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Abstract

Objects captured by UAVs and drones in city scenes usu-

ally come in various sizes and are extremely dense. There-

fore, we propose a hybrid detector, called RRNet, for object

detection in such challenging tasks. We mix up the anchor-

free detectors with a re-regression module to construct the

detector. The discard of prior anchors released our model

from the difficult task on bounding-box size regression so

that we achieved a better performance in multi-scale ob-

ject detection in the dense scene. The anchor-free based

detector firstly generates the coarse boxes. A re-regression

module is then applied on the coarse predictions to pro-

duce accurate bounding boxes. In addition, we introduce

an adaptive resampling augmentation strategy to logically

augment the data. Our experiments demonstrate that RRNet

significantly outperforms all the state-of-the-art detectors

on VisDrone2018 dataset. We are runner-up to the ICCV

VisDrone2019 Object Detection in Images Challenge [23],

and we achieve the best AP50, AR10, and AR100. Source

code will be published on our official website in due course.

1. Introduction

UAVs (Unmanned Aerial Vehicle) and drones have been

widely adopted in both academia and real-world applica-

tions [18, 24, 25]. It therefore requires us to understand

and analyse the image data captured by them. In the deep

learning era, DNNs (deep neural networks) based object de-

tectors [17, 16, 5, 9, 21] significantly boost the performance

of object detection. However, there exists many significant

differences between normal nature images and drone cap-

tured images; these differences make the object detection a

challenging task. Firstly, the objects in such images come

in various scales. As shown in Figure 1a, the far objects are

extremely small, and the close objects are large. Moreover,

there are numerous dense scenes in cities (e.g., Figure 1b).

The denseness causes a large amount of occlusion, making

the object detection even more difficult .
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Figure 1. (a) Because of the special shooting angle, the object of

the same category can come in extremely various size. (b) Dense

scene example.

In general, the current deep learning based object de-

tectors are divided into two categories. The first one is

two-stage detectors [2, 17, 5]. They use a region proposal

network to determine whether the prior anchors is an ob-

ject or background. The prior anchors are several manu-

ally defined potential bounding boxes. Then, they use two

head networks to classify the potential anchors into a set of

categories and estimate the offset between the anchors and

ground truth boxes. The other category is called one-stage

detectors [14, 16]. Differing from the two-stage detectors,

the one-stage detectors discard the region proposal network.

They directly use two detectors to predict the categories and

the offset of the prior anchors. The prior anchors of these

two types of detectors are generated on the low-resolution

image grid. Each prior anchor can be only assigned one

object bounding box according to the IoU (intersection-

over-union). However, with the drones captured image, the

fixed-shape anchor can hardly handle the object of various

scales. Recently, another type of detectors are proposed,

i.e., anchor-free detector. They reduce the bounding box

prediction to the key point and size estimation. It poses a

better way to detecte the objects with various scales. Nev-

ertheless, the large difference in size (e.g., from 101 to 103)

makes regression difficult.

In this paper, we propose a hybrid detector called RR-

Net. Regardless of the various scales of objects, the cen-



ter point of the objects always exists. Consequently, , we

use two detectors to predict the center point and the width

and height of each object instead of using the anchor box.

Then, we transform these center points and sizes to coarse

bounding boxes. Finally, we feed the deep feature maps and

the coarse bounding boxes into a Re-Regression module.

The Re-Regression module can adjust the coarse bound-

ing boxes and generate the final accurate bounding boxes.

Moreover, pieces of evidence [26] have shown that good

data augmentation can even boost deep models to achieve

state-of-the-art performance without changing the network

architecture. Consequently, we propose a data augmenta-

tion strategy called adaptive resampling (AdaResampling).

This strategy can logically augment objects on the image.

Our experiment demonstrates that the proposed model

model significantly outperforms the existing state-of-the-art

detectors on the VisDrone2018 dataset [22]. In principle,

our RRNet is a hybrid model of the anchor-free detector

and the two-stage detector. We believe the re-regression

module is critical for the good results. Our model is the

runner-up to the ICCV VisDrone2019 Object Detection

in Images Challenge [23]. Moreover, we achieve the best

AP50, AR10, and AR100 results.

In summary, the main contributions of this paper are:

• We propose a novel hybrid object detector consists of

a coarse detector and a re-regression module for detec-

tion in drones captured images.

• We propose an adaptive augmentation strategy called

AdaResampling to logically augment the object.

• Our detector achieves the best results of AP50, AR10,

and AR100 in the ICCV VisDrone2019 Object Detec-

tion in Images Challenge [23].

2. Related work

Data augmentation In order to eliminate the bias be-

tween the training dataset and the testing dataset. Deep

models usually use many data augmentations, such as ran-

dom cropping and random flipping, to avoid over-fitting.

Zoph et al. [26] use automated machine learning (AutoML)

to search the best augmentation strategies. They achieve

state-of-the-art without changing any network architecture.

Kisantal et al. [7] use the copy-pasting to boost the per-

formance of small objects. They firstly use segmentation

masks to crop small objects, and then randomly paste the

cropped small objects in the image. However, we can not

simply paste the cropped object randomly in the drone cap-

tured image. We noticed that there is an obvious position

prior in the drones captured image. For example, car flies in

the sky is impossible. So, we propose a novel adaptive data

augmentation method called AdaResample.

Anchor-based object detection. The anchor is widely

adopted by most of the existing detectors. The two-stage

detectors have long been the dominant method in the field

of object detection. Faster RCNN [17] proposed the Re-

gion Proposal Network (RPN) to generate proposals. Then,

the proposals are sent to the second stage to generate the

final bounding boxes. Most of the other two-stage methods

[11, 5] are a variant version of Faster RCNN. Besides, some

multi-stage detectors have been proposed. Cascade RCNN

[2] extends the Faster RCNN [17] to address the problems

of over-fitting and quality mismatch. Compared to two-

stage and multi-stage approaches, the single-stage methods

have no proposal generation stage and predicts bounding

boxes in one section. Although they do not generate pro-

posals, single-stage methods still use anchor boxes. SSD

[14] and YOLO [16] directly classify and regress the an-

chors to get the final bounding boxes. RetinaNet [12] intro-

duces focal loss to address the class imbalance problem by

reshaping the standard cross-entropy loss.

Anchor-free object detection. Recently, some detectors

discard the prior anchors. They transform the object detec-

tion task to key point and size estimation. CornerNet [9]

detects bounding box corners as key points and then matchs

the upper left and lower right in the post-process, while Ex-

tremeNet [21] detects the top-, left-, bottom-, right-most,

and center points of all objects. CenterNet [21] simply ex-

tracts a single center point per object and predict the width

and height of it. FoveaBox [8] predicts category-sensitive

semantic maps for the object existing possibility, and pro-

duces a category-agnostic bounding box for each position

that potentially contains an object.

3. AdaResampling

In this section, we introduce an adaptive augmentation

called AdaResampling. Inspired by Kisantal et al. [7], the

main idea of the proposed augmentation is to resample the

confusing objects and paste them on the image many times.

Figure 2a is an image sampled from the COCO dataset

[13]. Randomly pasting the cropped object in this type of

image will not break the logicality of the image. However,

as shown in Figure 2b, the simple copy-pasting augmen-

tation may generate a very ridiculous image. We noticed

that there are two mismatches. The first one is background

mismatch. For example, the car marked by 1© is flying in

the sky. The background mismatch may lead the model to

generate more false-positive bounding boxes. The reason is

that The classifier relies on not only the object feature but

also the context features. The classifier can learn the back-

ground prior knowledge to assist itself in classification. The

second one is scale mismatch. If we copy a large object to

a far background, the object (e.g., 2© in Figure 2b) will be

extremely bigger than the neighbor objects. In general, the
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Figure 2. The object surrounded by the red box is the original ob-

ject. The objects surrounded by the yellow boxes is the resampled

objects (a) Object resampling example on COCO dataset. (b) Ob-

ject resampling example on VisDrone2018 dataset.
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Figure 3. The pipeline of AdaResampling.

neighbor objects can provide useful knowledge to the size

regression of the current object. The scale mismatch will

mess up this knowledge.

In order to eliminate these two mismatches, we propose

an adaptive augmentation strategy called AdaResampling.

Figure 3 presents the pipeline of the AdaResampling. At

the beginning, we feed the drone captured image into a pre-

trained semantic segmentation network to get the prior road

map. Because of the discrepancy between the drones cap-

tured image and the dataset used for segmentation network

training, the segmentation network might produce a noisy

result. We do not require a high recall value, but a high pre-

cision of the road. Therefore, we use the eroding algorithm

and a 3×3 median filter to remove the fake road area as pos-

sible as we can. Then, we sample a valid position according

to the road map to place the augmented object. After that,
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Figure 4. The statistic data of all the bounding box in Vis-

Drone2018 train set. (a) The height and width. (b) The number of

different diagonal size.

the cropped object is resized by a transform function. The

ratio of height to width is constant. The scaled height can

be calculated by a simple linear function:
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where h(l), h(s), y(l), and y(s) are the height and the y co-

ordinate of the largest and smallest object. We only use

the largest and the smallest k pedestrian to calculate a. y
is the y coordinate of the selected valid position. Finally,

the scaled object can be placed in the selected position. We

define a dense coefficient d to control the number of resam-

pled object. The number of the resampled objects n can be

calculated by:

n = max(d×Nr, 5), (2)

where Nr is the numbers of the prior road pixels.

The right part of Figure 3 is the training image aug-

mented by our AdaResampling. We can see that the car can

only be placed on the road and the scale of the augmented

object is suitable.

4. Re-Regression Net

We collect some statistic data of the VisDrone2018

datasets. The results are reported in Figure 4. Figure 4a

is the height and width of all the bounding boxes. The ob-

ject size varies from 101 to 103. It is hard to define a proper

set of prior anchors to cover this large gap. Besides, Figure

4b is the diagonal length of all the bounding boxes. Most of

the objects are smaller than 50× 50 pixels. We believe that

the key point based detectors are more suitable for small

object detection. Consequently, we propose the RRNet.
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Figure 5. The architecture of the RRNet. (a) The detector in the RRNet. We only present the prediction for one feature pixel. We perform

the same prediction on all the feature pixel. (b) The Re-Regression Module.

The top part of Figure 5 is the architecture of the RRNet.

We firstly feed the image into some convolutional blocks

to get the initial feature maps. After that, two HourGlass

blocks (HGBlock) [15] extracts robust feature maps with

more semantic information. We feed these features into two

independent detectors. The heatmap detector produces a

category-sensitive probability heatmap for the object center

points. Besides, another detector will give the size estima-

tion for all the center points.

4.1. Coarse detector

As shown in Figure 5, the coarse detector consists of one

size estimation block and one category prediction block.

The size estimation part is used to directly predict the height

and width of each object. The category prediction network

operates very similar to a semantic segmentation network.

We predict the category-sensitive center point for each pixel

and finally apply a sigmoid active function to get the inde-

pendent probability for each category.

4.2. ReRegression

We transform the heatmap and the size prediction to the

coarse bounding boxes. Finally, the re-regress module is ap-

plied to these coarse detection boxes to generate the refined

bounding boxes.

The Re-Regression module allows our model to refine

the coarse bounding boxes. We feed the feature maps pro-

duced by HGBlock 2 and the coarse bounding boxes into

the Re-Regression module. The Re-Regression module is

similar to the Faster-RCNN head but excludes the classifi-

cation network. We firstly use the NMS algorithm to filter

the duplicate bounding boxes. After that, we use the ROI-

align to align the features and use two convolutional layers

to predict the offset value. Finally, we apply the offset value

to the coarse bounding box to get the final prediction.

5. Experiments

We use the VisDrone2018 dataset [22] to evaluate our

model. We report the mAP, AP50, AP75, and AR1∼500.

5.1. Data augmentation

Similar to most of the deep neural networks, we also ap-

ply the horizontal flipping and random cropping as our ba-

sic augmentation. The crop size for the training phase is

512×512. We use the proposed AdaResampling to augment

the people, pedestrian, bicycle, tricycle, awning-tricycle,

and motor. The dense coefficient d is set to 0.00005. The

pretrained segmentation network in our AdaResampling is

a Deeplabv3 [3] pretrained on Cityscapes dataset [4].

5.2. Network details

Table 2 presents the detail settings of our RRNet. The in-

put convolution and the HGBlocks are following the official

setting of the HourGlass network [15]. Before re-regressing

the coarse bounding boxes, we first select the top 1500

bounding boxes according to their classification confidence.

Then, we use the Non-Maximum Suppression (NMS) with



Methods mAP AP50 AP75 AR1 AR10 AR100 AR500

RetinaNet [12] 11.81 21.37 11.62 0.21 1.21 5.31 19.29

RefineDet [20] 14.90 28.76 14.08 0.24 2.41 18.13 25.69

DetNet [19] 15.26 29.23 14.34 0.26 2.57 20.87 22.28

Cascade RCNN [2] 16.09 16.09 15.01 0.28 2.79 21.37 28.43

CornerNet [9] 17.41 34.12 15.78 0.39 3.32 24.37 26.11

FPN [11] 16.51 32.20 14.91 0.33 3.03 20.72 24.93

Light-RCNN [10] 16.53 32.78 15.13 0.35 3.16 23.09 25.07

ACM-OD† 29.13 54.07 27.38 0.32 1.48 9.46 44.53

DPNet-ensemble† 29.62 54.00 28.70 0.58 3.69 17.10 42.37

RRNet 29.13 55.82 27.23 1.02 8.50 35.19 46.05

Category ped people bicycle car van truck tricycle awn bus motor

mAP 30.442 14.851 13.724 51.427 36.143 35.224 28.019 18.999 44.204 25.854

Table 1. The performances on VisDrone2018 test subset. † is the champion and the third place in the ICCV VisDrone2019 Object Detection

in Images Challenge (reported in the pre-released version of the leaderboard). They may change their method’s names and performances

in the final version of their papers.

Module Name Details

Input Conv [15]

HGBlock1 [15]

HGBlock2 [15]

Detector

size: conv(3× 3)

class: conv(3 × 3), ReLU, conv(1 × 1) ,

Sigmoid

RR Module

nms: IoU threshold=0.7

topk: 1500

ROI Align: 3× 3

conv: Bottleneck [6], conv(1× 1)

Table 2. The detail settings of the RRNet. The Input Conv and

HGBlocks are following setting of HourGlass Net [15].

0.7 IoU threshold to filter the duplicated bounding boxes.

The ROI Align size is set to 3.

5.3. Training details

In our experiments, we adopt Adam as our optimizer.

Each mini-batch has 4 images per GPU, we train our model

on 4 GPUs for 100k iterations, with a learning rate of 2.5e-4

which is decreased by 10 at the 60k and 80k iteration. The

loss function for classification is the focal loss. The smooth

L1 is used for regression. The overall training objective is:

Loverall = L
(d)
cls + αL

(d)
size + L

(d)
off + L

(r)
size, (3)

where L(d) is the loss function for the coarse detectors, L(r)

is for the Re-Regression module. L(d) and α is following

the setting of CenterNet [21]. Similar to Faster RCNN [17],

L
(d)
size operates on the offset vector:

δx = (gx − bx)/bw, δy = (gy − by)/bh,

δw = log(gw/bw), δh = log(gh/bh)
(4)

5.4. Inference details

At inference time, we discard the first detectors and per-

form the coarse box prediction only on the second detec-

tors. The re-regression module is then applied to the high-

est scoring 1500 coarse detection boxes followed by the soft

non-maximum suppression [1].

5.5. Performance

We show the comparison results of RRNet to the state of

the art detectors in Table 1. RRNet outperforms all the state-

of-the-art baseline models. We also cite the performance of

DPNet-ensemble and ACM-OD, which is the first and the

third place of the challenge. Our RRNet gets the highest

AP50 and the best AR. Notably, all the AR of our RRNet are

significantly higher than others. These results suggest one

conclusion. Our network can detect more hard examples.

Figure 6 is the example visualization of our model.

There are also some interesting results in Table 1. The

point-based detectors (e.g., CornerNet [9], RRNet) perfor-

mances better than all the anchor-based detectors.

6. Ablation study

In this section, we perform a thorough ablation study on

the VisDrone2018 val subset to analyze our RRNet.



Figure 6. The visual result of our RRNet. Our network is very good at detecting small objects.

Module Name AP50 AP75

Baseline 0.5974 0.3133

+ Random Resampling 0.6103 0.3232

+ AdaResampling 0.6108 0.3288

Table 3. The comparison between the proposed AdaResampling

and the random resampling. Keeping the logical position prior is

better for the data augmentation.

6.1. AdaResample vs. Randomly Resample

We propose the AdaResampling to keep the position

prior in the drone captured images. Table 3 is the compar-

ison between the AdaResampling and the random resam-

pling. AdaResampling can significantly boost the mAP. The

result demonstrates that breaking this prior is fatal for the

detector training. Figure 7 is the visualization comparison

of these two resampling strategy. The model trained with

the random resampling generates more false-positive exam-

ple.

6.2. ReRegression Module

An evaluation of the proposed Re-Regression module

is shown in Table 4. RR module improves mAP by ∼

0.8 points. Ap75 are significantly boosted from 0.2958 to

0.3133.

In addition, we also evaluate mAP if we just use RR

module for training, but abandon it during the testing phase.



Figure 7. The results visualization of the random resampling and

the AdaResampling. The left column is the results of random re-

sampling. The right column is for the AdaResampling. The read

circle are the false-positive examples.

Setting mAP AP75

w/o RR Module 0.3214 0.2958

Train w/ RR, Test w/o RR Module 0.3241 0.3032

Train w/ RR, Test w/ RR Module 0.3292 0.3133

Table 4. The performance with or without the Re-Regression Mod-

ule. Our RR Module improves mAP by ∼ 0.8 points. Notably,

AP75 significantly increases from 0.2958 to 0.3133.

We achieve 0.3241 mAP, which is higher than the baseline.

It illustrates that the gradient generated by the RR module

is profitable for the backbone and the detector optimization.

6.3. Small object detection performance

We modify the official RetinaNet [12]. We firstly remove

the last two FPN layer. Then, we use a K-Means algorithm

to get the prior sets. The modified version achieves bet-

ter performance (21.7 mAP) than the official version (18.4

mAP) on VisDrone2018 val set. Figure 8 is the visualiza-

tion comparison between the modified RetinaNet and our

RRNet. Obviously, our RRNet performs better on small ob-

ject detection.

6.4. Other tricks

Synchronous batch normalization (SyncBN) is widely

adopted by many semantic segmentation models. We also

synchronize the mean and standard-deviation of BN cross

multiple GPUs. This trick can freely improves the mAP

from 0.3207 to 0.3292.

(a) (b)

Figure 8. (a) The results of RetinaNet. (b) The results of RRNet.

Discarding the prior anchors makes our RRNet performs well on

small object detection.

Moreover, we further employ the multi-scale strategy.

We scale the images by 1.1x, 1.2x, 1.3x, 1.4x, and 1.5x

times, and use the soft-nms to merge all the bounding boxes

of all the scales level. It can significantly improves the mAP

of our models about 1.5 points.

7. Conclusion

In this paper, we proposed an adaptive resampling aug-

mentation and a hybrid object detector, the RRNet, for ob-

ject detection on images captured by UAVs or drones. It

presents excellent performance on very small objects in a

dense scene. Our experiments demonstrated that RRNet

outperforms the state-of-the-art. We achieve the highest

performance of AP50, AR10, and AR100 in the ICCV Vis-

Drone2019 Object Detection in Images Challenge [23].
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