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Abstract

Scale variation is one of the primary challenges in the

object detection, existing in both inter-class and intra-class

instances, especially on the drone platform. The latest

methods focus on feature pyramid for detecting objects at

different scales. In this work, we propose two techniques

to refine multi-scale features for detecting various-scale in-

stances in FPN-based Network. A Receptive Field Expan-

sion Block (RFEB) is designed to increase the receptive

field size for high-level semantic features, then the generat-

ed features are passed through a Spatial-Refinement Mod-

ule (SRM) to repair the spatial details of multi-scale objects

in images before summation by the lateral connection. To

evaluate its effectiveness, we conduct experiments on Vis-

Drone2019 benchmark dataset and achieve impressive im-

provement. Meanwhile, results on PASCAL VOC and MS

COCO datasets show that our model is able to reach the

competitive performance.

1. Introduction

Convolutional neural network (CNN) achieves great

breakthrough in various kinds of fields in computer vision

[7], however, object detection on the drone platform is stil-

l a challenging task [31]. Since the objects are of various

scales due to different viewpoints both in inter-class and

intra-class instances, large scale variation has became one

of the main factors that affect the performance of the detec-

tion task [24] [27] [32] [25] [33]. Moreover, the viewpoints

change even more dramatically in the drone image detec-

tion task. As shown in figure 1, the first two rows show

the images from VisDrone2019 benchmark dataset [31]. In

the first example, when the drone is at very high altitude,

even the object of large size like a bus becomes difficult

to be recognized. However, the bus in the second image

shows clear characteristic when the drone is at normal alti-

tude. The same thing happens to the person in the second

example. The third row demonstrates the general problem

in COCO dataset [14], and by comparison, it also shows

Figure 1. The three sets of images from VisDrone2019 benchmark

dataset [31] and COCO dataset [14] demonstrate the scale varia-

tion phenomenon occurs in intra-class objects. e.g. The sheep in

the left image occupy extremely small part of space of the whole

scene with a relatively smaller body than sheep in the right im-

age. Meanwhile, we can see the scale differences between class-

es. Thus, detectors should correctly recognize them from different

views with not only high, but also quite low resolution at the same

time.

that the problem is more serious in drone image detection.

Generally, we can divide these CNN methods into two

types: one stage methods like Yolo [18] or SSD [16] which

predicts the final boxes directly from feed-forward CNN,

and two stage methods like Faster R-CNN [20] or R-FCN

[3] which predicts the results through preliminary proposal-

s and refined features extracted from it. However, since the

feature map form a single layer of the convolutional neu-

ral network has limited capacity of representation, recent

works focus on feature fusion for object detection. A classi-

cal method is to combine low-level and high-level features



through a summation or concatenation operation. In this

case, the lateral connection is proposed to add the features

of backbone network to improve the ability to characterize

objects with simple appearances. For example, FPN [12]

use a top-down architecture and lateral connections to com-

bine features at different depths.

As we all know, the receptive field becomes very large

while the resolution becomes small when the feature maps

are in deeper layers. As shown in figure 1, the remote small

sheep in left image occupies a small part of the whole space

of original picture, it will even become a little point in the

last layer because of that reason, result in the huge difficul-

ty in recognition. On the contrary, the same-category sheep

in right image shows a bigger body, which will get more

and more blurry in surroundings as the layer goes deep-

er. Both of the two images jointly show a simple example

of scale variation in object detection task. However, there

are two reasons that simply incorporating high-dimensional

without any refinement is not representative enough for de-

tection task. First, as the backbone network is trained for

ImageNet [21] classification task, it is unbefitting to use the

features directly for object detection. Second, the high-level

feature maps are of fairly low spatial resolution, so that lack

of the unbroken information to localize the large objects ac-

curately or recognize the small objects.

SNIP [22] made an analysis that the scale of the small-

est and largest 10% of object instances in COCO is 0.024
and 0.472 respectively, which results in scale variations of

almost 20 times. They proposed Scale Normalization train-

ing scheme for Image Pyramids to achieve better perfor-

mancewhile leaded to complex in practice. STDN [30] tried

to utilize the Scale-Transfer Module to expand the resolu-

tion of the feature map for object detection, which destroy

the original spatial location relation and channel informa-

tion. RFBNet [15] developed a Receptive Field Block to

strengthen the deep features, however, it focused on the one

stage method with the last layer for prediction, which re-

sulted in a lack of multi-scale information.

In order to obtain feature maps of sufficient representa-

tion, we propose a Receptive Field Expansion Block (R-

FEB) to increase the receptive field size for high-level se-

mantic features, and a Spatial-Refinement Module (SRM)

to repair the spatial details of multi-scale objects in im-

ages. In particular, we only add the SRM to the deep lay-

ers as the resolution of the shallow layers is large enough.

Meanwhile, SRM take the spatial relation into consideration

which is mainly different from the traditional FPN-based

detectors, and the results show a consistent improvement in

section 4.

Overall, Our contributions could be summarized into

three-fold. 1) We introduce a Receptive Field Expansion

Block and a Spatial-Refinement Module which general-

ly refine features of traditional FPN-based model. 2) We

achieve impressive improvement on VisDrone2019 bench-

mark dataset and competitive performance on two classic

detection benchmarks. 3) We take the spatial relation in-

to consideration to repair the spatial details of multi-scale

objects in images to solve scale variation problem.

2. Related Work

Nowadays, almost all state-of-the-art methods are based

on CNN networks, and have achieved dramatic break-

through. We can divide these methods into two categories:

one stage methods and two stage methods. YOLO [18] is

the typical example of one stage methods, which avoids to

generate the proposals, only uses a single feed-forward CN-

N network to directly predict the final bounding boxes. SSD

[16] refers to the two stage method to add anchors mecha-

nism, improving the accuracy further. The intuition of SSD

is to use low-level features to detect small objects because

high-level features suffer from the low resolution in a way

that the information is highly aggregated in higher layers.

However, feature maps from the first several convolution,

which are crucial for detecting small objects ,was not re-

ally leveraged in SSD. DSSD [5] uses deconvolution lay-

ers to upgrade the SSD for more context information. In

contrast, RCNN [6] series detectors are the base of the two

stage methods, which utilize the backbone network to pro-

duce proposals first, then perform the predictions based on

them.

Recently, scale variation brings great attention in objec-

t detection, an analysis of scale invariance in SNIP [22]

shows that the variation in scale which a detector needs

to handle is enormous, there is a big gap in size between

largest and smallest scale object. Besides, the problem of

domain-shift follows as the scale variation is really not the

same as that on classification datasets.

Image pyramids was the mostly used method to deal with

object detection at different scales before deep learning. S-

cale invariance is an inherent property of image pyramids

since it is constructed by down-sampling the original image

with Gaussian blur. However, an obvious limitation of this

method is the computational resource it needs when pro-

cessing one image, the model has to perform independent

computation for images from all scales.

FPN addressed the problem in SSD by introducing the

top-down connection to fuse features with high semantic

meaning but low resolution and features with low seman-

tic meaning but high resolution together. In order to match

the size of these two kinds of feature maps, the feature map

from higher layer was up-sampled before being added to the

low-level feature map which is, at the same time, convolved

by 1 × 1 kernels to obtain the same number of channel-

s. It was called top-down architecture and lateral connec-

tions in FPN. Features at different depths were combined in

this way to obtain multi-scale features for object detection.
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Figure 2. The proposed architecture is mainly based on the DetNet. It consists of three components. The top grey region represents the

backbone feature extractor, including a ResNet-50 architecture and two extra layers. The bottom blue region represents the individual loss

from stage 2 to stage 6, they make prediction independently. The middle region shows where the RFEB and SRM perform. Especially, the

SRM is only added at the last three layers.

Recent advanced detectors take advantage of FPN architec-

ture to solve the scale variation problems, such as RetinaNet

[13] and RefineDet [28]. M2Det [29] designed a block of

alternating joint Thinned U-shape Modules and Feature Fu-

sion Modules to extract multi-scale features, then gathered

up the feature maps with equivalent scales to construct the

final feature, which increased computation because of the

double network skeleton, greatly affecting the training and

inference speed. Our method combines features of different

layers and use Spatial-Refinement Module to repair feature

maps with different resolutions, which can bring more con-

text information than the other model without it, meanwhile

keep the small additional computational cost.

3. Proposed Method

3.1. Network Architecture

In this section, we first introduce the base network

which is our feature extraction network component, Spatial-

Refinement Module (SRM) and Receptive Field Expansion

Block (RFEB).

We adopt DetNet [11] as an example, which is a net-

work modified on the basis of FPN. The improved back-

bone keeps the former 4 stages stay as original ResNet-50

[9], while adding the stage 5 and stage 6 with the same s-

patial resolution as the fourth stage. Finally, an arbitrary

single-scale image is put into the network, it will output

five feature maps from different fusion layers at multiple s-

cales for prediction. In recent works, for a more in-depth

study, researches on object detection have finely divided

their views into the sub-problems of classification and lo-

calization respectively. As mentioned in [17], classification

task requires the model to be invariant to various transfor-

mations while localization is more accurate if the model is

transformation-sensitive. As we notice that scale variation

influences both classification and localization, the model,

on the one hand, has to be able to recognize the object at

different scales, on the other hand, must adjust the bound-

ing box accordingly. We propose RFE block and SRM to

partially address the contradictory problem.

3.2. Receptive Field Expansion Block

Due to the increase of the receptive field of neuron-

s, down-sampling does well in classification task, which

is, however, not necessarily beneficial for object detection

because localization may suffer from the absence of the

fine location information. The proposed RFEB address the

problem by using skip connection [9] to increase the recep-

tive field. As shown in figure 3(a), the former two branches

of RFEB decomposes a k×k convolution kernel into a k×1
and a 1× k kernels without any other activation function in

between, leading to a bigger receptive field. [17] proposed

a similar GCN module different from the separable kernels

used by [23], enabling densely connections in a wider re-

gion in feature maps. What our block is different from both

of them is that we add the third branch to integrate the o-
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Figure 3. (a) shows the operation of Receptive Field Expansion

Block (RFEB). From the bottom up, it decomposes a k × k con-

volution kernel into a k × 1 and a 1× k kernels in the former two

branches, with a skip connection operation in the third branch.

(b) demonstrates the Spatial-Refinement Module (SRM) in detail,

note it only added on the last three layers following RFEB.

riginal features back to it, guaranteeing the primary spatial

relation to some extend.

3.3. Spatial-Refinement Module

SRM repairs the spatical information of the features re-

fined by the RFEB. The activation in a deeper layer depend-

s normally more on the center of the receptive field rather

than the periphery which is, however, more important for

localization. Thus, There are two convolution layers in the

skip connection branch to model the residual between the

input and the output of SRM, through which the contribu-

tion of the periphery of the receptive field is enhanced in or-

der to boost localization. The SRM aims to increase the sen-

sitiveness of boundary so as to reduce the impact of invalid

context for regression on object location. Notably, when the

network is relatively shallow and the feature map is relative-

ly lager, the SRM is used prematurely to enforce regression

boundaries can lose some meaningful context information,

so the SRM is only applied on the C4, C5 and C6, rather

than C2 and C3.

4. Experimental Results and Discussions

Data Augmentation. We use several data augmentation

strategies presented in [16] to construct a robust model to

adapt to variations of objects. That is, we randomly ex-

pand and crop the original training images with additional

random photometric distortion and flipping to generate the

training samples. Please refer to [16] for more details.

Hard Negative Mining. In the matching step, most of the

anchor boxes are negatives, we use hard negatives mining to

mitigate the extreme foreground-background class imbal-

ance. We select some negative anchor boxes with top loss

values to make the ratio between the negatives and positives

below 1:1, rather than using all negative anchors.

Figure 4. Two yellow activations from the green feature map has

the same valid receptive field, which is the overlap of two gray

receptive fields on the input blue image.

4.1. Discussion on Receptive Field of ResNet-50

ResNet-50 architecture is taken as the backbone of our

model. The sizes of the receptive field for single activation

after each convolution stage are 35×35, 99×99, 323×323
and 419× 419 pixels, respectively. As illustrated in the fig-

ure 4 (the color channel is neglected for the brevity), the

green one represents one channel from the feature map af-

ter several convolutions. Taking the two yellow activation

as an example, even though the receptive fields are not iden-

tical (two squared gray regions), they overlap the same valid

image region. More formally, denote the receptive field as

RF , RF (fk(i, j)) is the same for any j given a fixed i and

k. Ideally, activation of the same channel should represent

the same type of feature at different spatial positions. But

an overlapped valid image region implies the homogeneity

along the horizontal direction, thus, making the horizontal

spatial relation less informative. So it is not necessary to

distinguish the horizontal spatial positions in this case. The

surroundings of the objects get more and more blurry due

to this reason, especial for large instances.

4.2. VisDrone2019 benchmark dataset

Datasets and Protocols. We participate VisDrone-

DET2019 challenge and it contains a large-scale drone-

based object detection dataset, including 8599 images of

ten object categories. The split is 6471 for training, 548 for

validation, and 1580 for testing. The dataset was collect-

ed in different scenarios under various weather and lighting

conditions. As a result, it is extremely challenging due to

various factors, including large scale and pose variations,

occlusion, and clutter background. We follow the protocol

in [31] for VisDrone2019 benchmark dataset, and use the

official evaluation toolkit.

Implementation Details. We adopt the Cascade RCNN

[2] as our base network in VisDrone-DET2019 challenge



Figure 5. Results on VisDrone2019 benchmark dataset. (a), (b), (c) shows three different challenges in the data set, namely, small distant

targets, light variation and dense targets with occlusion. And we can see that the scale of the object is very obvious both in intra-class and

inter-class, including vehicles and people in different scenes.

Method Avg. Precision, IoU: Avg. Recall, maxDets:

0.5:0.95 0.5 0.75 1 10 100 500

Cascade RCNN 32.21 55.97 32.04 0.61 4.63 25.87 45.62

SAMFR-Cascade RCNN 33.72 58.62 33.88 0.53 3.40 22.60 46.03

Table 1. Comparison between the main results from cascade RCNN model and SAMFR-Cascade RCNN on VisDrone2019 validation

dataset.

Method pedestrian people bicycle car van truck tricycle awning-tricycle bus motor

Cascade RCNN 32.40 20.62 17.71 58.07 35.89 30.44 23.13 11.32 44.83 28.24

SAMFR-Cascade RCNN 34.46 23.12 21.27 59.96 40.72 30.32 26.48 13.12 47.47 31.35

Table 2. Comparison between the results of ten categories from cascade RCNN model and SAMFR-Cascade RCNN on VisDrone2019

validation dataset.

and have made some changes for uav image detection. Im-

proved by our two modules, the SAMFR-Cascade RCNN is

proposed. Cascade R-CNN have four stages, one RPN and

three for detection with IoU = {0.5, 0.6, 0.7}. The sampling

of the first detection stage follows Fast R-CNN. In the fol-

lowing stages, resampling is implemented by simply using

the regressed outputs from the previous stage. Our model

uses the SGD as optimizer, with a weight decay of 0.0001

and momentum of 0.9 as default. We train the model with a

minibatch size 2 per GPU. We start the learning rate at 0.02,

and decrease it by a factor of 0.1. To warm-up the begin-

ning 500 iteration for training, we use smaller learning rate

of 0.02× 0.3.

4.2.1 Experimental Results

We evaluate our method on VisDrone2019 benchmark

dataset. The results are shown in figure 5. We show three

common problems with data sets of small distant targets,

light variation and dense targets with occlusion. Moreover,

we have tested the performance on validation set, compari-

son between the results from cascade RCNN model and our

SAMFR-Cascade RCNN are shown in table 1. All average

precisions show consistent improvement, especially when



Figure 6. (a) shows incorrect labeling in training and validation set, (b) shows the model learned that the key to distinguishing people from

pedestrians is the absence of feet. (c) shows the postprocessing with trained model on COCO for removing boats.

Method Avg. Precision, IoU: Avg. Recall, maxDets:

0.5:0.95 0.5 0.75 1 10 100 500

Retinanet [13] 11.81 21.37 11.62 0.21 1.21 5.31 19.29

RefineDet [28] 14.9 28.76 14.08 0.24 2.41 18.13 25.69

DetNet[11] 15.26 29.23 14.34 0.26 2.57 20.87 22.28

Cascade RCNN[2] 16.09 16.09 15.01 0.28 2.79 21.37 28.43

FPN [12] 16.51 32.2 14.91 0.33 3.03 20.72 24.93

Light-RCNN[26] 16.53 32.78 15.13 0.35 3.16 23.09 25.07

CornerNet[10] 17.41 34.12 15.78 0.39 3.32 24.37 26.11

SAMFR-Cascade RCNN 20.18 40.03 18.42 0.46 3.49 21.6 30.82

Table 3. Comparisons between the results from baseline methods and SAMFR-Cascade RCNN on VisDrone2019 test dataset.

the IoU threshold is 0.5. From comparison between the re-

sults of ten categories as shown in table 2, we can see im-

provements in almost every category with the exception of

trunk which sometimes occupies the full image. Moreover,

the results from the official on testing set are shown in table

3. We can see that the baseline method of Cascade RCN-

N obtains an mAP of 16.09% with [0.5:0.95] IoU, and our

SAMFR-Cascade RCNN achieves a 4.09% improvement,

which shows a consistent refinement on networks with our

modules.

Postprocessing We attempt many postprocessing meth-

ods on testing set, and achieved performance improvement

visually. For the first, we believe that there are some wrong

labels in training set which have a serious influence on per-

formance, for example, the objects in consecutive identical



Method Backbone Avg. Precision, IoU: Avg. Precision, Area:

0.5:0.95 0.5 0.75 S M L

SSD300 [16] VGG 25.1 43.1 25.8 6.6 25.9 41.4

SSD321 [5] ResNet-101 28.0 45.4 29.3 6.2 28.3 49.3

DSSD321 [5] ResNet-101 28.0 46.1 29.2 7.4 28.1 47.6

DSSD513 [5] VGG 33.2 53.3 35.2 13.0 35.4 51.1

SSD513 [16] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

STDN513 [30] DenseNet-169 31.8 51.0 33.6 14.4 36.1 43.4

YOLOv2 544 [19] Darknet 34.9 55.7 37.4 15.6 38.7 50.9

RFBNet300 [15] VGG 30.3 49.3 31.8 11.8 31.9 45.9

RFBNet512 [15] VGG 33.8 54.2 35.9 16.2 37.1 47.4

Faster R-CNN [20] VGG 24.2 45.3 23.5 7.7 26.4 37.1

R-FCN [3] ResNet-101 29.9 51.9 - 10.8 32.8 45.0

CoupleNet [34] ResNet-101 34.4 54.8 37.2 13.4 38.1 50.8

Faster R-CNN [20] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2

Deformable R-FCN [4] Aligned-Inception-ResNet 37.5 58.0 40.8 19.4 40.1 52.5

Mask R-CNN [8] ResNext-101 37.1 60.0 39.4 16.9 39.9 53.5

RetinaNet[13] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2

Ours DetNet-59 40.7 62.6 43.7 23.2 42.8 50.0

Table 5. The top box in the tabel are one-stage methods, and bottom box are two-stage methods. Detection results on MS COCO test−dev

set.

Method Backbone FPS mAP

SSD300 [16] VGG 120 77.2

YOLOv2 544 [19] Darknet 40 78.6

SSD512 [16] VGG 50 79.8

RFBNet300 [15] VGG 83 80.5

RFBNet512 [15] VGG 38 82.2

Faster [20] VGG 7 73.2

Faster [20] ResNet-101 5 76.4

DSSD321 [5] VGG 9.5 78.6

R-FCN [3] ResNet-101 9 80.5

STDN513 [30] DenseNet-169 - 80.9

Ours DetNet-59 10 81.9

Table 4. Comparison between our model and other state-of-the-art

methods. Attention that our backbone is ResNet-101 with fewer

parameters.

scenes are labeled differently as shown in figure 6 (a). We

first remove the images with the ignored areas, and then we

select some of good quality from them. The visual results

change a lot as shown in figure 6 (b), especially in people

and pedestrians. It seems that the model learns that the key

to distinguishing people from pedestrians is the absence of

feet. Second, we analyze the domain style between training

set and testing set which has a big gap, there are many s-

cenarios and objects that never appear before, the angle of

view and shooting height are also obviously different. We

adopt the semi-supervised training strategy for the problem

to learn the specific characteristic of some vehicles on test-

ing set. Meanwhile, we use the model trained on COCO

dataset to remove some interferential objects that belong to

boats. The results are demonstrated in figure 6 (c). At the

end, we used soft-NMS technique, the difference is that we

also implement it between fine-grained classes, such as peo-

ple and pedestrian.

4.3. PASCAL VOC and MS COCO

Datasets and Protocols. The experiments are also con-

ducted on two large-scale datasets PASCAL VOC and MS

COCO that have 20 and 80 object categories respectively.

We adopt DetNet as our backbone network. We follow the

protocol in [6] for PASCAL VOC, test on the VOC2007 test

set while use VOC2007 trainval and VOC2012 trainval for

training. We follow the standard protocol for COCO, train

on the 120k images in the trainval and test on the 20k im-

ages in the test-dev. Meanwhile, we use the mean average

precision (mAP) scores for evaluation, we test the mAP s-

cores using IoU thresholds at 0.5. For COCO, we report

the results following the standard metric. We use a similar

setting to [11]. The backbone model is a pre-trained modi-

fied ResNet-50 from ImageNet, and the FPN-based DetNet

is used in both two experiments. And we follow the same

training strategies described as in VisDrone2019 4.2.

4.3.1 PASCAL VOC

All models are trained on the VOC2007 and VOC 2012

trainval set, tested on the VOC 2007 test set. We set the

learning rate to 4 × 103 learning rate, use the default batch

size 32 in training, and only adopt DetNet-59 as the back-



bone network for all the experiment on the PASCAL VOC

dateset, including VOC 2007 and VOC 2012.

Table 4 shows our results evaluated on the PASCAL

VOC 2007 testing set, the proposed architecture achieves

competitive performance on the backbone of DetNet-59

with fewer parameters as shown in table 4. In these result-

s, the final feature maps used for prediction in one stage

methods are extracted from different single layer respec-

tively, which means it predicts the results without fusing

features, demonstrating a relatively smaller value than FPN-

based methods. However, they show a big advantage in the

aspect of speed. Most of the state-of-the-art methods utilize

ResNet-101 as their backbone, because of more parameters

with more powerful capacity. It demonstrates that our net-

work achieves the comparative mAP based on the DetNet

backbone, which is a modified version of ResNet-50, the

accuracy is even 1.4% higher than R-FCN which is with

ResNet-101 backbone. At the mean while, we still get the

fastest speed of all the two stage methods.

4.3.2 MS COCO

To further validate the proposed method, we carry out ex-

periments on the MS COCO dataset. With a larger scale

than PASCAL VOC, the detection methods with ResNet-

101 usually achieve better performance than those with VG-

G on MS COCO. In addition, note that test-dev dataset is d-

ifferent from mini-validation dataset used in experiments. It

has no disclosed labels and is evaluated on the server. Fol-

lowing the protocol in MS COCO, we use the trainval 35k

set [1] for training and evaluate the results from test-dev e-

valuation server.

Table 5 shows the results on Ms COCO test-dev set. As

shown in the last column, the AP of large objects gets low-

er improvement than the other two scales, but in the other

columns we get consistent increase, achiveing an mAP of

40.7% with [0.5:0.95] IoU, 62.6% with 0.5 IoU and 43.7%

with 0.75 IoU.

5. Conclusion

In this paper, we focus on the problem of scale varia-

tion in object detection, especially on the drone platform.

We propose a Receptive Field Expansion Block (RFEB)

to increase the receptive field size for high-level semantic

features, then the generated features are passed through a

Spatial-Refinement Module (SRM) to repair the spatial de-

tails of multi-scale features, two available FPN-based net-

works are implemented to verify feasibility and generality.

Based on them, we achieve impressive improvement on Vis-

Drone2019 benchmark dataset. Meanwhile, experiments on

two general datasets also show that the our techniques can

help model to achieve the competitive performance com-

pared with other advanced methods. Furthermore, we ex-

pect a broader range of applications on the drone platform

in the future.
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