mod-

ule C combines the learning metric modules to align the

label space of the source and target images, and complete

the adaptation. The training process adopts standard back-

propagation. In contrast to the conventional domain adap-

tation framework in which the classifier input is {Xs, yyys}
and output is {Xt, ŷyyt}, our model’s classifier is trained by

{Xst
s , yyys}, {Xts

s , yyys} and tested by {X̃st
t , yyyt}, {X̃ts

t , yyyt}.

In short, the associations of the source data are used for

training, and the adversarial generation of the target data

are used in testing.

1The arrangement can be flexible, i.e. it also works if the target associ-

ation is used as the real player.



Figure 1: Overview of the the proposed model. There are 5 modules in it. In module A, the high-level layers of encoders E
s

h, Et

h are

shared (demonstrated by the dashed line). The outputs of Ds

h and D
t

h are the high-level representations of the source and target, whereas

D
s

l , Dt

l are the low-level ones. The X
st
s , Xts

t , Xts
s , Xts

t in module B are the association images reproduced by CGRS (Dst ≡ [Ds

h ◦Dt

l ]
and D

ts ≡ [Dt

h ◦D
s

l ]) from latent encodings. In module C, G1 and G2 are adversarial generators, D1, D2 are discriminators. LG and LT

are learning metrics for the domain and task respectively. Best viewed in colors.

3.2. Learning

To train our model, we jointly solve the learning prob-

lems of the subnetworks.

First, we learn the representations of the source and tar-

get domains from encoders and decoders. Here, we min-

imize the within-domain VAEs loss functions. The loss

function of our VAEs consists of both reconstruction error

Lrec and prior regularization Lprior:

LVAEs = Lrec + Lprior, (1)

given by

Lrec = −λ1{Eqs(zzzs|xxxs)[log ps(xxxs|zzzs)]

+ Eqt(zzzt|xxxt)[log pt(xxxt|zzzt)]},
(2)

and

Lprior = λ2{DKL(qs(zzzs|xxxs)||p(zzz))

+DKL(qt(zzzt|xxxt)||p(zzz))},
(3)

where DKL is the Kullback-Leibler divergence, λ1 and λ2

are the trade-off hyper-parameters to control the priorities

of variational encoding and reconstruction.

To align the source and target domains, we use the adver-

sarial training for the association spaces Pst and Pts. The

adversarial objective of Pst is

Lst
G = λ0{Exs,zs [logD1(X

st
s )]

+ Ext,zt [log(1−D1(G1(X
st
t ))]},

(4)

where D1(·) is the probability function assigned by the dis-

criminator network, which tries to distinguish the generated

source-based associations by G1(·) from the target-based

ones. For Pts, the adversarial objective Lts
G is similarly de-

fined. At last, the overall adversarial generative cost func-

tion is:

LG = Lst
G + Lts

G . (5)

For the training stability, we introduce a content similarity

metric for the associations [4, 14]. Both the L1 and L2
penalty can be used to regularize the associations, such as

MSE, pairwise MSE, and Huber loss. Here we simply use

MSE. The MSE loss for associations Xst is given as fol-

lows:

Lst
s = EXst(||Xst

s −Xst
t ||22) (6)

and for Xts, Lts
s has a similar style. So the overall content

objective for associations is:

Ls = λ3(L
st
s + Lts

s ). (7)

For classification, we use a typical soft-max cross-entropy

loss:

LT = E[−yT
s log Ts(X

st
s )− yT

s log Ts(X
ts
s )], (8)

where ys is the class label for source Xs, and Ts is the task

classifier. Finally, the overall loss function of our model is:

L∗ = min
E,D,G

max
D1,D2

(LVAEs + LG + Ls + LT ). (9)

We solve this minimax optimization by three alternating

steps. First, the latent encodings are learned by the self-

mapped process, which updates (Es, Et, Ds, Dt). Then,



Figure 2: Examples of the Datasets used for Experiments.

we apply a gradient ascent step to update two discrimina-

tors D1, D2 and the classifier T . Finally, a gradient descent

step is applied to update (Es, Et, G1, G2).

4. Experiments and Results

4.1. Datasets and Adaptation Scenarios

We use six popular datasets to construct four domain

adaptation scenarios:

MNIST ⇄ MNIST-M: This is a scenario where the image

content is the same, but the target data are polluted by noise.

The MNIST handwritten dataset [18] has a training set of

60,000 binary images, and a test set of 10,000. There are 10

classes in the dataset. MNIST-M [7] is a modified version

of MNIST, with random RGB backgrounds cropped from

the Berkeley Segmentation Dataset2. In our experiments,

we use the standard split of the dataset.

MNIST ⇄ USPS: For this scenario, source and target do-

mains have different contents but the same background.

USPS is a handwritten zip digits dataset [17]. It contains

9298 binary images (16 × 16), 7291 of which are used as

the training set, while the remaining 2007 are used as the

test set. The USPS samples are resized to 28×28, the same

as MNIST.

Fashion ⇄ Fashion-M: Fashion-MNIST [35] contains

60,000 images for training, and 10,000 for testing. All the

images are grayscale by 28×28 in size.The samples are col-

lected from 10 fashion categories There are some complex

textures in the images. In addition, following the protocol

in [7], we add random noise to the Fashion images to gen-

erate the Fashion-M dataset.

MNIST ⇄ M-Digits In this scenario, we design a multi-

digits dataset to evaluate the proposed model, denoted as

M-Digits. The MNIST digits are cropped first, and then

are randomly selected, combined and randomly aligned in a

new image, limited to 3 digits maximum. The label for the

new image is decided by the central digit. Finally, the new

dataset is resized to 28× 28.

4.2. Implementation Details

All the models are implemented using TensorFlow [1]

and are trained with Mini-Batch Gradient Descent using the

Adam optimizer [15]. The initial learning rate is 0.0002.

2URL https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

Then it adopts an annealing method, with a decay of 0.95

after every 20,000 mini-batch steps. The mini-batch size for

both the source and target domains is 64 samples, and the

input images are rescaled to [-1, 1]. The hyper-parameters

are λ0 = 1, λ1 = 10, λ2 = 0.01, λ3 = 1.

In our implementation, the latent space is sampled from

a normal distribution N (0, I), and is achieved by the con-

volution encoders. The transpose convolution [37] is used

in the decoder to build the reconstruction image space. A

similar structure to that of [20] is used, but we modify the

padding strategy to ‘same’ for convolution layers. For sake

of convenience in experiments, we add another 32-kernel

layer before the last layer in the decoders. The stride is 2

for down-sampling in the encoders, and their counterpart in

decoders is also 2 so as to get the same dimensionality of the

original image. The encoders for source and target domains

share their high-level layers. We add batch normalization

between each layer in the encoders and the decoders. The

CGRS of associations is the composition of different levels

of the source and target representations. The stride step is 1

for all the dimensions in the adversarial generator, and the

kernel is 3 × 3. This adopts the structure of PixelDA [4],

which uses a ResNet architecture. The discriminator con-

fuses the domains, and also plays the role of a task classifier

for the label space learning. It follows the design as of [20].

However, we do not share the layers of discriminators of

Xst and Xts channels. Also, we replace the max-pooling

with a stride of 2× 2 steps.

4.3. Results

4.3.1 Quantitative Results

Now we report the classification performance of our pro-

posed model. During the experiments, associations Xst
s and

Xts
t are used to train the classifier, and the adversarial gen-

eration of Xst
t and Xts

t are used for testing. The accuracy

of the target domain classification after domain adaptation

is listed in Table 1, presenting the result of 8 methods (4 ver-

sions of our model, and 4 state-of-the-art methods) across 4

tasks (each in two directions). Our proposed model out-

performs the state-of-the-art in most of the scenarios, es-

pecially when content similarity is considered (denoted by

CGRS-DA). Also, it can be seen that the adaptation per-

formance is usually asymmetric for the methods in com-

parison, e.g. the accuracies for MNIST→M-Digits and M-

Digits→MNIST are quite different for DANN and PixelDA.

The CGRS-DA models, however, perform almost equally

well on both directions for these adaptation tasks.

For MNIST⇄MNIST-M and MNIST⇄USPS, the mean

classification accuracy nearly reaches the upper bound, sug-

gesting these are easier tasks. On the other hand, we can see

the adaptation task between Fashion and Fashion-M is more

difficult than others. For this task, our method again not

only achieves the best performance but also demonstrates



Table 1: Mean classification accuracy comparison. The ”source only” row is the accuracy for target without domain adaptation training

only on the source. And the ”target only” is the accuracy of the full adaptation training on the target. For each source-target task the best

performance is in bold.

Source MNIST MNIST-M MNIST USPS MNIST M-Digits Fashion Fashion-M

Target MNIST-M MNIST USPS MNIST M-Digits MNIST Fashion-M Fashion

Source Only 0.561 0.633 0.634 0.625 0.603 0.651 0.527 0.612

GtA [29] - - 0.953 0.908 - - - -

DANN [7] 0.766 0.851 0.774 0.833 0.864 0.920 0.604 0.822

PixelDA [4] 0.982 0.922 0.959 0.942 0.734 0.913 0.805 0.762

UNIT [20] 0.920 0.932 0.960 0.951 0.903 0.910 0.796 0.805

CGRS-DA-noC (Xst) 0.821 0.935 0.946 0.938 0.895 0.902 0.735 0.805

CGRS-DA-noC (Xts) 0.923 0.840 0.902 0.930 0.853 0.851 0.792 0.760

CGRS-DA (Xst) 0.890 0.983 0.961 0.956 0.916 0.923 0.766 0.825

CGRS-DA (Xts) 0.983 0.871 0.943 0.953 0.883 0.892 0.813 0.811

Target Only 0.983 0.985 0.980 0.985 0.982 0.985 0.920 0.942

(a) MNIST → MNIST-M (b) Fashion → Fashion-M

Figure 3: The visualization of association generations. For each scenario, the leftmost column is the source and its association, and the

rightmost is for target. During the experiments, the associations of source are real player. The adversarial generations for target associations

are in the middle column.

balanced performance in two directions.

4.3.2 Qualitative Results

Since our model adopts a generative approach, we can have

direct visual evaluation of the associations generated by

CGRS. The generative associations obtained by CGRS are

shown in Figure 3, obtained after 100k mini-batch steps

for the Fashion scenario and 50k for other three scenarios.

CGRS generates the associations with very similar appear-

ance for the source and target domains. Then the GANs are

employed to move them closer. During association gener-

ation, CGRS eliminates the strong noise of MNIST-M and

Fashion-M. Though there are more complex textures in the

Fashion task, the proposed model still performs well to pro-

duce reasonable visualizations of the associations. The as-

sociations of the Fashion scenario seem to suffer some in-

formation loss, possibly due to the complex textures and

strongly polluted images. However, they still look reason-

able upon visualization.

4.3.3 Model Analysis

Some further experiments are done to evaluate our model.

Ablation Study: To evaluate the potential effect of employ-

ing the content similarity strategy in our model, we con-

duct the adaptation tasks without content similarity, denoted

by CGRS-DA-noC. From the Table 1, we can see that the

model with content similarity outperforms its CRGS-DA-

noC counterpart. This confirms the effectiveness of incor-

porating content similarity.

Sensitivity of CGRS: CGRS plays a critical role in the

proposed model. We evaluated the performance of diverse

structures of CGRS. During the experiments, we used a

fixed depth of network (6 layers) for the generation pro-

cess. We applied various settings for splitting the high-

level and low-level decoder stacks. For example, H5L1 de-

notes the scheme using 5 layers for high-level and 1 layer as

low-level. added between layers. The results of evaluation

are shown in Figure 4. It can be seen that for the chan-

nel Xst in MNIST→MNIST-M and Fashion→Fashion-M

tasks, the highest accuracies are at the point H5L1, and



(a) Xst channel (b) Xts channel

Figure 4: The Adaptation Accuracy of Different CGRS.

(a) Xst channel (b) Xts channel

Figure 5: The visualization of top association features embedded

by t-SNE w.r.t. source and target. The blue dots are for source

patterns and red ones for target patterns.

for MNIST→USPS and MNIST→M-Digits tasks, there is

a peak value at the point H2L4. The Xts channel somehow

seems more sensitive to varying CGRS settings.

Generalization of CGRS: Can we utilize the trained CGRS

in one scenario to another adaptation task? In this eval-

uation, we use our pre-trained CGRS from one scenario

to adapt to a different task. These models are trained

with a trade-off H4L2 CGRS according to the sensitiv-

ity analysis. During the experiments, we kept the CGRS

fixed, then fine-tuned the associations adversarial align-

ment parts. The performance of adaptation to other tasks

remains reasonable. For example, the CGRS trained by

task Fashion→Fashion-M can get the performance of 0.983,

0.958, 0.915 for MNSIT→MNIST-M, MNIST→USPS, and

MNIST→M-Digits respectively.

Visualization of Extracted Features: We also evaluated

the features of the top, fully connected layers in the discrim-

inator for task MNIST→USPS. The features were embed-

ded in Euclidean space by the t-SNE algorithm [25]. Fig-

ure 5 shows that the two domains can be aligned well on

both channels after adaptation.

4.3.4 Discussion

To sum up, our method can maintain stable performance

when we vary the settings of CGRS for stack splitting.

There seems to be a tendency to favour a higher ratio of

high-level to low-level layers when the domains contain

similar contents but different background, while adaptation

tasks with similar background but different content favour

more low-level layers.

Another interesting observation is that CGRS represen-

tations have very good generalization ability. The CGRS

trained by one task can be employed for domain adaptation

in another task. This demonstrates a merit of our method

for practical applications, that is the CGRS representations

are transferable.

Finally, while the both association channels are well

aligned, from our experiment it seems Xts claims better

classification performance more often. In practical appli-

cations, it may be possible to design a classification combi-

nation method so that an optimal final decision can be de-

veloped from both association channels.

5. Conclusion

In this paper, we have proposed a novel unsupervised do-

main adaptation model based on cross-domain association

generation, and label alignment using adversarial networks.

In particular, cross-grafted representation stacks between

different domains are constructed for bi-directional associ-

ations. The domain adaptation task hence is transformed to

construct an effective mapping of the cross-domain associ-

ations onto the label space of the original source domain,

a methodology we believe contributes to its robust perfor-

mance in domain adaptation tasks. This is verified by the

empirical results we have obtained from a number of tasks

involving 6 benchmark tasks, which also demonstrate that

the proposed CGRS models has strong cross-task general-

ization abilities. For future work, we would like to explore

the extension of the framework for continual learning with

cross-task adaptation.
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