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Abstract

Object detection in specific views (e.g., top view, road

view, and aerial view) suffers from a lack of dataset, which

causes class imbalance and difficulties of covering hard ex-

amples. In order to handle these issues, we propose a hard

chip mining method that makes the ratio of each class bal-

anced and generates hard examples that are efficient for

model training. First, we generate multi-scale chips to train

object detector. Next, we extract object patches from the

dataset to construct an object pool; then those patches are

used to augment the dataset. By this augmentation, we can

overcome the class imbalance problem. After that, we per-

form inference with the trained detector on augmented im-

ages, then generate hard chips from misclassified regions.

Finally, we train the final detector by both normal and

hard chips. The proposed method achieves superior results

on VisDrone dataset both qualitatively and quantitatively.

Also, our model is ranked 3rd in VisDrone-DET2019 chal-

lenge (http://aiskyeye.com/).

1. Introduction

It is one of the challenging problems to cover a wide

range of object sizes in object detection. In particular, the

problem becomes more severe when the objects to be de-

tected are very small compared to the input image, such as

aerial images captured from drones or surface images for

defect detection. To alleviate this issue, early works train

models over a range of scales or use independent predic-

tions at layers of different resolutions [10, 14]. Moreover,

studies about network architecture dealing with multi-scale

objects have been proposed. For instance, feature pyra-

mid network (FPN) [15] uses hierarchical features to cover

multi-scale objects while deformable convolution [12, 5]

adjusts the receptive fields for objects of varying sizes.

Recently, to handle multi-scale objects in the training

stage, a new concept called chip was introduced [24, 19,

13]. The main idea of chip-based training is to train mod-

*They are equal contributors to this work.

els only with sub-images (i.e., positive chips) where objects

are likely to present rather than a whole image. For clar-

ity, in the remainder of this paper, we refer to the chip as a

sub-image while the image as a whole image. In chip-based

training, meaningful regions are extracted from a whole im-

age by using ground-truth bounding boxes, then resized to

an appropriate scale. To reduce the false-positive rate and

speed up the training process, Singh et al. [24] also uses

negative chip mining, which can skip easy background re-

gions.

Despite the recent promising results of chip-based train-

ing, there are still several issues when the dataset samples

are scarce. In this paper, we tackle two issues in object de-

tection.

Class imbalance: In the literature of class imbalance in

object detection, most studies have addressed the issue of

imbalance between foreground and background. Tradition-

ally, sampling heuristics or online hard example mining

were performed to balance between foreground and back-

ground [22]. Recently, focal loss was introduced to reduce

the contribution of easy background examples [16]. How-

ever, class imbalance within foreground classes has rarely

been addressed so far. Unfortunately, foreground-class im-

balance causes significant performance degradation, espe-

cially when the dataset samples are scarce.

Hard chip mining: Conventional negative chips [24, 19]

consist of background regions that are likely to include ob-

ject instances but do not contain ground-truth instances. Us-

ing negative chips enables to reduce the false-positive rate.

We argue that performance can be further improved by ag-

gressively using hard examples that confuse models. Here,

hard examples can be background regions, existing object

instances or synthesized object-like instances.

To address these issues, we propose hard chip-based

training, taking into account the imbalance between fore-

ground classes. Our core insight is to leverage object

patches, which are misclassified by models trained from



Figure 1. Overview of the proposed method. First, we train our detection model with positive (i.e., normal) chips. We then cut all

object instances in the dataset and paste them into the existing randomly selected images considering class imbalance and geometric shape

information. We also use an external dataset to reduce the false-positive rate and apply instance masking to resolve heterogeneity between

datasets efficiently. Given patch-level augmented images, we make an inference using models trained on normal chips; and then generate

hard chips containing misclassified instances. Finally, we retrain our detection model with hard chips as well as normal chips.

normal chips, as hard examples. Model inference is per-

formed on augmented images. For this, we cut object

instances from existing images, and paste them to the

other images. However, naively cutting and pasting ob-

ject patches in the existing image set can lead to degrade

performance. Therefore, we take into account geometric

shapes (e.g., location, scale, orientation) and appearance of

transparency when patches are pasted. We further propose a

scheme that can efficiently utilize external datasets to com-

pensate for the lack of existing training data. We evalu-

ate our method on VisDrone-DET dataset from VisDrone

challenge [27, 28, 25, 29, 6], which enables extensive eval-

uation and investigation of visual analysis algorithms on

the drone platform. With the proposed hard chip mining

method, our model is ranked 3rd in VisDrone-DET2019

challenge, which shows promising results of our method

quantitatively. Also, we provide inference results of our

model on VisDrone-DET2019, which shows the effective-

ness of our method qualitatively.

2. Related Work

Although deep learning-based approaches have shown

outstanding performance in various research fields [21, 10,

11, 2], there is a constraint that they usually require huge

amounts of data to ensure high performance. Data augmen-

tation is one of the effective techniques for increasing both

the amount and diversity of data without any supervision.

Conventionally, augmentation techniques, such as transla-

tion, flipping, and rotation, have been used to improve per-

formance by being applied to the input pipeline of existing

models. While various augmentation techniques are widely

applied in image classification [8, 1, 3], augmentation tech-

niques have rarely been addressed in object detection. The

need for data augmentation in object detection is more cru-

cial because collecting labeled data for object detection is

more costly. In considering data augmentation for object

detection, patch-level realism in [7] is closely related to our

method. While their augmentation method focuses on re-

alistic image synthesis, our patch-level augmentations con-

sider class imbalance and generate hard examples, which

lead to improve detection accuracy.

Several attempts have been made to solve class imbal-

ance problem which occurs in object detection. Tradition-

ally, sampling heuristics, such as a fixed foreground-to-

background ratio, have been applied to R-CNN-like detec-

tors by a two-stage cascade [21]. Shrivastava et al. [22]

propose online hard example mining (OHEM) [22], a sim-

ple modification of SGD that focus on hard examples. In

their method, training examples are sampled according to

a non-uniform, non-stationary distribution that depends on

the loss of each example. Recently, focal loss which ap-

proaches class imbalance from the perspective of loss [16].

They reshape the standard cross-entropy loss, which en-

ables to down-weights the loss assigned to well-classified

examples. Despite numerous efforts for class imbalance be-

tween foreground and background regions in object detec-

tion, class imbalance within foreground classes has rarely

been addressed until now. In this study, we propose a

method that can directly handle class imbalance between

foreground classes, and demonstrate its effectiveness in our

experiments.

Meanwhile, considerable efforts have been devoted to

cover a wide range of object sizes in object detection

[10, 15, 12, 24]. Among them, SNIPER [24] has shown

promising results in recent years, and several subsequent

approaches consider chip-based training for efficient object

detection [19, 13]. Motivated by these approaches, we train

our model with positive chips (i.e., sub-images) where ob-

ject instances are likely to present. In our approach, in-

stead of using conventional negative chip mining, we pro-

pose hard chip mining. While negative chips only focus on



Figure 2. Patch-level augmented images. (top) augmented images from VisDrone-DET dataset (bottom) augmented images from DOTA

dataset.

reducing the false-positive rate, our hard chips are designed

to not only reduce the false-positive rate but also leverage

augmented hard examples. Also, hard examples are aug-

mented considering the number of samples per each class,

so foreground-class imbalance can be effectively resolved

in our approach.

3. Method

Our objective is to solve the foreground-class imbalance

problem in object detection and to exploit hard examples

aggressively. To this end, we train our model using both

normal chips (i.e., positive chips) and our proposed hard

chips at multiple scales. Fig. 1 illustrates the overview of

the proposed method.

3.1. Network Architecture

Architecture choice is a very important issue in deep

learning-based approaches. Conventional object detection

techniques using deep neural networks can be divided into

two categories: one-stage detector and two-stage detector.

One-stage approaches jointly localize object instances and

classify their labels without the proposal extraction stage

commonly used in two-stage detectors. Compared to two-

stage detectors, the one-stage detectors are faster and sim-

pler but usually show a lower accuracy. As indicated by

[28], YOLO [20], SSD [18], and RetinaNet [16] are repre-

sentative one-stage models. On the other hand, two-stage

detectors first generate a pool of object proposals using a

separated region proposal generator and then predict accu-

rate object regions and their class labels. Representative

two-stage detectors include Faster R-CNN [21], R-FCN [4],

Mask R-CNN [9], and FPN [15]; and most studies use a

Faster R-CNN model as a baseline in recent years.

According to the report of VisDrone-DET2018 chal-

lenge [28], a total of 34 different object detection methods

were submitted and they can be categorized into four base-

line models: SSD [18], Faster R-CNN [21], R-FCN [4], and

FPN [15]. Consistent with the comparison results in the MS

COCO dataset [17], FPN achieves the best performance,

SSD performs the worst, and R-FCN outperforms Faster

R-CNN. Taking into account promising results of FPN in

previous studies, our model architecture is based on FPN-

based Faster R-CNN in which the backbone is ResNet-101.

3.2. Normal Chip Mining

Since most of the background regions are easy to clas-

sify, object detection can be efficiently processed on the

multiple regions-of-interest (ROIs) rather than a whole im-

age. Here, we consider the ROIs containing ground truth

instances in an image as normal chips. It is known that it

is better to ignore gradients of extremely large or small ob-

jects for each scale during multi-scale training [23]. To take

advantage of this scheme, we construct normal chips on a

multi-scale in which there is a desired area range for each

scale.



Given an image, Ni×Ni(i = 1, 2, . . . ,K) local window

traverses the whole image with a stride, and counts the num-

ber of valid ground-truth instances on each scale. We then

select the local window with the largest number of valid

ground-truth instances over all scales as a normal chip. We

additionally select the window that most encloses the re-

maining instances and repeat this process until all ground-

truth instances in the image are covered by normal chips.

Once normal chips are selected considering all scales, they

are resized to the same size, with the meaning of size nor-

malization. Training with normal chips uses only a subset

of the entire image, and thus, it allows the detection model

to be learned effectively with fewer operations. In other

words, since training with normal chips uses only a small

part of the whole image, it allows considerable savings in

computation.

3.3. Hard Chip Mining

If we only use normal chips that involve ground-truth

object instances, our model rarely observes background-

regions, which lead to increase false-positive rate. One of

the solutions is to use background regions for training, in

which object instances are likely to be present. For this,

previous approaches [24, 13] first train region proposal net-

work (RPN) for a couple of epochs. Then, object proposals

from this light RPN are used to find false-positive regions.

Instead of using light RPN, we use models trained from nor-

mal chips, which enables us to leverage hard examples.

In addition to false-positive cases, if the imbalance be-

tween foreground classes is severe, the overall detection

accuracy could be lowered. To resolve foreground-class

imbalance while efficiently reducing misclassification be-

tween foreground classes, we perform patch-level instance

augmentation as shown in the middle of Fig. 1. As a first

step, we generate object pool by using ground truth bound-

ing boxes from all instances in the dataset. We then sam-

ple patches from object pool with different probabilities for

each class and paste them into the existing randomly se-

lected images.

Note that we paste patches in the object pool to the en-

tire image (referred to canvas image) not the chip. We keep

the existing annotations in each canvas image and continue

to add annotations for added instances. During patch-level

augmentation, we obtain both the object pool and the canvas

images from the existing dataset. In addition to the existing

dataset, we use external datasets for obtaining canvas im-

ages. One of the challenges when using external datasets

is that classes can be different between an existing dataset

and external datasets. When we use canvas images from

external datasets, existing object instances with ambiguous

or conflicting classes in the canvas images are masked so

that they could not affect the training process. Fig. 2 shows

samples of patch-level augmented images. In the figure, the

Figure 3. The number of object instances per category in

VisDrone-DET. (top) number of object instances in original im-

ages (bottom) number of object instances on chips. ‘train-chip’

refers to a set consisting of chips from training images, while

‘train-aug-chip’ refers to a set consisting of chips to which patch-

level-augmentation is applied.

red bounding boxes refer to the masked regions due to class

ambiguity when using external datasets. Fig. 3 shows the

ratio of object instances in each category before and after

applying chip mining and patch-level augmentation. From

the figure, we can clearly see that patch-level augmentation

can efficiently handle the foreground-class imbalance that

exists in the dataset.

Once the patch-level augmented images are obtained, we

can generate hard examples by performing an inference to

them with the model, which was already trained from nor-

mal chips. Note that inference proceeds at image-level, not

at chip-level. We then generate hard chips for each scale, as

in normal chip mining, from the misclassified foreground

or background regions. Finally, we retrain the model using

both normal chips and the proposed hard chips. As a result,



Figure 4. Rate information for object instances per category in

VisDrone-DET. (top) sizes of object instances (bottom) aspect ra-

tios of object instances

our model can efficiently solve foreground-class imbalances

while actively using hard examples for model training.

4. Experiments

We demonstrate the effectiveness of our hard chip min-

ing method on VisDrone-DET dataset [27]. In Section 4.1,

we briefly describe the datasets and experimental settings

used in our experiments. We then present comparative re-

sults in Section 4.2. Finally, we show the qualitative results

of the proposed method in Section 4.3.

4.1. Experimental Setup

We evaluate our method on VisDrone-DET dataset [6], a

large-scale benchmark of 10,209 images taken from drones.

This dataset focuses on detecting predefined categories of

objects, e.g., ignored regions (0), pedestrian (1), people (2),

bicycle (3), car (4), van (5), truck (6), tricycle (7), awning-

tricycle (8), bus (9), motor (10), others (11). Fig. 4 shows

Figure 5. Images before and after applying masking to ‘ignored

regions’ highlighted in a red box (top) original image (bottom)

masked image

detailed information of object instances for each category.

As can be seen in the figure, VisDrone dataset includes a

large scale difference between categories, and the aspect ra-

tios of object instances are different compared to those in

MS COCO dataset. Based on the analysis of information

about object instances, we adjust the aspect ratio and scale

of anchor. By only adjusting the hyperparameters based

on the sample distribution analysis without changing the

model architecture, we confirmed a high-performance im-

provement.

Following the previous approaches [27], we use

the AP IoU=0.50:0.05:0.95, AP IoU=0.50, AP IoU=0.75,

ARmax=1, ARmax=10, ARmax=100, and ARmax=500

metrics to evaluate the results of detection algorithms.

These criteria penalize missing detection of objects as well

as duplicate detection results. Since ‘ignored regions’ and

‘others’ categories are not used in the evaluation, we do not

use both categories for training. Specifically, we masked

the regions to explicitly exclude the ‘ignored regions’,

which leads to improve performance. Fig. 5 shows the

input images before and after applying to mask to the

‘ignored regions.’ Also, in order to compensate for the lack

of training data from VisDrone-DET, we additionally use

DOTA [26], another large-scale dataset for object detection

in aerial images. As in ‘ignored regions’, we apply instance



Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]
Ours (multi-scale) 37.15 65.54 36.56 0.32 1.47 7.28 53.78

Ours (single-scale) 35.64 63.96 34.27 0.4 2.74 17.52 50.19

FPN 32.88 60.66 30.86 0.43 2.77 14.38 47.72

FPN (Default setting on MS COCO) 29.1 52.84 28.12 0.42 2.77 26.41 41.34

Table 1. Ablation studies on validation set of VisDrone2019-DET dataset.

Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]
DPNet-ensemble 29.62 54.00 28.70 0.58 3.69 17.10 42.37

RRNet 29.13 55.82 27.23 1.02 8.50 35.19 46.05

Ours 29.13 54.07 27.38 0.32 1.48 9.46 44.53

S+D 28.59 50.97 28.29 0.50 3.38 15.95 42.72

BetterFPN 28.55 53.63 26.68 0.86 7.56 33.81 44.02

HRDet 28.39 54.53 26.06 0.11 0.94 12.95 43.34

CN-DhVaSa 27.83 50.73 26.77 0.00 0.18 7.78 46.81

SGE-cascade R-CNN 27.33 49.56 26.55 0.48 3.19 11.01 45.23

EHR-RetinaNet 26.46 48.34 25.38 0.87 7.87 32.06 38.42

CNAnet 26.35 47.98 25.45 0.94 7.69 32.98 42.28

CornerNet* 17.41 34.12 15.78 0.39 3.32 24.37 26.11

Light-RCNN* 16.53 32.78 15.13 0.35 3.16 23.09 25.07

FPN* 16.51 32.20 14.91 0.33 3.03 20.72 24.93

Cascade R-CNN* 16.09 31.91 15.01 0.28 2.79 21.37 28.43

DetNet59* 15.26 29.23 14.34 0.26 2.57 20.87 22.28

RefineDet* 14.90 28.76 14.08 0.24 2.41 18.13 25.69

RetinaNet* 11.81 21.37 11.62 0.21 1.21 5.31 19.29

Table 2. Top 10 comparisons results in the VisDrone-DET2019 challenge. * indicates that the baseline algorithm submitted by committee.

More details can be found on the VisDrone homepage (http://aiskyeye.com/)

masking to resolve heterogeneity of categories between

VisDrone-DET and DOTA.

4.2. Comparison Results

Since the proposed method is based on FPN, we first

show our ablation studies with FPN trained on VisDrone-

DET. First of all, we use the default hyperparameters set to

MS COCO dataset. Then, we adjust those hyperparameters

to be suitable to VisDrone dataset. From the third and last

rows of Table. 1, we can see that simple hyperparameter ad-

justment can improve detection performance significantly.

With our hard chip mining method and multi-scale infer-

ence, the performance is much more enhanced, as shown in

the first and second rows of the Table. 1.

We also evaluate our method by participating in the

Visdrone-DET2019 challenge [6]. Table. 2 shows the com-

parison results on the leaderboard. A total of 46 teams

participated in the VisDrone-DET2019 challenge and our

method was ranked 3rd, including the baseline methods pro-

vided by the challenge organizers. As can be seen in Ta-

ble. 2, the proposed method outperforms the baselines sig-

nificantly. Our method shows 11.72 AP higher than Corner-

Net, which is the best baseline method, and also shows the

promising result comparable to the state-of-the-art methods.

4.3. Qualitative Results

The qualitative results of object detection are shown in

Fig. 6. From the figure, we can see that our hard chip min-

ing enables to detect small objects or dense objects that have

been difficult to detect by previous methods. Furthermore,

we can see that the proposed method shows a high detection

accuracy regardless of the scale (large or small), illumina-

tion of the image (day or night), and the shooting angle (top-

view or front-view).

5. Conclusion

Motivated by the observations about foreground-class

imbalance and lack of training data (especially hard ex-

amples), in this paper, we have presented a novel method

called a hard chip mining. We first train our model with

normal chips, which consist of ground-truth instances, then

use this model to extract hard examples. Finally, our detec-

tion model is trained by using a combination of normal and

hard chips. In the experiments, we have verified the effec-

tiveness of the proposed method by achieving competitive

results on VisDrone-DET2019 challenge. Also, we have

conducted ablation studies and shows qualitative results to

demonstrate the extensibility of the proposed method.



Figure 6. Qualitative result on VisDrone2019-DET validation set. Different colored bounding boxes mean different kinds of categories.
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