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Abstract

The Vision Meets Drone (VisDrone2019) Single Object

Tracking challenge is the second annual research activity

focusing on evaluating single-object tracking algorithms on

drones, held in conjunction with the International Confer-

ence on Computer Vision (ICCV 2019). The VisDrone-

SOT2019 Challenge goes beyond its VisDrone-SOT2018

predecessor by introducing 25 more challenging sequences

for long-term tracking. We evaluate and discuss the re-

sults of 22 participating algorithms and 19 state-of-the-

art trackers on the collected dataset. The challenge re-

sults are publicly available at the website: http://www.

aiskyeye.com/. We expect the VisDrone-SOT challenge

to boost the research in single object tracking field.

1. Introduction

Single Object Tracking (SOT), or visual tracking, is one

of the fundamental techniques of computer vision and the

base of many high-level applications such as video surveil-

lance and human-computer interaction. A large amount of

state-of-the-art tracking methods are proposed to deal with

various challenging factors in visual tracking including oc-

clusion and deformation.

Recently, drones equipped with cameras have been ap-

plied in a wide range of applications because of its flexibil-

ity. Compared to the traditional cameras, drones bring new

challenges to the tracking methods, such as abrupt cam-

era motion, small target, and view point change. To deal

with these problems, there is high demanding for new drone

based tracking algorithms and datasets [14, 35]. However,

the studies are seriously restricted by the lack of publicly

available large-scale drone based datasets.

In 2018, The VisDrone team is established to advance

the developments in detection and tracking algorithms for

drone based scenes [51, 58, 59]. Specifically, the chal-

lenge for single-object tracking has been carried out in

conjunction with the 15-th European Conference on Com-

puter Vision (ECCV 2018), where 17 submitted trackers

and 5 state-of-the-art methods are evaluated on the pro-

posed VisDrone2018-SOT dataset. However, the previ-

ous challenge focuses on short-term tracking. In this year,

we expand the dataset with more challenging sequences in

terms of long-term tracking. Moreover, we conduct com-

prehensive evaluation for 41 tracking methods including

22 submissions and 19 state-of-the-art trackers for both

short-term and long-term tracking. This paper summa-

rizes the VisDrone-SOT2019 Challenge organized in con-

junction with the 26-th International Conference on Com-

puter Vision (ICCV2019) Drone Meets Drone: A Chal-

lenge workshop. All the results can be found at the website:

http://www.aiskyeye.com/.

2. Related Work

In this section, we first describe the related training and

evaluation datasets for visual tracking. Then we introduce

state-of-the-art tracking algorithms, especially the Siamese

network based trackers.

2.1. Training and Evaluation Datasets

In recent years, single-object tracking is dominated by

deep learning based methods due to its discriminative rep-

resentation. However, further improvement of tracking per-

formance is restricted by existing small-scale benchmarks,

such as OTB [52], NFS [18], UAVDT [14], UAV123 [35],

and VOT2018 [26].

To solve this problem, more large-scale training

datasets [37, 16, 24] are proposed in the community, which

fully represents various appearance and motion patterns of

objects in the wild. Based on the data of YoutubeBB [39],

TrackingNet [37] annotates more than 30K videos with

more than 14 million bounding boxes. LaSOT [16] collects

1, 400 challenging sequences with average 2, 512 frames

per sequence. Moreover, every frame is carefully and man-

ually annotated with a bounding box. GOT-10k [24] con-

tains more than 10, 000 video clips with over 1.5 million

manually labeled bounding boxes. It includes a majority of

560+ classes of real-world moving objects and 80+ classes

of motion patterns.

Except the aforementioned visual tracking datasets, ob-

ject detection datasets [41, 39, 30] are also introduced to

facilitate the training of tracking networks. For ImageNet

VID [41], 30 different classes of animals and vehicles are

provided with almost 4500 videos and a total of more than

one million annotated frames. YoutubeBB [39] is a large-

scale object detection dataset with approximately 380, 000

video segments, which is annotated every second with up-

right bounding boxes. COCO [30] is a large-scale object

detection, segmentation, and captioning dataset with 330K

images and 80 object categories.

2.2. Siamese Network based Trackers

Compared with traditional trackers [22, 10, 8, 13, 15],

deep learning based methods achieve comparably or better

performance. However, it is difficult for realtime practi-

cal applications because of high computational complexity

of neural networks. Recently, the Siamese network based

trackers [44, 3, 21, 49, 28, 60, 27, 50] become popular for

both high tracking accuracy and efficiency.

Tao et al. [44] tracks the target, simply by matching the

initial target in the first frame with candidates in a new

frame by a learned matching function of Siamese network.

Similarly, Bertinetto et al. [3] train a novel end-to-end fully-

convolutional Siamese network on the ILSVRC15 dataset

for object detection in video. Held et al. [21] learn of-

fline a generic relationship between an object’s appearance



Figure 1. Screen-shots of new added sequences for long-term tracking. The first frame with the bounding box of the target is shown for

each sequence.

and its motion. Inspired from correlation filters, Wang et

al. [49] learn the convolutional features and perform the

correlation tracking process simultaneously. Inspired from

object detection, current state-of-the-art Siamese track-

ers [28, 60, 27] introduce the region proposal network af-

ter the Siamese network, resulting in promising tracking

performance. Moreover, Wang et al. [50] improves the

Siamese tracker by augmenting its loss with a binary seg-

mentation task.

3. The VisDrone-SOT2019 Challenge

Following VisDrone-SOT2018 Challenge [51], The au-

thors participating in the VisDrone-SOT2019 Challenge are

required to submit no more than three tracking results for

VisDrone-SOT2019 testing set. Then the best result among

three submissions are selected as the performance of this

tracker. We encourage the participants to use the provided

training data, but also allow them to use additional training

data such as UAVDT [14], UAV123 [35], TrackingNet [37],

LaSOT [16], GOT-10k [24], and YoutubeBB [39].

3.1. The VisDrone-SOT2019 Dataset

Although the VisDrone-SOT2018 dataset [51] is not

saturated, it lacks of sequences with long-term tracking.

Therefore, we introduce the VisDrone-SOT2019L dataset

in this challenge as the additional testing set. It in-

cludes 25 new collected challenging sequences (82, 644

frames in total), which consists of 12 clips in the day-

light and 13 clips at night. The scale of targets in the

VisDrone-SOT2019L dataset is much smaller than that in

the VisDrone-SOT2018 dataset, i.e., 25.5 vs. 62.5. Be-

sides, more distractors are introduced in this dataset (e.g.,

occlusion, camera motion, and similar object). The screen-

shots of new sequences are shown in Figure 1. That is, the

VisDrone-SOT2019 dataset consists of VisDrone-SOT2018

and VisDrone-SOT2019L datasets. In summary, it in-

cludes 167 sequences with 188, 998 frames, which is di-

vided into three non-overlapping subsets, i.e., training set

(86 sequences with 69, 941 frames), validation set (11 se-

quences with 7, 046 frames), and testing set (60 sequences

with 112, 011 frames).

Similar to the VisDrone-SOT2018 Challenge [51], all

sequences are sequence-level annotated by the following

visual attributes: aspect ratio change, background clutter,

camera motion, fast motion, full occlusion, illumination

variation, low resolution, out-of-view, partial occlusion,

similar object, scale variation and viewpoint change. On

the other hand, two primary measures are used to analyze

tracking performance: success and precision scores. Suc-

cess score calculates the area under the curve based on the

percentage of successfully tracked frames vs. the bounding

box overlap threshold; while precision score denots the per-

centage of frames where the centers of the tracked object

are within 20 pixels to the groundtruth. We refer to [52] for



further details.

3.2. Submitted Trackers

We have received 22 trackers from 19 different institutes

in the VisDrone-SOT2019 Challenge. Many of them are

improved from major computer vision conferences in very

recent years. We briefly overview the submitted trackers

and provide their descriptions in the Appendix A.

Among in the submitted algorithms, 9 trackers are in-

spired based on the very recent ATOM tracker [9], including

ACNT (A.1), AST (A.2), ATOMFR (A.3), ATOMv2 (A.4),

DATOM AC (A.5), ED-ATOM (A.8), MATOM (A.11),

SSRR (A.19) and TIOM (A.22). 5 trackers are varia-

tions of Siamese networks, i.e., DC-Siam (A.6), DR-V-LT

(A.7), SiamDW-FC (A.14), SiamFCOT (A.15) and SOT-

SiamRPN++ (A.18). Two trackers are based on corre-

lation filters, HCF (A.10) and TDE (A.21). Two track-

ers are based on convolutional neural networks, MD-

Net flow MDNet RPN (A.9) and Stable-DL (A.20). PTF

(A.12) and SE-RPN (A.13) combine correlation filters and

ATOM [9], while Siam-OM (A.16) and SMILE (A.17) are

based on Siamese networks and ATOM [9].

Then, we evaluate 19 state-of-the-art tracking meth-

ods for comprehensive evaluation, including BACF [19],

CSRDCF [32], DSiam [20], DSST [10], ECO [8],

fDSST [12], HCFT [33], KCF [22], LCT [34], MD-

Net [38], PTAV [17], SCT [7], SRDCF [11], Staple [2],

Staple CA [36], STRCF [29], TRACA [6], SiameseFC [3],

and CFNet [46]. Thus, we have in total 41 tracking methods

in the VisDrone2019-SOT Challenge.

4. Results and Analysis

In this section, we first evaluate all the tracking methods

on the overall VisDrone-SOT2019 dataset, and then discuss

several representative trackers in terms of short-term track-

ing, long-term tracking and different visual attributes, re-

spectively. Finally, several potential research directions are

concluded.

4.1. Overall Performance

The overall tracking results are summarized in success

and precision plots in Figure 2. Meanwhile, we also report

the success and precision scores, tracking speed, implemen-

tation details, pre-trained dataset, and the references of each

method in Table 1.

Compared with the VisDrone2018 Challenge [51], more

submissions are based on convolutional neural networks

(e.g., ResNet and Siamese Network) due to the impressive

performance, except HCF (A.10) and TDE (A.21). ED-

ATOM (A.8) employs the IOU-predictor network to esti-

mate the target, which is trained on several large-scale ad-

ditional tracking datasets (i.e., ImageNet, COCO, Got10k

Table 1. Comparison of all submissions in the VisDrone-SOT2019

Challenge. The success score, precision score, tracking speed (in

FPS), backbone, and pre-trained dataset (C indicates COCO [30],

G indicates Got-10k [24], I indicates ImageNet DET/VID [41], L

indicates LaSOT [16], T indicates TrackingNet [37], V indicates

VOT [26], Y indicates YoutubeBB [39], and × indicates that the

methods do not use the pre-trained datasets) are reported.
Method Success Precision Speed Backbone Pre-trained

ACNT (A.1) 53.2 69.8 5 ResNet-50 C,I,T

AST (A.2) 51.9 69.5 40 ResNet-50 C,G,I,L

ATOMFR (A.3) 61.7 84.2 7 ResNet-18 ×

ATOMv2 (A.4) 46.8 60.8 25 ResNet-18 L

DATOM AC (A.5) 54.1 74.1 20 ResNet-50 I

DC-Siam (A.6) 46.3 63.6 2 ResNet-50 I,Y

DR-V-LT (A.7) 57.9 76.8 3 ResNet-50 ×

ED-ATOM (A.8) 63.5 90.0 20 ResNet-18 C,G,I,L

flow MDNet RPN (A.9) 52.6 75.0 1 VGG-M ×

HCF (A.10) 36.1 50.7 10 × ×

MATOM (A.11) 40.9 57.2 30 ResNet-18 L,T

PTF (A.12) 54.4 76.1 2 ResNet-50 I

SE-RPN (A.13) 41.9 56.3 40 ResNet-50 I,Y

SiamDW-FC (A.14) 38.3 52.9 75 CIResNet22W G

SiamFCOT (A.15) 47.2 59.2 48 GoogLeNet C,G,I,L,Y

Siam-OM (A.16) 59.3 83.3 15 ResNet C,I,V

SMILE (A.17) 59.4 81.6 1.5 ResNet C,I

SOT-SiamRPN++ (A.18) 56.8 79.3 3.2 ResNet-50 C,I,Y

SSRR (A.19) 44.7 58.8 40 ResNet-34 C,L

Stable-DL (A.20) 38.2 54.6 0.8 VGG-19 ×

TDE (A.21) 37.2 56.5 0.3 ResNet-50 I

TIOM (A.22) 49.7 76.5 1 ResNet-18 L

and LaSOT). Besides, a low-light image enhancement mod-

ule [54] is applied to improve robustness. It not only

achieves better performance than the other submissions,

but has near real-time running speed of 20 FPS. With-

out pre-training on external tracking datasets, ATOMFR

(A.3) (rank 2) embeds the SENet [23] into IoUNet in

ATOM [9], which captures the interdependencies within

feature channels. SMILE (A.17) (rank 3) combines two

state-of-the-art tracking methods including ATOM [9] and

SiamRPN++ [27]. Siam-OM (A.16) deals with short-

term tracking by ATOM [9] and long-term tracking by

DaSiam [60], respectively. To deal with blurred scenes,

both SMILE (A.17) and Siam-OM (A.16) use the SIFT

method [31] to match features. DR-V-LT (A.7) is improved

based on SiamRPN++ [27], and distinguishes similar ob-

jects by the additional verification network (MDNet [38]).

Following DR-V-LT (A.7), SOT-SiamRPN++ (A.18) mag-

nifies the original images twice to improve the performance

for small targets. On the other hand, SiamDW-FC (A.14)

runs in the higher speed of 75 FPS than SiamFCOT (A.15),

but achieves relatively lower success and precision scores.

In terms of the precision scores, the best two track-

ers stay the same, i.e., ED-ATOM (A.8) and ATOMFR

(A.3). Besides, it is worth mentioning that the state-of-the-

art trackers (i.e., ECO [8] and MDNet [38]) submitted by

the VisDrone Team rank at the middle level of all the 41

tracking methods based on the success and precision scores.

That means many submitted methods achieve considerable

improvements from existing methods.



Figure 2. The success and precision plots of the submitted trackers. The success and precision scores for each tracker are presented in the

legend.

4.2. Short-term Tracking

Compared to the trackers in VisDrone-SOT2018 Chal-

lenge [51], the submissions in this year further improve the

tracking performance in short-term tracking. As shown in

Figure 3, all the top 5 trackers in this year achieve larger

than 71.0 success score. Besides, three of the top 5 track-

ers (i.e., ED-ATOM (A.8) and ATOMFR (A.3) and Siam-

OM (A.16)) achieve larger than 93.0 precision score. They

perform better than the best tracker of VisDrone-SOT2018

Challenge [51] LZZ-ECO with 68.0 success score and 92.9

precision score. This is attributed to more accurate target

scale estimation in the baseline ATOM [9]. Different from

the correlation filters based tracking methods with a simple

multi-scale search of target scales, ATOM [9] predicts the

overlap between the ground-truth and an estimated bound-

ing box directly.

4.3. Long-term Tracking

Generally speaking, a practical tracker in real-world ap-

plications should be able to track the object in a relative long

period. However, the majority of current datasets includes

the sequences with less than 600 frames [16]. Compared

with VisDrone-SOT2018 challenge focusing on short-term

tracking, we add 25 long-term tracking sequences (3, 300

frames in average) in this year, i.e., VisDrone-SOT2019L

dataset. The corresponding tracking results are shown

in Figure 4. Compared to the tracking performances in

short-term tracking, the performances on the VisDrone-

SOT2019L dataset are severely degraded because of a large

mount of target drifting. ED-ATOM (A.8) achieves the best

performance with 48.9 success score and 81.9 precision

score, followed by DR-V-LT (A.7). There are more sig-

nificant drop in performance for the other submitted track-

ers. This phenomenon demonstrates the effectiveness of the

target verification module in visual tracking, especially in

complex scenarios.

4.4. Performance Analysis by Attributes

We show the performance of each tracker in terms of

12 attributes in Figure 5 and Figure 6. ED-ATOM (A.8)

achieves the best performance in 5 attribute subsets includ-

ing background clutter, fast motion, illumination variation,

low resolution, and similar object. ATOMFR (A.3) ranks

at the first place in the remain 7 attributes including aspect

ratio change, camera motion, full occlusion, out-of-view,

partial occlusion, scale variation and viewpoint change.

In terms of illumination variation and low resolution,

SMILE (A.17) and DR-V-LT (A.7) rank the second place

respectively. By contrast, ATOMFR (A.3) ranks the 9-th

and 5-th places. We speculate that it has no corresponding

solution to deal with appearance variations especially for

small objects.

4.5. Discussion

To design more effective tracker in drone based scenar-

ios, there are several directions worth to explore based on

the submitted algorithms.

• Data Argumentation. Data argumentation is impor-

tant in network training with limited training data. The

following data argumentation modules can be used: re-

scale (SOT-SiamRPN++ (A.18)), horizontal flip, rota-

tion, shift, image contrast by Gamma correction (ED-

ATOM (A.8) and Sima-OM (A.16)) and Laplacian op-

erator (SOT-SiamRPN++ (A.18)).

• Key-points Estimation. In drone based scenes, there



Figure 3. The success and precision plots of the submitted trackers in term of short-term tracking. The success and precision scores for

each tracker are presented in the legend.

Figure 4. The success and precision plots of the submitted trackers in term of long-term tracking. The success and precision scores for each

tracker are presented in the legend.

exist challenging factors such as camera motion, fast

motion and object blur. The feature matching methods

(SIFT [31] and SURF [1]) and affine transformation

are effective to capture the targets in two consecutive

frames, see ATOMv2 (A.4), HCF (A.10), PTF (A.12),

SMILE (A.17) and TIOM (A.22).

• Long-term Tracking. Compared with short-term

tracking, we should pay more attention on object ver-

ification to reduce target drifting. For example, both

DC-Siam (A.6) and DR-V-LT (A.7) design two-stage

network to learn the discriminative representation of

the target. Besides, the object detector can be used

to re-detect the target after partial/full occlusion (see

TDE (A.21)).

5. Conclusion

In this paper, we review the VisDrone-SOT2019 chal-

lenge, which is second workshop in conjunction with ICCV

2019, to discuss state-of-the-art tracking performance eval-

uation in drone based scenes, following the successful

VisDrone-SOT2018. The testing set of the VisDrone-

SOT2019 dataset is expanded from that of the VisDrone-

SOT2018 dataset by adding more challenge sequences in

long-term tracking. 22 tracking algorithms are submitted to

this challenge, the majority of which are improved from ex-

iting trackers such as ATOM [9] and SiamRPN++ [27]. The



Figure 5. The success plots for the submitted trackers in different attributes. The number presented in the title indicates the number of

sequences with that attribute.

top three performers are ED-ATOM (A.8), ATOMFR (A.3),

and SMILE (A.17), achieving 63.5, 61.7 and 59.4 success

score respectively. We believe VisDrone has become a com-

prehensive platform for study of object detection and track-

ing in drones. For future work, we will expand both the

dataset for more complex scenarios and the real-time eval-

uation for practical applications.
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A. Submitted Trackers

In the appendix, we summarize 22 trackers submitted in

the VisDrone2019-SOT Challenge, which are ordered al-

phabetically.

A.1. Adaptive Correction Network based tracker
(ACNT)

Tianyang Xu, Xiaojun Wu, Zhenhua Feng and Josef

Kittler

tianyang xu@163.com

ACNT is a two-stage adaptive correction network based



correlation filter tracker. First, the correlation filter is

employed to predict the centre location with fixed Resnet-

50 (imagenet-classification-trained) feature. Second, an

IoU-Distance net (pairwise-trained) is used to optimise the

bounding box. The training stage is similar as ATOM [9],

except we reformulate the loss function by simultaneously

considering Bounding Box Overlap and Centre Distance

(IoU-Distance net).

A.2. More Accurate and stable for tracking (AST)

Kang Yang, Xianhai Wang, Ning Wang, Jiaqing Fan and

Kaihua Zhang

{779760348, 1719256598, 1098069058, 1296870572,

360572857}@qq.com

AST is improved from ATOM [9]. During the exper-

iment, we find that the results of each evaluation fluctuate

to a certain extent because of Gaussian distribution of

the bounding box. Therefore we add the novel attention

model for robust representation. At the same time, we use

the deformable convolution to align the tracking frame

with the first frame. Through the experiment we find this

alignment strategy is better than the Spatial Transformer

Networks [25].

A.3. Accurate Tracking by Overlap Maximization
and Feature Recalibration (ATOMFR)

Wenhua Zhang, Haoran Wang and Jinliu Zhou

zhangwenhua nuc@163.com,

{wanghaoran, zhoujinliu}@stu.xidian.edu.cn

ATOMFR enhances the performance of ATOM [9] by em-

beding the Squeeze-and-Excitation blocks [23] into IoUNet

in ATOM. Our motivation is to explicitly model the interde-

pendencies within feature channels. In addition, we do not

intend to introduce a new spatial dimension for the fusion

of feature channels but a new Feature Recalibration strat-

egy. Specifically, it is learned to automatically acquire the

importance of each feature channel, and then according to

this importance to enhance useful features and suppress fea-

tures that are of little use to the current task. Compared to

ATOM, our method is better in overall performance when

the tracking environment is complex.

A.4. Accurate Tracking with Overlap Minimiza-
tion, version 2 (ATOMv2)

Lianghua Huang, Xin Zhao and Kaiqi Huang

huanglianghua2017@ia.ac.cn,

{xzhao, kaiqi.huang}@nlpr.ia.ac.cn

ATOMv2 is improved from the ATOM tracker [9].

Our modifications are: 1) We estimate camera motion

across frames using features matching (SURF features [1])

and homography transformation matrix estimation. In this

way, the searching area is more robust to severe camera

motion. 2)We use thresholding to determine whether to

update the model or not.

A.5. Deeper spatio-temporal context aware ATOM
with channel attention (DATOM AC)

Xizhe Xue, Xiaoyue Yin, Shanrong Zou and Ying Li

{xuexizhe, 2015302412, shanrongzou}@mail.nwpu.edu.cn,

lybyp@nwpu.edu.cn

DATOM AC is based on the ATOM tracker [9], channel

attention and spatio-temporal context information. The

proposed tracker introduces channel attention into the

network design to enhance feature representation learn-

ing. Specifically, a Squeeze-and-Excitation block [23] is

coupled to each convolutional layer to generate channel

attention. Channel attention reflects the channel-wise

importance of each feature channel and is used for feature

weighting in online tracking. Besides, to make our algo-

rithm adapt to appearance changes of target, we decide

to capture the spatio-temporal context information. We

propose the spatio-temporal branch to learn the feature of

previous frame, which can also be utilized to estimate the

location of target in current frame. By fusing the results

from spatio-temporal and reference branches, we obtain our

final result. Both the channel attention and spatio-temporal

information are computationally lightweight and impose

only a slight increase in model complexity. Our tracker is

pre-trained on the ILSVRC2015 dataset [41] and fine-tuned

on the VisDrone2018 train set.

A.6. Learning Discriminative Classification for
Siamese Visual Tracking (DC-Siam)

Jinghao Zhou and Peng Wang

jensen.zhoujh@gmail.com, peng.wang@nwpu.edu.cn

DC-Siam formulates the visual tracking problem as a

regression task by the Siamese network based tracking

algorithms. Specifically, it is regarded as a cross-correlation

problem by learning a similarity map from deep models

with embedding space, where one branch for learning

the feature representation of the target, and the other

one for the search area. We complement our siamese

regression network with a classification module which is

a 2-layer fully convolutional neural network. As for the

online updating technique, instead of using the brute-force

stantdard gradient descent (SGD), we use a more sophisti-

cated optimization strategy that is better suited for online

learning considering a quick convergence speed. Detailed

information can be found in [9]. We train our network on

the training set of COCO [30], ImageNet DET/VID [41],

YouTubeBB Dataset [39] and VisDrone2019.



A.7. Distractor-Reduction and Verification Net-
works for Long-term Visual Object Tracking
(DR-V-LT)

Shiyu Xuan and Shengyang Li

{xuanshiyu17, shyli}@csu.ac.cn

DR-V-LT adds the distractor-aware and veritification

network based on the SiamRPN++ [27]. SiamRPN++

correctly distinguishs the foreground and background

but lacks the ability to distinguish similar objects. In

the long-term situations, when the tracked object is lost,

the algorithm is very easy to drift to the similar objects.

The verification network is used to avoid the algorithm

tracking the wrong similar object. Moreover, we propose

a two-stage distractor-reduction method. In the distractor-

aware stage, we use the score of SiamRPN++ to find the

similar objects. In the distractor-suppressive stage, the

similar objects are used as the negative sample to update

the verification network online. The score of the similar

object is suppressive through this way. The architecture of

network is the same as SiamRPN++, and the verification

network is the same as MDNet [38].

A.8. Accurate target state estimation for drone
tracking (ED-ATOM)

Chunhui Zhang, Shengwei Zhao, Kangkai Zhang,

Shikun Li, Hao Wen and Shiming Ge

{zhangchunhui,zhaoshengwei,zhangkangkai,

lishikun}@iie.ac.cn, wenhao@cloudwalk.cn,

geshiming@iie.ac.cn

Our method is following [9], which contains two modules:

target estimation and object classification. The target

estimation network is performed by the IOU-predictor net-

work. We also use the ResNet-18 trained on ImageNet as

backbone. We use the pre-trained target estimation model

from [9]. The solution pipeline is as following: 1) Train

the IOU-predictor network on Imagenet-VID/DET [41],

COCO [30], GOT-10k [24] and LaSOT [16]. 2) Use a

low-light image enhancement algorithm [54] to process

the VisDrone2019 dataset. 3) Fine-tune offline target

estimation model on VisDrone2019 dataset and processed

VisDrone2019 dataset. 4) An online data augmentation

scheme [5, 55] is conducted on the tracking module to

facilitate the model generalizability. A simple search

strategy [60] based on tracking state is also used to improve

robustness. We advise readers to read [9, 4] for more

details.

A.9. Flow Guided MDNet with Redetection
(flow MDNet RPN)

Han Wu, Xueyuan Yang, Yong Yang and Guizhong Liu

{xjtuwh, yxy1995, yy1996}@stu.xjtu.edu.cn,

liugz@xjtu.edu.cn

The flow MDNet RPN tracker is inspried from MD-

Net [38] with consideration of temporal coherency. First,

PWC-Net [42] extracts flow information and predicts

global motion compensation on the pre-frame object state.

Then, MDNet generates the tracking bounding box, which

is refined by bounding box regression to find tight bounding

box enclosing the target. Next, a one-dimensional correla-

tion filter is used to adapt to the target scale changes, and

semantic proposal generated by GA-RPN [47] is selected

to adapt to the target aspect ratio change so as to improve

target localization accuracy. The similarity between the

bounding box and the initial target is calculate by the

Siamese network [27].

A.10. Hard negative mining for correlation filters
in visual tracking (HCF)

Zhuojin Sun, Yong Wang and Chunhui Zhang

harvards@gmail.com, ywang6@uottawa.ca,

zhangchunhui@iie.ac.cn

HCF is a robust tracking method in which a hard negative

mining scheme is employed in each frame. In addition, a

target verification strategy is developed by introducing a

peak signal-to-noise ratio (PSNR) criterion [43, 19]. For

this challenge, to overcome camera movement scenes, we

predict the position of the object by the affine transforma-

tion between frames, and then track the object base on the

prediction position.

A.11. More Accurate Tracking by Overlap Maxi-
mization (MATOM)

Lijun Zhou and Qintao Hu

{zhoulijun16,hqt0099}@mails.ucas.edu.cn

MATOM is an improved version of the popular tracker

ATOM [9] with Kalman Filter and YOLOv3 [40] object

detection algorithm. Compared with original ATOM

tracker, our algorithm can increase tracking robustness by

predicting trajectory with Kalman filter. Simultaneously,

if both Kalman filter and ATOM tracker fail to track the

object, the tracking results are corrected by YOLOv3

results.

A.12. Preferred Tracking Framework for Large-
Scale Dataset with Shaking and Occlusion
(PTF)

Ruohan Zhang, Jie Chen, Jie Gao, Xiaoxue Li and

Lingling Shi

{ruohan950427,chenjie818826}@163.com,

gaojie jiangsu@126.com, xxli 3@stu.xidian.edu.cn,

llshi 1@stu.xidian.edu.cn



PTF is the preferred tracking framework for large-

scale dataset with shaking and occlusion to solve the single

object tracking problem. Specifically, the main part of

our framework comes from MobileNet-based tracking by

detection algorithm (MBMD) [56]. By analyzing the whole

processing of MBMD object tracking, it is clear that there

are vigorous changing of object boxes’ location. In order to

solve this problem, ECO [8] and ATOM are used for later

adjustment. We find that the results of ECO cannot deal

with the shaking problem, so use the SIFT features and

regard the process of ECO and SIFT as ECOO. Then, the

results of ECOO and ATOM are used to revise the MBMD.

After that, a preferred processing, which is based on an

exact threshold, is performed to get the final results.

A.13. Learning Equivariance: Siamese Equivari-
ant Region Proposal Network for Accurate
Online Object Tracking (SE-RPN)

Xu Lei and Jinwang Wang

{leixuchn,jwwangchn}@whu.edu.cn

SE-RPN is the Siamese equivariant region proposal

network for accurate online object tracking. Specifically,

we leverage the equivariant property to guide the anchoring,

and learn equivariance in the correlation mechanism of

SiamRPN [28]. By reformulating the anchoring mechanism

within the SiamRPN tracking framework, our algorithm not

only provides better initialization for region proposal, but

also mitigates the misalignment problems in the correlation.

A.14. Deeper and Wider Siamese Networks for
Real-Time Visual Tracking (SiamDW-FC)

Zhipeng Zhang and Weiming Hu

zhangzhipeng2017@ia.ac.cn, wmhu@nlpr.ia.ac.cn

SiamDW-FC improves the original SiamFC-based

model [57] by leveraging deeper and wider convolu-

tional neural networks to enhance tracking robustness and

accuracy. Direct replacement of backbones with existing

powerful architectures, such as ResNet and Inception, does

not bring improvements. The main reasons are that 1)

large increases in the receptive field of neurons lead to

reduced feature discriminability and localization precision;

and 2) the network padding for convolutions induces a

positional bias in learning. To address these issues, we

propose new residual modules to eliminate the negative

impact of padding, and further design new architectures

using these modules with controlled receptive field size and

network stride. The designed architectures are lightweight

and guarantee real-time tracking speed when applied to

SiamFC [57] and SiamRPN [28].

A.15. Fully Convolutional method for Object
Tracking (SiamFCOT)

Yinda Xu and Zeyu Wang

yinda xu@zju.edu.cn, wangzeyu0408@outlook.com

SiamFCOT is capable to perform efficient tracking

while reaches a high accuracy. The proposed tracker

consists of the following components: feature extraction,

feature matching, head network, mask refinement and post-

processing. Inspired by the recently emerging anchor-free

detection technique, we adopt the head architecture and

box encoding/decoding protocol of FCOS detector [45].

A post-processing procedure of SiamRPN-style [28] is

performed on the regressed candidate boxes with their

correspondence scores to generate the unique final box

as the tracking result on the current frame. We train the

tracker based on Imagenet-VID/DET [41], COCO [30],

YoutubeBB [39], LaSOT [16], and GOT-10k [24]. Note that

the pipeline and model has not been specifically fine-tuned

for VisDrone task, so there still remains potential to exploit

for future work.

A.16. Combination of DaSiam and ATOM (Siam-
OM)

Xin Zhang, Xiaotong Li and Jie Zhang

{xinzhang1,lixiaotong}@stu.xidian.edu.cn,

1437614843@qq.com

Siam-OM deals with the video tracking sequences in

two cases based on the number of video frames. If one

sequence has more than 3, 000 frames, we classify it as long

sequence, otherwise, short. For short sequences, we use

the ATOM framework [9]. To improve the recognizability

of the target object, we enhance the original input image

using Gamma non-linear correction, which improves the

tracking performance greatly in poor lighting conditions.

At the same time, we reduce the rate of hard negative

learning, which makes the tracker more robust in the case

of short-term occlusion. For long sequences, we use the

DaSiam [60] framework with ResNet structure [27]. To

solve the problem that the target always switches back and

forth, we use the sift feature matching algorithm [31] to

calculate the offset of the target between the current frame

and the previous frame.

A.17. Strategy and Motion Integrated Long-term
Experts (SMILE)

Ruiyan Ma, Yanjie Gao, Yuting Yang, Wei Song and

Yuxuan Li

3028408083@qq.com, yjgao@stu.xidian.edu.cn,

ytyang 1@stu.xidian.edu.cn, 522545707@qq.com,

liyuxuan xidian@126.com



SMILE combines two state-of-the-art trackers includ-

ing ATOM [9] and SiamRPN++ [27]. Our method makes

the systems more reliable respectively as different features

play different role in the process of tracking based on their

reliability. In addition, we improve the prediction of blurred

scenes by using the SIFT algorithm [31] to match features.

By estimating motion, the regression boxes can continue

tracking the target in case of occlusion. When encountering

dark or low-resolution scenes, we use threshold judgement

and image brightness enhancement processing.

A.18. An improved SiamRPN++ algorithm based
on sift matching algorithm, OpticalFlow-
PyrLK and Template Self-calibration (SOT-
SiamRPN++)

Zhizhao Duan, Wenjun Zhu, Xi Yu, Bo Han, Zhiyong Yu

and Ting He

{21825106,21810114,21810157,21810207}@zju.edu.cn,

yuk1062@163.com, the@zju.edu.cn

SOT-SiamRPN++ is improved from SiamRPN++ [27]. In

order to improve the tracking performance for small targets,

the original images are twice magnified. At training stage,

the magnified images are cut as the same size as the original

image based on the center of bounding boxes, with some

basic data augmentation. At testing stage, the cut work are

based on the center of bounding boxes in last frame. To

overcome the camera shaking, we use the idea of template

self-calibration, we modify the the box in last frame and

fix it in the center of the target. The bounding box will

not change in the template self-calibration algorithm to

avoid the box labeling in the wrong target. To solve slight

occlusion, we adopt the method of optical flow and tracker

running simultaneously. The input of optical flow is the

picture of the previous frame and the current frame, and

the location of optical flow feature points extracted from

the tracker box of the previous frame. The output is to

predict the position of the current frame optical flow feature

points.When encountering occlusion, the position of the

tracker becomes inaccurate, and the position marked by

optical flow feature points is taken as the output. For

night scene, we first use Laplacian operator to augment

the contrast of images, and then the SiamRPN++ tracker

can track the target by combining optical flow. We also

use the SIFT to match the target when the SiamRPN++

fails to track the target. Our training sets are ImageNet

VID/DET [41], YoutubeBB [39], COCO [30], and the

official VisDrone2018 training set [51].

A.19. A Self-adaptive Search Region and Re-ID ob-
ject tracking method (SSRR)

Ning Wang and Kaihua Zhang

20181222016@nuist.edu.cn

SSRR is improved from the ATOM algorithm [9].

First, we design a self-adaptive searching region based

on the motion speed of the target. Then, we add a Re-ID

tracking module to recognize when the target is lost.

Specifically, we use ResNet-34 to calculate appearance

feature, as well as discriminative correlation filters and

IOUNet to determine the location and bounding box of

the target. The network is fine-tuned on LaSOT [16],

COCO [30] and VisDrone2019 train-set.

A.20. Stable responsibility based deep learning
tracker (Stable-DL)

Yong Wang, Lu Ding, Robert Laganière, Jiuqing Wan

and Wei Shi

ywang6@uottawa.ca, dinglu@sjtu.edu.cn,

laganier@eecs.uottawa.ca, wanjiuqing@buaa.edu.cn,

weishi insky@126.com

Stable-DL is a novel stable responsibility based track-

ing method that uses two deep layers of VGG-19 backbone

to extract features. These two tracking results from two

layers are used to compute a stable responsibility which

is a metric to evaluate the quality of tracking results. The

final result is fused by the two tracking results and stable

responsibility.

A.21. Tracking and detection: a unified approach
(TDE)

Chunhui Zhang, Shengwei Zhao, Zhuojin Sun, Yong

Wang and Shiming Ge

{zhangchunhui, zhaoshengwei, geshiming}@iie.ac.cn,

harvards@gmail.com, ywang6@uottawa.ca

The TDE tracker unifies tracking and detection in a

simple way, achieving high performance general object

tracking. It mainly consists of two parts: the discriminative

correlation filter and detection module. Specifically, we

use the LADCF tracker [53] as the tracking module and

the Yolov3 detector [40] as the detection module. Besides,

we use a tracking failure measurement method like [48] to

decide when and how to refine tracking result according to

detecting result. If the refinement conditions are met, we

conduct adaptive tracking by weighting both the tracking

and detection results.

A.22. Tracking by Improved Overlap Maximization
(TIOM)

Shengyin Zhu and Yanyun Zhao

{pansiyang, zyy}@bupt.edu.cn

TIOM is built upon Accurate Tracking by Overlap

Maximization (ATOM) [9]. We have made some modifi-



cations to ATOM. First, we use generalized intersection

over union (GIoU) to replace traditional IoU in the target

estimation network. Second, to prevent camera shake,

we use the surf feature matching method [1] to calculate

the offset of the target between two consecutive frames to

locate the target position in the current frame correctly.

In addition, to deal with long-term occlusion, we enlarge

search area gradually and use Kalman Filter to predict

motion trajectory of the target if occlusion is detected. We

use ResNet-18 pretrained on ImageNet as our backbone

network and fine-tune it on the VisDrone2018 train set [51]

and LaSOT [16].
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