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Abstract

The baseline is ATOM which aims at solving the prob-

lem of accurate target state estimation by proposing a novel

tracking architecture. The architecture consists of dedicated

target estimation and classification components. Classifica-

tion component is trained online to guarantee high discrim-

inative power in the presence of distractors. Target esti-

mation is performed by the IoU-predictor network inspired

by the IoU-Net which was recently proposed for object de-

tection as an alternative to typical anchor-based bounding

box regression techniques. In this work, we further en-

hance the performance of ATOM by embedding Squeeze-

and-Excitation (SE) blocks into IoU-Net in ATOM to recal-

ibrate useful features and suppress useless features and ob-

tain ATOMFR. To solve the abnormal changes in the tar-

get box in ATOMFR, we add the Relocation Module on

ATOMFR and get ATOMFR (RL). To solve the occlusion

problem, we introduce the Inference Module into ATOMFR

(RL) and obtain ATOMFR (RL + InF). Experimental results

on VisDrone2019-SOT test set demonstrate the state-of-the-

art performance of ATOMFR (RL + InF) compared with

several existed trackers and it ranks the second place among

all competitors.

1. Introduction

Object tracking, as a fundamental task in computer vi-

sion, has a wide range of applications, such as transporta-

tion surveillance, smart city, human-computer interaction

and so on [41]. In this work, we focus on a sub-task

of object tracking-single object tracking (SOT) on drone-

based data set. SOT aims to estimate the state of a ob-

ject, indicated in the first frame, across frames in an on-

line manner [16, 6, 35, 20, 41, 19, 36, 7, 28]. Although

researchers have made considerable progress in several nat-

ural data sets (OTB [38], VOT [27, 18], TempleColor [22])

[40, 20, 36, 19, 7, 5, 2, 5, 28, 34, 32, 14, 11, 1, 6, 21,

ATOMFR with Relocation and Inference Modules

Figure 1. Tracking results between ATOM and ATOMFR (RL +

InF). The top line is the tracking result of ATOM and the bottom

line is the tracking result of ATOMFR (RL + InF). The frames are

from sequences uav0000087 00290 s, uav0000073 00038 s and

uav0000229 00600 s in VisDrone2019-SOT test set respectively.

4, 26, 25, 30, 39, 8, 10], there are still deficiencies in us-

ing these methods directly on drone-based data sets such as

view point changes and scale variance.

Discriminative Correlation Filter (DCF) based tracking

methods as an important branch in object tracking, has at-

tracted more and more attention due to its high tracking

speed and performance. The core idea of DCF is to train

a filter by minimizing a least-square loss. Due to DCF [16]

use cyclic shifts to select samples, the correlation opera-

tion can simplify the calculation in the Fourier domain to

achieve high tracking speed. In addition, there are many

DCF based works aiming to improve performance, such

as those apply multi-dimensional features [25], part-based

strategies [23] and end-to-end learning [32]. In addition to
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Figure 2. Moving inference process under occlusion situation.

tracking speed, DCF based trackers usually online train the

filters and perform well on object discrimination. Expect

for DCF, RPN based trackers ([20, 36, 19]) are also an im-

portant branch in object tracking. Take SiamRPN [20] as an

example, SiamRPN consists of a template branch and a de-

tection branch. RPN perform multi-scale proposal extrac-

tion on the correlation feature maps. In general, the RPN

based trackers achieves good performance in object locat-

ing due to extensions offline training. Drawing on these two

advantages, ATOM [7] was proposed as a two-stage track-

ing framework. ATOM divides the target tracking into two

networks: target estimation network and the target classi-

fication network. The former is used for coarsely locating

the target and the latter is used for fine locating the target.

The target estimation network trains the IoU-Net [17] of-

fline based on a large number of data sets. The target clas-

sification network uses a deep regression network with two

convolutional layers for online tracking.

ATOM overcomes two difficulties existing in preceding

trackers. One is that RPN based trackers are usually not

accurate enough in object discrimination. Another is that

DCF based trackers are general lack of bounding box ac-

curate locating capabilities. But the performance of ATOM

tracking is largely determined by IoU-Net, especially when

there is an interference target in the search box, the final

bounding box of IoU-Net will be too large to affect the per-

formance (Fig. 1). Therefore, it is necessary to improve the

performance of IoU-Net. Moreover, the occlusion problem

is also evident in the drone data, which is prone to the prob-

lem of tracking lost. Therefore, it is necessary to achieve

continuous tracking in this case.

Squeeze-and-Excitation (SE) Networks [15] demon-

strate that if the importance of each feature channel is au-

tomatically obtained through the learning to enhance the

useful features and suppress the features that are not use-

ful for the current task and then the extracted features are

more effective for representing the object. In this paper, to

improve the performance of IoU-Net in ATOM, we use SE-

ResNet blocks to replace the ResNet blocks in IoU-Net to

recalibrate more useful features and name the new method

ATOMFR. To further improve the scale adaptive ability in

ATOMFR, we introduce the Relocation Module (Sec. 4.2)

in ATOMFR, and obtain ATOMFR (RL). To deal with the

problem of occlusion, we assume that the target moves at a

constant speed for a short period. Then we infer the posi-

tions of the frames that are poorly differentiated based on

the positions of the well-located frames by introducing the

Inference Module as shown in Fig. 2 (Sec. 4.3). We call

the new tracker ATOMFR (RL + InF). Experimental re-

sults on VisDrone2019-SOT test set demonstrate the state-

of-the-art performance of ATOMFR (RL + InF) compared

with all other competitors, and the superior performance of

ATOMFR (RL + InF) among existed trackers.

2. Related Work

Before describing the proposed method, we first briefly

introduce two types of methods that are most relevant to

the proposed method: DCF based trackers and RPN based

trackers.

DCF based Trackers. Target classification network

in ATOMFR is constructed by training powerful discrim-

inatively classifiers. Recently, DCF based trackers have

achieved wide popularity. The first DCF based tracker

MOSSE [3] was proposed by online training a filter via min-

imizing the output sum of squared error. Then DCF based

trackers have been widely researched. In [16], the tracker

was proposed by exploiting the circulant structure of the

training samples and training the filter with HOG features in

a kernel space. The CSR-DCF [24] proposed in [9] builds

DCF with channel and spatial reliability. C-COT [12] em-

ploys a continuous-domain formulation and ECO [6] as its

enhanced version which improves both speed and perfor-

mance by several efficient strategies. MCCT [35] constructs

multiple experts based on DCF and the suitable expert is se-

lected with a robustness evaluation strategy.

RPN based Trackers. Another type of trackers that is

closely related to our tracker is based on RPN. RPN [31]

was first proposed in object detection field to extract multi-
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Figure 3. The framework of ATOM.

scale object candidate boxes. Subsequently, RPN was intro-

duced to the object tracking field. SiamRPN [20] is a clas-

sic RPN based tracker. The SiamRPN includes a Siamese

subnetwork for feature extraction and a region proposal

subnetwork, where the region generation network includes

two branches of classification and regression. SiamRPN++

[19] adopts a deeper convolutional network and uses some

targeted strategies to further improve the performance of

RPN based trackers. Naturally, SiamRPN and its extensions

[19, 36] have advantages in object location due to extensive

offline training. However, RPN based trackers is usually

embedded in the Siamese based framework. This type of

trackers lack online training and the performance of the tar-

get classification is usually not good enough. Similar to

ATOM, ATOMFR (RL + InF) learns the classifier online

and utilize extensive offline training for the target estima-

tion task (Sec. 4).

3. Preview of ATOM

Nowadays, DCF based tracking methods and RPN based

tracking methods are two important branches in SOT field.

In general, the existing DCF based trackers lack flexi-

ble scale adaptability and the existing RPN based tracking

methods lack sufficient discriminative power. In order to

balance the trade-off between scale flexibility and discrim-

inative power respectively in these two types of trackers,

Danelljan et.al proposed ATOM. Fig. 3 shows the structure

of ATOM. ATOM divides the target tracking into two net-

works: target estimation network and target classification

network. The former is used for coarse locating and the lat-

ter is used for fine locating. The target estimation network

uses the IoU-Net [17], and the target classification network

uses a DCF based classifier in a fully convolutional manner.

The following mainly introduces these two networks.

Target Estimation Network. ATOM uses IoU-Net as

the target estimation network (Fig. 4). IoU-Net is trained to

predict the IoU between an image object and input bound-

ing box candidate. In details, given a deep feature represen-

tation (through backbone network (ResNet-18 [13])) of an

image x (x ∈ RW×H×D), and an estimated bounding box

B of an image object, IoU-Net predicts the IoU between

B and the object. Here B = ( cx
w
,
cy
h
, logw, logh), where

(cx, cy) denote center coordinate of the bounding box and

(w, h) represents the size of the bounding box. PrPool [17]

is adopted to pool the region in x given by B. Therefore,

the feature map xB is of a predetermined size.

Target Classification Network. The target classifica-

tion network used in ATOM is a fully convolutional neural

network with two fully convolutional layers. This network

is defined as follows:

f(x;ω) = φ2(ω2 ∗ φ1(ω1 ∗ x)) (1)

where x is the feature map output through the backbone

network, ω1, ω2 are the filters in this network, φ1, φ2 are

activation functions and ∗ represents the standard convolu-

tion operator. The loss function of the network is defined as

follows:

L(ω) =

m∑

j=1

γj ||fxj ;ω − yj ||
2 +

∑

k

λk||ωk||
2 (2)

where yj is the label for each training samples. As in DCF

trackers, yj is a sampled Gaussian function centered at the

target location. The importance of each training sample is

indicated by γj . The weight of the filter ωk is denoted by

λk. This optimization strategy employed in this network is

a Conjugate-Gradient-based strategy.
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Figure 4. The framework of the target estimation network in

ATOM.

4. Proposed Method

SE-Net [15] has demonstrated that the feature channels

play important roles in object feature representation. In-
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Figure 5. The framework of the proposed tracker ATOMFR (RL + InF).

spired by the idea of SE-Net, this paper continues to use the

IoU-Net (SE-IoU-Net) as the target estimate network, and

uses SE-ResNet-18 as the backbone network to adaptively

learn the importance of each feature channels (ATOMFR)

(Sec. 4.1). Naturally, this choice can improve the perfor-

mance of IoU-Net by enhancing the representation of use-

ful features. Considering that DCF based tracking methods

have advantage in object classification, this paper contin-

ues to use DCF based method to complete the classification

task. Namely, the target classification network is exactly

the same to that of ATOM. In order to further improve the

performance (scale adaptive ability) of ATOMFR, we in-

troduce the Relocation Module (Sec. 4.2) into ATOMFR

and obtain ATOMFR (RL). To solve the phenomenon of

tracking loss when the occlusion occurs, we assume that

the object moves at a constant speed in a short period, and

then propose the Inference Module (Sec. 4.3) and construct

ATOMFR (RL + InF). Fig. 5 shows the overall structure of

the proposed tracker (ATOMFR (RL + InF)).

4.1. Feature Recalibration Module

The SE-Net [15] can adaptively select features that are

useful to represent the object while suppress features that

are useless to represent the object. The SE blocks embedded

into ResNeXt [37], Inception-ResNet [33] and ResNet [13]

have verified the performance of the SE blocks. In order

to improve the performance of ATOM, this paper replace

ResNet blocks with SE-ResNet blocks in IoU-Net in ATOM

to enhance the useful features of the object while suppress

useless features. Fig. 6 shows the structures of SE-ResNet

module and ResNet module. Based on the ordinary resid-

ual block, SE-ResNet module introduces additional five lay-

ers, sequentially, global pooling layer, full connected layer,

ReLU layer, full connected layer and sigmoid layer.

The global pooling (Global Pooling Layer) operation

Ogp(uc) is defined as follows:

Ogp(uc) =
1

H ×W

H∑

i=1

W∑

j=1

uc(i, j) (3)

where uc donates the c-th feature map with size H × W .

These two fully connected (FC) layers are used to adjust di-

mension of the output of global pooling layer through non-

linearity with reduction ratio r (in our experiment, r = 16).

ReLU is the activation function that activates the output of

the first FC layer. The final output X of the SE block is ob-

tained by rescaling U(U = [u1,u2, ...,uc]) with the out-

put feature maps S(S = [s1, s2, ..., sc]) of the second FC

layer activated by Sigmoid by Eq. (4).

X = Ose = uc.sc (4)

where . donates channel-wise multiplication, X =
[x1,x2, ...,xc] and sc is of size H ×W .

We use the SE-ResNet blocks to replace ResNet blocks

as the basic unit of the residual block, and also use the 18-

layer structure (SE-IoU-Net) as the backbone network in
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ATOMFR. Similar to the IoU-Net in ATOM, the input of

SE-IoU-Net is also composed of four parts: (1) features ex-

tracted through backbone network from current frame, (2)

estimated bounding box (BB) in the current frame, (3) fea-

tures extracted through backbone network from a reference

frame, (4) the object bounding box in the reference frame.

The outputs of SE-IoU-Net are IoU scores for each of the

estimated bounding box (BB estimates) in current frame.

The final bounding box is generated by maximizing the IoU

score using gradient ascent in the tracking process.

4.2. Relocation Module

In order to further improve the performance of

ATOMFR, the Relocation Module (a detector) is introduced

to relocate the position of the tracked object which most

likely inaccurate locating (ATOMFR (RL)). The detector

adopts a two-stage detection framework, i.e. Faster RCNN

with FPN (ResNet101 [13] as the backbone). Since DCF

based trackers are sensitive to the presence or absence of

the object in a frame (confidence score), the detector is fine-

tuned according to the score of the classifier in the tracking

process. That is, when the score of the DCF classifier is

relatively high and the object is existed with a high confi-

dence, then this frame is fine-tuned to the detector. When

DCF classifier score is low, we don’t use this frame to up-

date parameters of the detector. When the object changes

abnormally, we use the detector to redetect the object in

this frame. In general, when the object bounding box is ab-

normal, IoU-Net score will be lower or the classifier’s score

will be lower. So in both cases, we use the detector to recor-

rect the tracking bounding box in the current frame. Fig. 7

shows the process of Relocation Module in ATOMFR.

DetectorTest image t

Test image t

Figure 7. The framework of Relocation module.

4.3. Inference Module

Fig. 2 shows the inference process of the Inference Mod-

ule. Considering that the VisDrone2019-SOT test data set

is generally with long sequences, occasionally occlusion

problem occurs. In order to improve the tracking efficiency

under this condition, we assume that the motion of the ob-

ject is uniform for a short period. P is used to indicate the

location information of the object. P has four parameters,

namely, P ∈ {x, y, w, h}, (x, y) refers to the coordinate

of the top-left corner of the object and (w, h) donates size

(width and height) of the object. Based on this assumption,

if the location of the object in t-frame is Pt and the location

of the object in t+m-frame is Pt+m, and then the location

of the object in t+m+ q-th frame (Pt+m+q) can be infer-

enced (Eq. (5)). Here m needs to satisfy (m<δ), where δ is

a threshold (in our experiment, δ = 4) and (q = 1).

Pt+m+q(xt+m+q) = xt+m +
xt+m − xt

m
× q

Pt+m+q(yt+m+q) = yt+m +
yt+m − yt

m
× q

Pt+m+q(wt+m+q) = wt+m +
wt+m − wt

m
× q

Pt+m+q(ht+m+q) = ht+m +
ht+m − ht

m
× q

(5)

In detail, when the tracking score through ATOMFR (RL) in

the t+m+ q-frame is relatively low, we use the Inference

Module (Eq. (5)) to infer the position of the tracked object

in this frame.

Implementation Details. The training method and data

sets (expect for VisDrone2019-SOT train set) of SE-IoU-

Net in ATOMFR (RL + InF) is the same as that of IoU-

Net in ATOM, and the parameters in the target classification

network in ATOMFR (RL + InF) are the same as those in

ATOM.



Figure 8. Precision plot on VisDrone2019-SOT test set with sev-

eral existed methods.

5. Experimental Verification

5.1. Experimental Setup

Data set. We use VisDrone2019-SOT test

set [41] to evaluate the performance of the pro-

posed tracker (ATOMFR (RL + InF)), other com-

petitors’ trackers and several existed trackers.

This data set contains 60 sequences, which are

uav0000375 00001 s, uav0000231 03240 s, uav0000389 -

00001 s, uav0000023 00870 s, uav0000392 00001 s,

uav0000393 00001 s, uav0000398 00001 s, uav0000372 -

00001 s, uav0000319 01840 s, uav0000229 00600 s,

uav0000396 00001 s, uav0000388 00001 s, uav0000069 -

01200 s, uav0000397 00001 s, uav0000244 00479 s,

uav0000079 00720 s, uav0000075 00088 s, uav0000387 -

00001 s, uav0000075 00240 s, uav0000378 00001 s,

uav0000391 00001 s, uav0000328 04137 s, uav0000087 -

00290 s, uav0000328 01564 s, uav0000400 00001 s,

uav0000191 00000 s, uav0000246 01416 s, uav0000073 -

00038 s, uav0000385 00001 s, uav0000394 00001 s,

uav0000365 00001 s, uav0000077 00000 s, uav0000390 -

00001 s, uav0000311 02583 s, uav0000152 00750 s,

uav0000181 00725 s, uav0000367 00001 s, uav0000374 -

00001 s, uav0000328 02760 s, uav0000382 00001 s,

uav0000383 00001 s, uav0000380 00001 s, uav0000211 -

00000 s, uav0000094 02070 s, uav0000376 00001 s,

uav0000075 01056 s, uav0000286 00001 s, uav0000368 -

00001 s, uav0000094 00000 s, uav0000381 00001 s,

uav0000386 00001 s, uav0000121 00516 s, uav0000298 -

01242 s, uav0000373 00001 s, uav0000083 00783 s,

uav0000154 00099 s, uav0000162 00000 s, uav0000011 -

00345 s, uav0000096 00345 s, and uav0000377 00001 s.

Figure 9. Success plot on on VisDrone2019-SOT test set with sev-

eral existed trackers.

This data set are challenging in 12 aspects, followed by

Aspect Ratio Change, Background Clutter, Camera Motion,

Fast Motion, Full Occlusion, Illumination Variation, Low

Resolution, Out-of-View, Partial Occlusion, Similar Object,

Scale Variation and Viewpoint Change.

Evaluation Metrics. According to the official evalua-

tion toolbox, the performance of the proposed tracker, other

competitors’ trackers and existed trackers are all evaluated

by the success and precision scores [38, 41]. Success score

reflects the area under the curve (AUC) based on the per-

centage of successfully tracked frames vs. the bounding

box overlap threshold. Precision score reflects whether the

distance between the center of the bounding box of tracked

frame and the center of bounding box of the ground-truth

frame is within 20 pixels. The success score is used to rank

the tracking methods.

5.2. Comparison with Existed Trackers

We evaluate the state-of-the-art performance of the pro-

posed method (ATOMFR (RL + InF)) with several existed

popular tracking methods which perform well on several

natural SOT data sets. These popular methods are MDNet

[29], DSiam [20], ECO [6], SiameseFC [2], [28], SRDCF

[9], Staple [1], TRACA [5], LCT [26], DSST [11] and KCF

[16] and so on. Among these methods, there are DCF based

tracking methods, such as KCF, Staple, and RPN based

tracking methods, such as DSiam.

As shown in Fig. 8 and Fig. 9, our proposed method

(ATOMFR (RL + InF)) ranks the first on all these 60

test sequences no matter on precision score and success

score. In terms of precision, our method surpassed the sec-

ond method of 26.3%, and our method surpassed the sec-



Figure 10. Average performance on VisDrone2019-SOT test set for 9 attributes.

ond ranked method with 19.5% in terms of success rate.

This demonstrates the superior performance of our tracking

method.

Fig. 10 shows the average performance of ATOMFR

(RL + InF) and several existed trackers on VisDrone2019-

SOT test set for 9 attributes/aspects (Viewpoint Change,

Out-of-View, Camera Motion, Similar Object, Background

Clutter, Full Occlusion, Aspect Ratio Change, Partial Oc-

clusion and Scale Variation). From Fig. 10, we can see

that ATOMFR (RL + InF) ranks the first on all these 9 at-

tributes, and surpasses the second on attribute Viewpoint

Change with 22.4% in terms of success score, on attribute

Out-of-View with 34.5% in terms of success score, on at-

tribute Similar Object with 24.3% in terms of success score,

on attribute Background Clutter with 20.5% in terms of

success score, on attribute Full Occlusion with 33.6% in

terms of success score, on attribute Aspect Ratio Change

with 15.2% in terms of success score, on attribute Partial

Occlusion with 22.9% in terms of success score, and on

attribute Scale Variation with 18.9% in terms of success

score. There are three main reasons for this performance

improvement. First, ATOMFR (RL + InF) uses SE-ResNet-

18 as the backbone to train IoU-Net (SE-IoU-Net) which

can improve the performance of SE-IoU-Net by recalibrat-

ing more useful features and suppressing more useless fea-

tures. Second, ATOMFR (RL + InF) improve the location
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Figure 11. Precision plot on VisDrone2019-SOT test set with other

competitors.

accuracy by introducing the Relocation Module to relocate

the tracked object (usually incorrect located). Last but not

least, based on the assumption that the object moves at a

constant speed in a short time, the Inference Module in-

troduced in ATOMFR (RL + InF) can infer the position

of the object in a complex scene (occulsion). Meanwhile,

ATOMFR (RL + InF) uses a DCF based branch (the target

classification network) to online discriminate object during

tracking process, which gives full use of the discrimination

performance of DCF based trackers.

5.3. Comparison with Competitors

In Fig. 11 and Fig. 12, ATOMFR represents our pro-

posed tracker. Here, ATOMFR is the tracker ATOMFR

with the Relocation Module (Sec. 4.2) and the Inference

Module (Sec. 4.3) (ATOMFR (RL + InF)). It can be seen

from Fig. 11 and Fig. 12 that ATOMFR (RL + InF) ranks

the second place among all contestants regardless of pre-

cision score with 84.7% or success score with 61.7%. This

demonstrates the state-of-the-art performance (the top 20%)

of our proposed tracker ATOMFR (RL + InF), namely, the

collaboration performance of ATOMFR with the Relocation

Module and the Inference Module.

5.4. Conclusions and Future Work

In this paper, to improve the performance of the target es-

timate network (IoU-Net) in ATOM, we introduce the SE-

ResNet blocks into the IoU-Net (SE-IoU-Net) and builds

the new tracker ATOMFR. ATOMFR enhances the perfor-

mance of ATOM by the way of feature recalibration (re-

calibrate more useful features and suppress more useless
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Figure 12. Success plot on VisDrone2019-SOT test set with other

competitors.

features). In order to further improve the performance of

ATOMFR (scale adaptive ability), we introduce the Relo-

cation Module in ATOMFR and get the tracker ATOMFR

(RL). To solve the problem of occlusion in drone based data

set (VisDrone2019-SOT), we introduce the Inference Mod-

ule on the basis of ATOMFR (RL) and obtain the tracker

ATOMFR (RL + InF). The experimental results demon-

strate the effectiveness of the proposed method (ATOMFR

(RL + InF)) on VisDrone2019-SOT test set. By comparing

the proposed method with several existing popular tracking

methods, the superior performance of the proposed method

is verified. By comparing the proposed method with other

competitors, the state-of-the-art performance of the pro-

posed method is further demonstrated.

In addition, ATOMFR (RL + InF) is not very good at
some specific aspects (such as Illumination Variation), and
in the future, we intend to study specific methods/strategies
for this challenge.
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