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Abstract

Recently, Siamese Network (SiamFC) has attracted

much attention due to its fast tracking capability. De-

spite many improvements introduced, its accuracy is still

far from human performance. We argue that there are sev-

eral problems with SiamFC tracker. In particular, the neg-

ative signals produced by SiamFC lead to noisy response

map. In addition, background noises prevent SiamFC from

extracting clean features from the template. To suppress

these distractions, first we propose a negative signal sup-

pression approach such that irrelevant features are deacti-

vated. Secondly, we demonstrate that image-level suppres-

sion is also important in maximizing the tracking accuracy

in addition to the existing feature-level suppression. With

better detection sensitivity, we further propose a Diverse

Multi-Template (DMT) approach for appearance adapta-

tion while reducing the risk of template drifting during long-

term tracking. In our experiments, we conduct extensive

ablation studies to demonstrate the effectiveness of the pro-

posed components. Our tracker named improved Siamese

(i-Siam) tracker is able to achieve state-of-the-art results on

UAV123, OTB-100, OxUvA, and TLP datasets compared to

the existing trackers. Nonetheless, our tracker runs in real

time, which is around 43 FPS.

1. Introduction

Automatic visual tracking has been a fundamental and

challenging task in the area of artificial intelligence and

computer vision [29, 22, 18, 31]. Given only a bounding

box of the target without specifying the object type in the

first frame, a tracker aims to correctly estimate bounding

boxes of the target in subsequent frames. This is useful in

many real-world applications, such as video surveillance,

autonomous systems, robotics, and so on. However, the

performance of recent trackers [26, 17, 32, 10] are still not

satisfying due to various challenges, for instance occlusion,

background clutter, motion blur, deformation, out-of-view,

camera perspective, etc.

Among the existing trackers, Siamese Network

(SiamFC) [1] that employed Convolutional Neural Net-

work (CNN) has been a popular tracker explored by many

researchers due to its fast tracking speed. Built on SiamFC,

many variants [26, 17, 10, 16, 28] have been proposed and

achieved better tracking accuracy. However, these SiamFC

variants are still far from human performance.

In this work, we inspect the fundamental design of the

SiamFC tracker. First, we find that SiamFC employed a

convolutional layer as their last layer of the CNN. Hence,

the output of CNN also contains negative signals before it

is fed to a cross correlation operation as input. Such design

is embraced in the traditional signal processing task [30]

to find negative correlation between two signals. However,

we argue that it is not useful in visual tracking as non-rigid

transformation invariance of the target is desired. Further-

more, matched negative signals will also contributes to high

confidence scores, resulting in noisy response map. Hence,

we propose a Negative Signal Suppression approach to de-

activate irrelevant features, such that they are exact zero.

This is similar to the traditional bag-of-codewords [5] and

deep sparse networks [7]. As will be shown in Section

3.2, the proposed approach is able to produce reasonable

response map, such that high scores cluster around similar

object with less noise.

Second, we also find that the templates used by SiamFC

consist of mostly background. Therefore, it can be expected

that CNN of SiamFC will extract extremely noisy features

from the template. Few works have been proposed to over-

come this problem by suppressing irrelevant features via a

learned attention module [26] or predefined mask [9]. In

this work, we show that it is also important to apply similar

technique at image-level to maximize the tracking accuracy.

With a more robust detection sensitivity, we further pro-

pose Diverse Multi-Template approach to adapt to appear-

ance changes during tracking. Different from the traditional

approaches [21, 16], the proposed approach stores a small



Figure 1: Overview of the proposed i-Siam framework. ‘*’ and ‘+’ are cross-correlation and weighted sum operations, respectively.

Background suppression is applied to all templates at image and feature (f-BGS) levels. NSS is the Negative Signal Suppression module.

Adj is the adjust layer.

amount of diverse templates that are collected during track-

ing, in addition to the first ground-truth template. Then,

multiple confidence maps are computed from each stored

templates and fused for a final score map. This prevents the

tracker from updating the template model aggressively that

causes small error accumulation and template drifting.

As a summary, our contributions in this paper are three-

fold. First, we propose a Negative Signal Suppression ap-

proach to compute less noisy and more robust response

map. Secondly, we show that background suppression at

image-level coupling with feature-level suppression can im-

prove the tracking accuracy significantly. Finally, we also

propose a Diverse Multi-Template approach that is more ro-

bust to template drifting during appearance adaptation. In

our experiments, extensive ablation studies are conducted

in order to demonstrate the effectiveness of each component

proposed. The experiments show that our tracker named i-

Siam achieves state-of-the-art result on UAV123 [20] and

OTB-100 [27] datasets, as well as significantly outperforms

the existing trackers on two long-term tracking datasets, ie.

OxUvA [25] and TLP [19]. Nonetheless, the proposed i-

Siam tracker is able to perform in real time.

2. Related Works

With the great success of deep learning, there emerge

a number of deep learning based trackers, which outper-

formed hand-crafted features [18]. Recently, [1] trained

SiamFC tracker using similarity learning. In contrast to

candidate proposal based deep trackers [23, 21], SiamFC

allows fast computation by matching the target template on

a dense grid of a search region in a single evaluation. Due

to its competitive performance in real time, many follow-up

works were proposed.

EAST [12] employed a cascading approach to early

stop the feature extractor when the low-level features are

sufficient to track the target in order to speed up the

tracker. SINT [23] incorporated optical flow information

and achieved better performance at the cost of computation

time (4 FPS). CFNet [24] introduced correlation filters (CF)

into SiamFC which provide fast solution in Fourier domain.

RASNet [26] introduced three kinds of attention mecha-

nisms and achieved better accuracy. SiamRPN [17, 32]

merged SiamFC and a region proposal subnetwork to es-

timate the aspect ratio of the target. SA-Siam [10] utilized

complementary appearance and semantic networks to pro-

vide richer target representation. Despite the improvements,

the tracking performance is still far from human perfor-

mance.

Few efforts on background suppression were introduced.

Traditional correlation filter based trackers [3, 4, 6] intro-

duced spatial regularization in their loss function to reduce

background noise. On the other hand, RASNet [26] and SA-

Siam [10] adopted careful trained attention modules. Siam-

BM [9] showed that predefined mask can achieve similar

results without the need of attention modules. However,

these works only applied the suppression at feature-level.

Appearance Adaptation is an important ingredient for

tracking task. Traditional approaches [2, 21] performed

model update by online finetuning the CFs or networks

via Stochastic Gradient Descent (SGD). DSiam [8] formu-

lated a closed-form solution in FTT domain for fast up-

date. SiamFC-lu [16] and MemTrack [28] updated their

templates via recurrent network. These methods are able to

achieve better accuracy but suffer from the model drifting

problem.

3. Proposed i-Siam Tracker

In this section, we describe our proposed improved

Siamese tracker (i-Siam). Our i-Siam tracker is built on

the SiamFC tracker [1]. Hence, we first revisit the SiamFC

tracking framework. Then, we explain the proposed Nega-

tive Signals Suppression and Background Suppression ap-

proaches. In addition, we also describe the proposed Di-

verse Multi-Template approach for appearance adaptation.



Finally, we explain the lost recovery method used in this

work for long-term tracking. Figure 1 summarizes the over-

all framework of the proposed i-Siam tracker.

3.1. Overview of the SiamFC Tracker

Assume that a video sequence has T frames, Ft is the

frame at time t ∈ {1, . . . , T}. Let Bt be the bounding box

of a target at frame t. The bounding box can be described

by a four-tuple (x, y, w, h), where (x, y) is the center coor-

dinates and w, h are the width and height of the bounding

box, respectively. During tracking, a ground-truth bound-

ing box B1 of a target is given based on F1. The task of a

tracker is to predict the bounding boxes {B2, . . . ,BT } for

the rest of the sequence {F2, . . . , FT }.

Let T1 be the target template image cropped from F1

based on B1, which is also resized to 127 × 127 resolu-

tion. On the other hand, the search region St is cropped

from Ft, centered at previously predicted location based on

Bt−1. Similarly, St is resized to 255× 255 resolution.

Next, the features f ′
1 and ft of T1 and St are com-

puted by a shared Convolutional Neural Network (CNN),

respectively. Formally, this operation can be described as

Φ : X → F , where Φ is the CNN operation, T ,S ∈ X , and

f ′, f ∈ F . In the SiamFC tracker, f ′
1 is used as the filter f∗

t

of frame t directly, such that f∗
t = f ′

1. Then, the response

map Rt is calculated with equation 1 via cross correlation

operation (∗):

Rt = ft ∗ f
∗
t (1)

In order to adapt to scale variation, M search re-

gions {S1
t , . . . ,S

M
t } with different scales {s1, . . . , sM} are

cropped from Ft. This will produce M response maps

{R1
t , . . . ,R

M
t }, respectively. The response maps will then

be upsampled to 272×272 resolution for more refined local-

ization. The estimation of the center (xt, yt) and the scale

index mt for Ft are then determined by maximizing the re-

sponse maps, i.e.

(xt, yt,mt) = argmax
x,y,m

Rm
t [x, y] (2)

Finally, the tracking results are represented as Bt =
(xt, yt, s

mt · wt−1, s
mt · ht−1). The SiamFC tracker is

trained by minimizing the loss function L(R, ŷ) given by

L(R, ŷ) = EZ

[ 1

|R|

∑

u

log(1 + exp(−ŷ[u] · R[u]))
]

(3)

where EZ is the expectation over the training dataset Z . ŷ

is the ground-truth labels with the same size as the response

map R and ŷ[u] ∈ {+1,−1} for each position u in the

response map. Meanwhile, |R| is the number of elements

in R. Typically, ŷ[u] = +1 if u is within a predefined radius

of the center, otherwise ŷ[u] = −1.

Figure 2: Measures the number of signals that have extremely

small or negative value in Siamese trackers with (i-Siam-nss)

or without (i-Siam-ori) negative signal suppression on OTB-100

dataset. Exact implies signals that are exactly zero. Negative im-

plies signals with negative value. The rest implies signals with

absolute value smaller than these thresholds.

Figure 3: Response maps of dense and sparse i-Siam trackers on

OTB-100 dataset. Top: Dense i-Siam tracker (without negative

signal suppression). Bottom: Sparse i-Siam tracker (with negative

signal suppression). Best viewed in color.

3.2. Negative Signal Suppression

After careful inspection of SiamFC [1] tracker’s design,

we found out that its output has a range of [−∞,+∞]. As

shown in Figure 2, the features extracted by SiamFC tracker

(i-Siam-ori) have large amount of negative signals (∼ 50%).

Meanwhile, we can also see that most features have strong

signal (more than 90% have absolute value > 10−2), in-

cluding negative signals.

In the context of traditional signal processing, cross cor-

relation [30] embraces negative signals in order to find neg-

ative correlation between two signals. However, we argue

that this property is not useful for visual tracking as it is

important for the features to be invariant to various trans-

formations, e.g. rotation and deformation. Intuitively, it is

more desired to deactivate a feature when it is not related to

an object. Such characteristic is embraced by the traditional

bag-of-codewords [5] and deep sparse networks [7], which

helps learning robust representations.



One may argue that negative signals can be viewed as

deactivated neurons. However, these large negative signals

will contribute to high confident score of cross correlation

when many negative signals match. The evidence is shown

in Figure 3 (top) such that the response maps are extremely

noisy, with relatively high scores on the background and

false positive objects.

To overcome this problem, we propose to suppress the

negative signals. In this work, we employed a simple and

low computation overhead method, that is Rectified Linear

Unit (ReLU) [7] for this purpose:

σ(x) =

{

x, if x > 0.

0, otherwise.
(4)

where σ is the ReLU operation. With this proposed mod-

ification, the Siamese tracker can also take advantage of

the sparse representation properties. As discussed by [7],

sparse representation is robust to small input changes and

more linearly separable. Moreover, these properties make

optimization easier, which can help the network to learn ro-

bust representation more effectively. Similar to [1], logistic

function is employed to bound the output of cross corre-

lation to a probabilistic range of [0, 1]. However, logistic

function requires its input to be in the range of [−∞,+∞]
while the modified model outputs value of range [0,+∞].
Hence, an adjust layer is stacked on top of the cross correla-

tion layer to adjust the range of its output. In this work, we

employed batch normalization layer [14] for this purpose.

As a result, around half of the neurons are suppressed to be

exact zero (see Figure 2). More importantly, the clusters of

the high scores are distributed around similar objects more

reasonably, as shown in Figure 3 (bottom).

3.3. Background Suppression

As shown in Figure 4 (top), templates are full of noisy

information as more than half of the area in the images are

background. This makes it hard for CNN to extract features

that best represent the target. Hence, it is desired to suppress

the background. In general, background suppression can be

done in two ways, that are feature-level and image-level.

[26, 9] employed feature-level suppression approach

by applying mask to highlight features of the target ob-

ject. Siam-BM [9] demonstrated that the efforts of training

object-specific mask (e.g. [26]) can be bypassed by lever-

aging the bounding box information. We employ similar

approach but with more rigorous suppression criteria. For-

mally, background suppression can be expressed by equa-

tion 5:

f̄∗ = f∗ · M (5)

where f̄∗ is the filter with background suppressed and ‘·’ is

the element-wise product. Meanwhile, the mask M is de-

Figure 4: Sample images of image-level background suppression.

Objects in the red bounding boxes are the targets. Top: original

template. Bottom: after background suppression.

Figure 5: Feature masks when the aspect ratio exceeds a prede-

fined threshold. Left: w

h
> tr; Center: max( h

w
, w

h
) < tr; Right:

h

w
> tr .

termined based on the aspect ratio and a predefined thresh-

old tr, as shown in Figure 5. Unlike [9], we also apply mask

when the target has aspect ratio of max( h
w
, w
h
) < tr. This

is because the image still contains large amount of back-

ground noises as shown in Figure 4 (top middle).

At image-level, similar suppression approach is applied

based on the aspect ratio according to the following equa-

tion:

Ī = I ·M (6)

where I is the original image and Ī is the image with back-

ground suppressed. As shown in Figure 4 (bottom), the val-

ues of the suppressed pixels are replaced with the average

value of the pixels for each channel.

3.4. Diverse Multi-Template approach

One limitation of the SiamFC tracker is its inability to

adapt to appearance variations as the template remains un-

changed during tracking. Hence, it is desired to employ

a template update module into SiamFC. However, existing

approaches [2, 21, 8, 16] suffer from template drifting prob-

lem. This is because templates obtained during tracking are

not always reliable, resulting in small errors accumulation.

Interval update was employed in the aforementioned works

in order to relax the problem. Despite the efforts, the same



Figure 6: Stored templates (before background suppression) after

200 frames for different sequences of OTB-100. Images in the red

bounding box are the first templates for each sequence. The rest

are the pseudo-templates.

problem persists and will become worse in long-term track-

ing task [25].

To overcome this problem, we propose Diverse Multi-

Template (DMT) approach. Compared to the aforemen-

tioned methods, the key ideas are first, only a small amount

of the templates obtained during tracking are stored. Sec-

ond, these stored templates should be visually diverse. By

satisfying these criteria, diverse features can be stored to

adapt to appearance changes while avoiding aggressive up-

date.

To be specific, a set of templates T ∗ = {T1, . . . , TK+1}
are stored in the memory. K is the number of other tem-

plates to be stored, in addition to the first template T1. In

this work, we shall name these extra templates as pseudo-

templates as they are obtained based on the tracker’s predic-

tion. Apparently, most of the templates have similar visual

appearance. Therefore, it is desired to discard these redun-

dant templates while ensuring the stored templates are di-

verse.

Given a new candidate template TK+2 obtained from

frame t − 1, we aim to update T ∗ based on current T ∗

and TK+2. This can be done by computing the distances

between these templates in feature space. Then, T ∗ will

be replaced by K + 1 templates with largest distances.

Note that T1 is always stored as it is the ground-truth tem-

plate. Formally, T ∗ will be updated if the confidence score

max(Rt−1) > τ , where τ is a predefined threshold. Let

{f1, . . . , fK+2} be the extracted features for all templates

{T1, . . . , TK+2}, the distance dij between any two tem-

plates i, j ∈ {1, . . . ,K + 2} is then defined as:

dij = ||fi − fj ||
2 (7)

where || · || is the l2-norm. Therefore, the distance Di be-

tween template i and all other templates can be computed

via averaged distance:

Di =

∑K+2

j=1,j �=i dij

K + 1
(8)

Since we always use T1 as one of the templates, we only

need to calculate {D2, . . . ,DK+2} for {T2, . . . , TK+2}.

Hence, the templates collection can be updated by replacing

{T2, . . . , TK+1} with K pseudo-templates that have larger

averaged distances. Figure 6 shows that the proposed DMT

approach is able to store diverse templates.

During tracking, all stored templates are used to compute

the response maps {R1
t , . . . ,R

K+1
t } at frame t. Intuitively,

the fused response map Rt can be calculated via weighted

summation:

Rt = αR1
t +

1− α

K

K+1
∑

k=2

Rk
t (9)

where α is the weight to balance the contributions of the first

template R1
t and other pseudo-templates {R2

t , . . . ,R
K+1
t }.

3.5. Lost Recovery for Long-term Tracking

In this paper, we also evaluate our proposed i-Siam

tracker on long-term tracking datasets. Hence, it is impor-

tant to employ a strategy for handling target disappearance

and re-appearance problem. In this work, we apply a simply

strategy by gradually increasing the search region size to a

maximum of 767×767 resolutions when the detection score

is below a predefined threshold. The search region size will

be reset to the original size when the target is re-detected

successfully.

4. Experimental Results

In this section, we evaluate the performance of the pro-

posed i-Siam tracker against the state-of-the-art trackers.

We also validate the contribution of each proposed compo-

nent via ablation studies.

4.1. Experiment Settings

We follow most of the settings in [1] in our experiments.

Specifically, we employ AlexNet [15] as our Siamese net-

work. All trackers are trained via SGD with momentum

of 0.9 on GOT-10K training-set [13]. The weights of the

networks are initialized using Xavier method [11]. Train-

ing is performed for 50 epochs with mini-batch size of 8.

The learning rate is annealed geometrically at each epoch

from 10−2 to 10−5. To handle scale variations, we search



Table 1: Ablation studies for each proposed component on OTB-

100 and TLP. ✗ indicates that the component is removed. NSS:

Negative Signals Suppression; f-BGS: Feature-level Background

Suppression; I-BGS: Image-level Background Suppression; DMT:

Diverse Multi-Template approach

NSS f-BGS I-BGS DMT AUC

OTB-100 UAV123

67.7 0.586

✗ 66.2 0.566

✗ ✗ 64.5 0.564

✗ ✗ ✗ 63.3 0.554

✗ ✗ ✗ ✗ 61.2 0.539

the target over 3 scales 1.025{−1,0,1}. Empirically, we set

τ = 0.9 for templates update and α = 0.5 for the response

maps fusion.

We conduct our experiments on a machine equipped with

one NVIDIA Titan Xp and an Intel Core i7-7700K at 4.20

GHz. With K = 5, the proposed i-Siam operates at around

43 FPS, depending on how many times lost recovery is trig-

gered, while still able to achieve competitive performance.

The ablation studies are conducted on UAV123 [20] and

OTB-100 [27]. Then, the best setting found is employed

to validate the performance of the proposed i-Siam on the

long-term tracking datasets, ie. OxUvA [25] and TLP [19].

4.2. Ablation Studies

Table 1 shows the ablation studies on the performance

of the proposed tracker when each component is removed.

As we can see, the tracking accuracy dropped significantly

when each component is removed. By making these sim-

ple modifications to address the design flaws of SiamFC

tracker, the tracking accuracy can be improved significantly

(at least 4.7% AUC increment) with minimal additional

computation requirement. In order to understand how K af-

fects the performance, we conducted experiments on OTB-

100 using different values for K. As shown in Figure 7,

K = 5 achieved the best result. We also find that setting

K > 5 does not benefit the tracking accuracy.

4.3. Results on OTB-100

OTB-100 [27] is an object tracking dataset with 100 se-

quences for evaluation. Table 2 reports the performance of

the proposed i-Siam and other real-time trackers on OTB-

100 based on various attributes. First, we can see that i-

Siam is able to achieve top-3 performance on all attributes.

Unlike DaSiamRPN [32], i-Siam does not employ aspect ra-

tio adaptation. Furthermore, i-Siam only employs one net-

work while SA-Siam [10] requires two different networks

to operate. However, i-Siam is still able to outperform these

trackers and achieve the best overall performance. Figure 8

compares i-Siam with the state-of-the-art trackers. i-Siam

Figure 7: Ablation studies for different numbers of pseudo-

templates K.

Figure 8: Comparisons between the proposed i-Siam and state-of-

the-art trackers on OTB-100 dataset.

outperformed most of the other trackers including MDNet

[21], which is one of the top performing tracker that oper-

ates at 1 FPS. While ECO [2] is still the best tracker, its

accuracy is only marginally higher against ours (0.7%) but

operates at only 8 FPS.

4.4. Results on UAV-123

UAV123 [20] is a dataset with sequences captured from

drone for aerial tracking. It contains 123 sequences with

average sequence length of 915 frames. Figure 9 compares

our proposed i-Siam tracker with state-of-the-art trackers.

The figure shows that i-Siam tracker is able to outperform

other trackers on aerial tracking. These trackers include

ECO [2], which is the best performing tracker on OTB-100.

In addition, our i-Siam tracker also outperformed DaSi-

amRPN [32] without aspect ratio adaptation implemented



Table 2: Comparisons between the proposed i-Siam and other real-time trackers based on different attributes for the OTB-100 dataset. The

colors refer to the top-3 best performing trackers on each attribute in the order of 1st, 2nd, and 3rd.

models background deformation fast in-plane illumination low motion occlusion out-of-plane Out of scale overall

clutter motion rotation variation Resolution blur rotation view variation

i-Siam (Ours) 65.3 62.5 66.3 63.5 66.5 62.7 69.5 64.0 66.2 62.8 66.7 67.7

DaSiamRPN 61.6 62.6 61.6 65.5 62.2 56.0 62.9 60.0 63.9 53.8 62.9 64.7

SA-Siam 61.2 57.7 63.2 62.5 61.6 67.7 65.7 62.4 64.3 60.8 63.9 64.6

MemTrack 58.4 52.9 62.3 60.5 58.6 58.1 62.5 58.1 60.7 55.0 60.6 62.5

SiamFC-lu 55.9 55.0 61.8 62.4 58.9 60.2 61.4 60.3 61.9 56.9 60.5 62.4

DSiamM 55.7 51.8 57.2 58.9 55.9 55.9 56.2 56.1 59.0 49.7 55.8 58.8

SiamFC 49.8 50.6 58.1 56.8 54.1 57.8 57.5 54.0 56.1 50.2 56.6 57.7

STAPLE 53.4 53.8 54.0 55.2 55.5 38.4 54.8 54.1 53.5 47.4 51.8 57.0

(a) (b)

Figure 9: Comparisons between the proposed i-Siam and other trackers on UAV-123 dataset. (a) Success plot; (b) Precision plot.

Figure 10: Performance of the proposed i-Siam and existing track-

ers on TLP dataset.

in our tracker. Based on the fact that i-Siam tracker attained

significantly better precision score compared to the second

best tracker (3.2% difference as shown in Figure 9(b)), we

deduce that i-Siam tracker has significantly better localiza-

tion capability compared to other trackers.

4.5. Results on TLP

TLP [19] is a long-term tracking dataset, consists of

50 videos from real-world scenarios. This dataset encom-

passes a duration of over 400 minutes or 676K frames. This

makes it more than 20 times larger compared to the existing

generic tracking datasets in terms of duration per sequence.

TLP uses the same evaluation metric as OTB-100. Fig-

ure 10 visualizes the performance of the proposed i-Siam

and the state-of-the-art trackers. In this experiment, i-Siam

tracker significantly outperforms other trackers, including

MDNet and ECO. Figure 11 depicts some sample tracking

results on TLP.

4.6. Results on OxUvA

OxUvA [25] comprises of dev and test sets with 366 ob-

jects in 337 sequences spanning 14 hours. In this work,

we compare the proposed i-Siam with other trackers on

both sets in open challenge. Unlike other benchmarks, Ox-

UvA uses True Positive Rate (TPR) and True Negative Rate

(TNR) to assess the performance. Conceptually, TPR is

similar to the measurement used in OTB-100. Meanwhile,

TNR reports the ability of a tracker to classify the target

as absent. To obtained a single measurement, they also



Figure 11: Tracking results of 6 TLP video sequences, using our i-Siam and 3 existing trackers. The images are cropped and enlarged for

better visualization. Best viewed in color and pdf.

(a) (b) (c)

Figure 12: Comparisons between the proposed i-Siam and other trackers on OxUvA dataset. (a) Performance on dev set; (b) Performance

over time on dev set; (c) Performance on test set.

proposed the maximum geometric mean (MaxGM). How-

ever, readers should be noted that MaxGM is also heavily

affected by TNR, such that trackers that do not report if a

target is absent will always have lower MaxGM compared

to their counterparts. In this case, comparisons should be

done via TPR only. Our i-Siam tracker classifies the target

as absent if Rt < 0.4.

Figure 12 (a) and (c) shows the performance of the com-

pared trackers on OxUvA. The proposed i-Siam achieved

state-of-the-art results on both sets. Meanwhile, Figure 12

(b) shows the performance of the trackers over time. The

figure shows that the proposed tracker is able to maintain

the performance over time. On the other hand, the perfor-

mance of the other trackers tend to decay significantly over

time. This demonstrates the effectiveness of the proposed

DMT on appearance adaptation with better robustness to

template drifting.

5. Conclusions

In this paper, we showed that existing SiamFC tracker

suffers from many design flaws that hampered its perfor-

mance. In order to overcome these problems, first we pro-

posed a Negative Signal Suppression approach to compute

less noisy response map. Furthermore, we demonstrated

that combining image-level and feature-level background

suppression is able to reduce the noisy information caused

by large coverage of background in the template. With

better detection sensitivity, we further proposed a Diverse

Multi-Template approach for appearance adaptation while

maintaining the robustness to template drifting. Our abla-

tion studies showed that these simple modifications are able

to improve the tracking accuracy significantly. Finally, we

showed that this proposed i-Siam tracker is able to achieve

state-of-the-art results on 4 different tracking datasets, in-

cluding 2 long-term tracking datasets. Nonetheless, it is

able to run in real time. For future work, we plan to ex-

tend the work to handle disappearance problem and aspect

ratio adaptation better.

References

[1] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. Torr. Fully-convolutional siamese networks for object



tracking. In European conference on computer vision, pages

850–865. Springer, 2016. 1, 2, 3, 4, 5

[2] M. Danelljan, G. Bhat, F. S. Khan, M. Felsberg, et al. Eco:

Efficient convolution operators for tracking. In CVPR, vol-

ume 1, page 3, 2017. 2, 4, 6

[3] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Fels-

berg. Convolutional features for correlation filter based vi-

sual tracking. In Proceedings of the IEEE International Con-

ference on Computer Vision Workshops, pages 58–66, 2015.

2

[4] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg.

Learning spatially regularized correlation filters for visual

tracking. In Proceedings of the IEEE International Confer-

ence on Computer Vision, pages 4310–4318, 2015. 2

[5] L. Fei-Fei and P. Perona. A bayesian hierarchical model for

learning natural scene categories. In 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recog-

nition (CVPR’05), volume 2, pages 524–531. IEEE, 2005. 1,

3

[6] H. K. Galoogahi, A. Fagg, and S. Lucey. Learning

background-aware correlation filters for visual tracking. In

ICCV, pages 1144–1152, 2017. 2

[7] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse recti-

fier neural networks. In Proceedings of the fourteenth inter-

national conference on artificial intelligence and statistics,

pages 315–323, 2011. 1, 3, 4

[8] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and S. Wang.

Learning dynamic siamese network for visual object track-

ing. In The IEEE International Conference on Computer Vi-

sion (ICCV).(Oct 2017), 2017. 2, 4

[9] A. He, C. Luo, X. Tian, and W. Zeng. Towards a better

match in siamese network based visual object tracker. In

Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 0–0, 2018. 1, 2, 4

[10] A. He, C. Luo, X. Tian, and W. Zeng. A twofold siamese

network for real-time object tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4834–4843, 2018. 1, 2, 6

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the IEEE international con-

ference on computer vision, pages 1026–1034, 2015. 5

[12] C. Huang, S. Lucey, and D. Ramanan. Learning policies for

adaptive tracking with deep feature cascades. In IEEE Int.

Conf. on Computer Vision (ICCV), pages 105–114, 2017. 2

[13] L. Huang, X. Zhao, and K. Huang. Got-10k: A large high-

diversity benchmark for generic object tracking in the wild.

arXiv preprint arXiv:1810.11981, 2018. 5

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

arXiv preprint arXiv:1502.03167, 2015. 4

[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, pages

1097–1105, 2012. 5

[16] B. Li, W. Xie, W. Zeng, and W. Liu. Learning to update for

object tracking. arXiv preprint arXiv:1806.07078, 2018. 1,

2, 4

[17] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High perfor-

mance visual tracking with siamese region proposal network.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 8971–8980, 2018. 1, 2

[18] P. Li, D. Wang, L. Wang, and H. Lu. Deep visual tracking:

Review and experimental comparison. Pattern Recognition,

76:323–338, 2018. 1, 2

[19] A. Moudgil and V. Gandhi. Long-term visual object tracking

benchmark. arXiv preprint arXiv:1712.01358, 2017. 2, 6, 7

[20] M. Mueller, N. Smith, and B. Ghanem. A benchmark and

simulator for uav tracking. In European conference on com-

puter vision, pages 445–461. Springer, 2016. 2, 6

[21] H. Nam and B. Han. Learning multi-domain convolutional

neural networks for visual tracking. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 4293–4302, 2016. 1, 2, 4, 6

[22] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual tracking: An experimental

survey. IEEE transactions on pattern analysis and machine

intelligence, 36(7):1442–1468, 2014. 1

[23] R. Tao, E. Gavves, and A. W. Smeulders. Siamese instance

search for tracking. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 1420–

1429, 2016. 2

[24] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and

P. H. Torr. End-to-end representation learning for correlation

filter based tracking. In Computer Vision and Pattern Recog-

nition (CVPR), 2017 IEEE Conference on, pages 5000–5008.

IEEE, 2017. 2

[25] J. Valmadre, L. Bertinetto, J. F. Henriques, R. Tao,

A. Vedaldi, A. Smeulders, P. Torr, and E. Gavves. Long-

term tracking in the wild: A benchmark. arXiv preprint

arXiv:1803.09502, 2018. 2, 5, 6, 7

[26] Q. Wang, Z. Teng, J. Xing, J. Gao, W. Hu, and S. May-

bank. Learning attentions: residual attentional siamese net-

work for high performance online visual tracking. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 4854–4863, 2018. 1, 2, 4

[27] Y. Wu, J. Lim, and M.-H. Yang. Object tracking benchmark.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 37(9):1834–1848, 2015. 2, 6

[28] T. Yang and A. B. Chan. Learning dynamic memory net-

works for object tracking. arXiv preprint arXiv:1803.07268,

2018. 1, 2

[29] A. Yilmaz, O. Javed, and M. Shah. Object tracking: A sur-

vey. Acm computing surveys (CSUR), 38(4):13, 2006. 1

[30] J.-C. Yoo and T. H. Han. Fast normalized cross-correlation.

Circuits, systems and signal processing, 28(6):819, 2009. 1,

3

[31] P. Zhu, L. Wen, X. Bian, H. Ling, and Q. Hu. Vision meets

drones: A challenge. arXiv preprint arXiv:1804.07437,

2018. 1

[32] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu.

Distractor-aware siamese networks for visual object track-

ing. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 101–117, 2018. 1, 2, 6


