
Few-Shot Structured Domain Adaptation for Virtual-to-Real Scene Parsing

Junyi Zhang

Sun Yat-sen University

zhangjy329@mail2.sysu.edu.cn

Ziliang Chen

Sun Yat-sen University

c.ziliang@yahoo.com

Junying Huang

Sun Yat-sen University

huangjy229@mail2.sysu.edu.cn

Liang Lin

Sun Yat-sen University

linliang@ieee.org

Dongyu Zhang∗

Sun Yat-sen University

zhangdy27@mail.sysu.edu.cn

Abstract

A structured domain adaptation (SDA) model for virtual-

to-real scene parsing, learning to predict visual structure

labels in real-world target scenes via mitigating the statisti-

cal discrepancy between large scale labeled virtual source

and unlabeled real-world target images. But different from

the source images drawn from urban simulation platforms,

the target images could be expansive and difficult to collect

at scale in real-world scenes. Besides, the trend of urban-

ization constantly changes the visual appearances of target

scenes, which encourages SDA models to quickly adapt to

new target scenes by merely given very few target images

for training. To address the concerns, we attempt to achieve

the virtual-to-real scene parsing from a new perspective in-

spired by few-shot learning. Instead of using a large amount

of unlabeled target data used in existing SDA models, our

few-shot SDA model takes a few of target real images with

semantic labels in each scene, which collaborates with vir-

tual source domain to train a virtual-to-real scene parser.

Specifically, our framework is a two-stage adversarial net-

work which contains a scene parser and two discrimina-

tors. Based on the data pairing method, our framework can

handle the problem of scarce target data well and make

full use of the limited semantic labels. We evaluate our

method on two suites of virtual-to-real scene parsing se-

tups. The experimental results show that our method ex-

ceeds the state-of-the-art SDA model by 7.1% in mIoU on

SYNTHIA-to-CITYSCAPES and 4.03% in mIoU on GTA5-

to-CITYSCAPES in the case of 1-shot.
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Figure 1: Comparison of conventional SDA and the pro-

posed few-shot SDA. (a) is trained with supervised source

data and a large amount of unsupervised target data. (b) is

trained with supervised source data and very few supervised

target data. Although conventional SDA can spare the cost

of annotating a large amount of target data, but collecting

them is also time-consuming and laborious. In contrast, the

few-shot SDA only needs to collect a few target data and

the cost of annotating them is completely acceptable.

1. Introduction

Resurrecting with huge-scale labeled databases [7], deep

learning becomes the dominative technique to predict struc-

tured labels (e.g., semantic masks) in diverse machine vi-

sion areas, e.g., generic semantic segmentation [2, 1, 21,

38, 41], human body and scene parsing [12, 41, 39], etc.

Among these visual structure prediction tasks, scene pars-

ing attracts an increasing amount of attention due to its ap-

plication potential in autonomous driving [26, 34]. How-

ever, building an urban scene large-scale labeled database

exhausts labor efforts and can be quite expansive. To this



end, plenty of current researches resort to virtual scene im-

ages, which can be handily generated by the computer-

graphic programs within urban scene simulators [29, 28],

with free machine-annotated semantic masks. Incorporat-

ing the synthetic labeled source images, structured domain

adaptation (SDA) models [30, 35, 3] train the real-world

scene parser by minimizing the discrepancy between the

virtual-world and real-world domains [14]. The SDA mod-

els learn to transfer the virtual source semantic information

into real-world target domain and therefore, which success-

fully spares the cost for annotating target scene images.

Despite the impressive performances existing SDA mod-

els have already achieved, they may not truly overcome

the application bottleneck in outdoor scene understanding.

In particular, existing SDA strategies indeed save labor for

manually annotating tremendous real-world scene images,

whereas the vast expenses to create an urban scene bench-

mark, are not merely due to manual annotation efforts, but

also arise from the difficulty to collect available real-world

scene images at scale.

Unfortunately, the conventional SDA models [30, 35, 3]

rely on a large number of target images to facilitate the la-

bel information transfer. Recent few-shot learning meth-

ods [9, 27, 31, 33, 20, 32] can categorize the new classes

unseen in the training set, given only few examples of each

new class. But they still require a lot of labeled data of old

classes, and unable to use virtual data due to lack of domain

adaptation ability. The related recent works are few-shot ad-

versarial domain adaption (FADA) [25] and domain adap-

tion in one-shot learning [8]. Both of them are applied to

image classification task. Different from image classifica-

tion, scene parsing may suffer from the complexity of high-

dimensional features because most scenes, such as the au-

tonomous driving scenes, are more complex, which makes

the models used for image classification probably not suit-

able for outdoor scene parsing.

Attempting to address this concern, we propose a frame-

work called Few-shot Structured Domain Adaptation (few-

shot SDA). We find that the small amount of target data

tends to make the training fluctuations larger when jointly

training the model using target and source data, which is

disadvantageous. Therefore, we propose a data pairing

method for data enhancement to ensure stable training and

reduce over-fitting. In addition, it is difficult to train the

whole network effectively using very few target data, espe-

cially for the networks that are far away from the output. So

we design our framework as a two-stage structure, the first-

stage is a shallow auxiliary network and the second-stage

is a deep network. The first-stage can not only enhance

the adaptation of the low-level features but also provide

an auxiliary prediction mask to guide the learning of the

second-stage network. Benefiting from the auxiliary pre-

diction mask, we propose a label filtering method, which

is helpful to strengthen the learning of the network to the

pixels which are difficult to classify. Finally, we employ

spectral weight normalization [24] in the discriminators and

propose a strategy of training alternately to further make the

training more stable and effective. In general, the main con-

tributions of this work are as follows:

• We provide a novel framework to handle the prob-

lem of few-shot structured domain adaptation for scene

parsing. Our method can not only spare the cost for an-

notating target data but also greatly reduce the number

of target data collected. To the best of our knowledge,

we are the first to address this issue.

• Based on our proposed data pairing method, we design

our framework as a two-stage structure with label fil-

tering operation and provide an effective training strat-

egy, which makes sense for solving the challenges in

few-shot learning of scene parsing.

• Extensive experiments and evaluations on two suites

of virtual-to-real scene parsing setups show that our

proposed framework achieves superior performance in

comparison to the state-of-the-art.

2. Related Work

Scene Parsing. Scene parsing is a fundamental topic in

computer vision based on semantic segmentation. The goal

is to map each pixel of an image into one of several prede-

fined categories. With the development of deep learning, the

pixel-level prediction tasks like scene parsing and seman-

tic segmentation have achieved great progress. Fully con-

volutional network (FCN) [21] pioneered to replace fully-

connected layers (FC) by convolutional layers, and many

successive works [2, 40, 41] have further enhanced the ac-

curacy and efficiency. There are also some works [35, 3, 30]

that use the synthetic datasets based on rendering to han-

dle the data annotation problem, as the labels are usually

available directly from computers. We also use synthetic

datasets, but it is necessary to narrow the domain shift be-

tween the synthetic data domain and real-world data do-

main.

Domain Adaptation. Domain adaptation technique can

bridge the gap between the distribution of the source do-

main and the target domain. The earlier methods mainly

involved using feature re-weighting techniques [6], or con-

structing intermediate representations using manifolds [13,

11]. Due to the power of deep neural networks (DNNs),

the emphasis has shifted to aligning features extracted from

the networks in an end-to-end manner. Adversarial learn-

ing [16, 10, 23] is one of the approaches. We focus on ad-

versarial approaches because they are more relevant to our

work and have achieved remarkable results in visual domain

adaption. Ganin et al. [10] proposed the domain adversarial



neural network to transfer the feature distribution. There-

after, many variants have been proposed with different loss

functions [36, 22] or classifiers [23].

Few-Shot Learning. Few-shot learning aims to recognize

novel visual categories from a limited amount of labeled

training data. Recent few-shot learning works are mainly

designed for image classification [33, 20, 32] and semantic

segmentation [9, 27, 31], but they still require a lot of la-

beled data of old classes, and unable to use the virtual data

directly due to the domain shift. The most relevant works

are few-shot adversarial domain adaption (FADA) [25].

FADA used data pairing method for data enhancement, we

are inspired by this idea.

3. Methodology

In this paper, we present our methodology for few-

shot structured domain adaptation (SDA) for virtual-to-real

scene parsing. Firstly, we describe the relevant definition of

the problem. Secondly, we introduce the overall structure

of our framework. Thirdly, we introduce the scene parser

module, which includes the label filtering operation and the

calculation of the segmentation loss. Finally, we introduce

the balance domain pair adversarial module, which involves

the process of adversarial learning. The complete pipeline

is illustrated in Figure 2.

3.1. Problem Definition

We consider the task as few-shot pixel-level classifier

learning. In the settings of our method, we only need

to collect K images from each region, where K can be

very small, or even 1. We are given two image pair sets

Xs = {(xs
n, y

s
n)}

N
n=1

and Xt = {(xt
n, y

t
n)}

M
n=1

, where Xs

is source (synthetic) data, and Xt is a small part of target

(real-world) data. Due to the memory limitation, we set the

batch size to 1. In each iteration, we take two images xs
n

and xt
n. We set x ∈ {xs

n, x
t
n}. Specifically, each iteration

training involves four images {xt
n, x

s
n, x

t
n−1

, xs
n−1

}, where

xt
n and xs

n are the input images of current iteration. xt
n−1

and xs
n−1

are the input images of previous iteration. n rep-

resents the number of the iteration. In the target dataset that

we select, the images in the training set are collected from

N cities. We define K-shot as randomly selecting K images

from each of the N cities. We consider (1-5)-shot (K = 1,

2, 3, 4, 5) settings.

3.2. Framework

Our proposed few-shot SDA framework is composed of

a Scene Parser Module G and a Balance Domain Pair Ad-

versarial Module D. We find that the low-level features

which are far away from the output may not be adapted

well. Therefore, we design our framework as a two-stage

structure to enhance the adaptation of them. The first-stage

(S1) outputs the auxiliary mask (p1). The second-stage (S2)

outputs the semantic mask (p2). S1 can guide the learn-

ing of S2 by the label filtering operation using the auxiliary

mask. D contains an auxiliary domain discriminator (D1)

and a domain discriminator (D2). S2 is the test pipeline, our

goal is to learn a scene parser network G so that S2(v) can

perform well in the test phase, where v represents the test

image. It should be noted that both G and D will be used in

the training phase. But during testing, only G will be used

and D will be discarded.

Table 1: Characterizations of conventional SDA (CSDA)

model and our proposed few-shot SDA (FSDA) model.

Method Number of target image Number of target label Convergence

CSDA 2975 0 slow

FSDA 18 (1-shot) 18 (1-shot) fast

3.3. Scene Parser Module

We use Resnet-101 [15] as base network of the scene

parser. As shown in Figure 2, we calculate the first segmen-

tation loss (Lseg1) with the auxiliary mask and the original

label. Then we filter the original label using the auxiliary

mask and calculate the second segmentation loss (Lseg2)

with the semantic mask and the filtered label. We set the

original label for the input image x as y.

Label Filtering. In order to make the second-stage have a

learning focus, the original label is filtered according to the

auxiliary mask, which can improve the classification accu-

racy of pixels that are difficult to identify. This label filter-

ing operation can be expressed as:

ŷ = F (y, p1, β) (1)

where y is the original semantic label, ŷ is the filtered la-

bel, β is a threshold and p1 is the auxiliary mask. When

the confidence of a pixel is higher than β, this means the

pixel is relatively easy to recognize. So we set the category

on the label of such easily identifiable pixels to omitted cat-

egory, which means we do not calculate the segmentation

loss of the omitted category in the second-stage. This al-

lows the second-stage can focus more on learning difficult

pixels, such as some edge pixels of objects.

Segmentation Loss. We adopt cross-entropy loss to calcu-

late the segmentation loss. The sum of segmentation losses

of S1 and S2 can be expressed as:

Lseg = Lseg1 + λsegLseg2

= −
∑

h,w

∑

c∈C

(y log p1 + λseg ŷ log p2)
(2)

where λseg is the weight used to balance two segmentation

losses, C is the number of categories and w, h is the width



Figure 2: Framework overview. In each iteration, we pass a source image and a target image through the scene parser to

obtain output predictions. The first-stage (S1) outputs an auxiliary mask that is used to calculate the first segmentation loss

(Lseg1) and also can be used to filter the original label. The second-stage (S2) outputs a semantic mask that is used to

calculate the second segmentation loss (Lseg2). D1 and D2 are used to distinguish the type of the input. The adversarial loss

is calculated on the predictions of two discriminators and is back-propagated to the scene parser.

and height of the feature map, y is the original label, ŷ is the

filtered label, p1 is the auxiliary mask and p2 is the semantic

mask.

3.4. Balance Domain Pair Adversarial Module

As shown in Figure 3, the inputs of Balance domain pair-

ing module are two predictions of the current iteration and

two predictions of the previous iteration. It should be noted

that the first iteration does not have the previous iteration,

so the input data will not be passed to Balance Domain

Pair Adversarial Module. D1 and D2 no longer distinguish

whether the input is from source domain or target domain,

but the three types of pairs {gss, gst, gtt} we defined. Next,

We introduce how to adapt G via adversarial learning.

Training Generator. We use Euclidean distance to calcu-

late the adversarial loss. The sum of adversarial losses can

be expressed as:

Ladv = λadv1Ladv1 + λadv2Ladv2

= λadv1

∑

h,w

∑

j∈O

‖D1(gj)− zss‖
2

+ λadv2

∑

h,w

∑

j∈O

‖D2(gj)− zss‖
2

(3)

where λadv1 and λadv2 are the weights used to balance the

adversarial losses, zss is the label corresponding to gss. O

= {st, tt}.

Training Discriminator. We train D1 and D2 separately

and still use Euclidean distance to calculate the loss. For

Figure 3: This is the details of the Balance domain pairing

module in Figure 2. The solid line represents the data flow

of the current iteration. The dotted line represents the data

flow of the previous iteration. gtt is a pair of two target

images. gss is a pair of two source images. and gst is a pair

of one target image and one source image.

D1, the loss can be written as:

Ld =
∑

h,w

∑

j∈Q

‖D1(gj)− zj‖
2

(4)

where zj is the label corresponding to gj , Q={ss, st, tt}.

For D2, the loss is calculated in the same way as D1.

The training objective for scene parser module can be

written as:

Ltotal = Lseg + Ladv (5)



We can optimize the following min-max criterion:

max
D

min
G

Ltotal (6)

4. Implementation Details

Scene Parser. We adopt the DeepLab-v2 framework with

ResNet-101 [15] pre-trained on ImageNet by replacing the

final classifier with the Atrous Spatial Pyramid Pooling

module (ASPP) [2] as our base network. We set the stride of

the last two convolutional layers from 2 to 1, so that the res-

olution of the output features can be effectively mapped to

1/8 of the input image size. Finally, we add an up-sampling

layer along with the softmax output to match the size of the

input images.

Discriminator. For D1 and D2, the structure is the same,

but they are two independent discriminators. In order

to preserve the spatial information, we utilize 5 all full-

convolutional layers with kernel 4× 4, stride of 2, padding

of 1 in D1 and D2. The channel number of the layers is

{64, 128, 256, 512, 1}. Except that the last layer, which is

followed a tanh to limit the output value between -1 and

1, the other four layers are followed by a leaky ReLU. The

final outputs of the discriminators are feature maps. Due

to the memory limitation, we train the discriminators with

scene parser using a small batch size, so do not use any

batch-normalization layers [18]. To stabilize the training of

the discriminators, we use spectral normalization [24] after

each convolutional layer.

We implement our framework using PyTorch toolbox on

two GTX 1080Ti GPUs with 12GB memory. To train the

scene parser, we use the stochastic gradient descent (SGD)

with Nesterov acceleration where the momentum is 0.9 and

the weight decay is 10−4. The initial learning rate is set as

2.5× 10−4. To train the discriminators, we adopt two Adam

optimizers [19] where the initial learning rate is 10−4 and

the momentum is 0.9 and 0.99. The learning rates of all

optimizers are decreased using the polynomial decay with

a power of 0.9 as mentioned in [2]. The β is set as 0.95 in

Equation (1). Finally, we set the λseg to 0.1 in Equation (2)

and set the λadv1 to 0.0002, λadv2 to 0.001 in Equation (3).

5. Experiments and Results

In this section, we provide a quantitative evalua-

tion of our proposed method by carrying out the ex-

periments on SYNTHIA-to-CITYSCAPES and GTA5-to-

CITYSCAPES. Our entire training strategy contains two

phases: the first is adversarial learning, i.e, training the

scene parser and discriminators jointly, the second is train-

ing the scene parser independently using target data. We

gradually reduce the domain shift by performing the first

training phase and the second training phase alternately in

an end-to-end manner.

5.1. Experiment Setup

We set SYNTHIA [29] and GTA5 [28] as source domain

and set CITYSCAPES [5] as target domain. In all experi-

ments, we use the IoU metric. Next, we briefly introduce

the datasets related to our experiments below:

CITYSCAPES is a real-world image dataset which con-

sists of 2975 images in the training set, and 500 images in

the verification set. There are 18 sub-folders in the training

set representing 18 different cities. The resolution of the

images is 2048×1024. And the pixel-level labels of 19 se-

mantic categories are provided. Our few-shot target domain

images are randomly selected from the training set. Finally,

we use the verification set to test the trained model.

SYNTHIA is a synthetic dataset of urban scenes, it con-

tains 9400 images compatible with the CITYSCAPES an-

notated categories. Similar to [35, 4], in all the experiments

with SYNTHIA as the source domain, we evaluate on the

CITYSCAPES verification set with 13 categories.

GTA5 is a synthetic dataset which contains 24966 images

with the resolution of 1914×1052. The images are from

a video game based on the city of Los Angeles. There

are 19 semantic categories compatible with CITYSCAPES

dataset. In all the experiments with GTA5 as the source

domain, we evaluate on the CITYSCAPES verification set

with 19 categories.

5.2. SYNTHIA → CITYSCAPES

Table 2 shows the comparison results of our approach

with the methods of conventional SDA, joint training and

fine-tuning. Due to the different experimental settings and

training strategy, the results of source-only model and fully-

supervised (Oracle) model reported by us do not match with

the results reported in [35].

Our method achieves a mIoU of 53.8 in the 1-shot ex-

periment, achieving 7.1% improvement over the best per-

forming conventional SDA method [35]. This shows that

our approach has a significant performance advantage over

the conventional SDA methods. It also can be seen from

the comparison results that our method exceeds fine-tuning

by 4.45% (1-shot), 4.84% (2-shot), 3.36% (3-shot), 3.83%

(4-shot) and 4.75% (5-shot). In addition, the performance

of joint training is similar to that of fine-tuning. Therefore,

we think that fine-tuning has little effect on domain adapta-

tion in the case of few-shot, which illustrates the necessity

of our method. Obviously, sufficient experiments demon-

strates the effectiveness and stability of our method. Figure

4 shows the comparison of visualization results, indicating

that our method has significant improvements in recogniz-

ing street lights, signal lights, persons and bicycles, etc.

5.3. GTA5 → CITYSCAPES.

Similar to the previous experiments. Table 3 reports the

performance of our proposed method in comparison with



Table 2: Mean IoU Results of adapting SYNTHIA-to-CITYSCAPES. We compare our results with the conventional SDA, FT,

and JT. FT denotes fine-tuning. JT denotes jointly training the scene parser using supervised source data and few supervised

target data.

Synthia→Cityscapes

Base Method ro
ad

si
d

ew
al

k

b
u

il
d

in
g

li
g

h
t

si
g

n

v
eg

et
at

io
n

sk
y

p
er

so
n

ri
d

er

ca
r

b
u

s

m
o

to
cy

cl
e

b
ic

y
cl

e

mIoU

FCN wild [17] 11.5 19.6 30.8 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 22.9

CDA [37] 65.2 26.1 74.9 3.5 3.0 76.1 70.6 47.1 8.2 43.2 20.7 0.7 13.1 34.8

VGG-16 Cross-City [4] 62.7 25.6 78.3 1.2 5.4 81.3 81.0 37.4 6.4 63.5 16.1 1.2 4.6 35.7

MAA (single-level) [35] 78.9 29.2 75.5 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 37.6

Source-only (Ours) 60.12 22.38 66.56 4.63 7.15 75.22 76.58 33.35 10.55 54.53 5.63 1.25 17.65 33.51

Resnet-101 MAA [35] 84.3 42.7 77.5 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 46.7

JT (1-shot) 91.24 53.18 79.1 14.81 30.97 82.61 81.8 49.81 16.08 78.67 15.93 5.23 42.47 49.38

Resnet-101 FT (1-shot) 91.53 53.1 80.04 12.84 26.78 83.49 81.9 52.8 9.33 78.36 21.18 3.44 46.82 49.35

Ours (1-shot) 92.74 56.54 82.06 17.41 32.95 84.95 84.55 56.12 23.86 82.02 25.59 8.36 52.27 53.8 (+4.45/+4.42)

JT (2-shot) 92.03 54.31 80.69 14.19 27.68 82.52 83.18 50.94 15.98 78.3 16.93 7.54 46.27 50.04

Resnet-101 FT (2-shot) 90.69 51.36 80.43 16.85 25.71 83.55 78.71 54.56 12.09 79.98 15.05 6.4 47.42 49.45

Ours (2-shot) 92.68 55.44 82.25 24.54 35.43 85.08 83.09 57.01 14.95 79.87 24.47 17.91 53.02 54.29 (+4.84/+4.25)

JT (3-shot) 93.43 58.56 82.33 29.98 35.64 83.75 86.72 52.71 19.3 81.62 7.05 6.36 51.49 53.0

Resnet-101 FT (3-shot) 92.92 57.3 82.95 19.04 30.76 84.47 86.49 57.16 27.9 80.52 8.5 13.39 54.12 53.5

Ours (3-shot) 93.96 60.97 83.84 27.95 40.46 85.83 88.27 59.44 28.58 84.27 11.6 15.38 58.59 56.86 (+3.36/3.86)

JT (4-shot) 94.7 64.52 82.88 28.11 38.33 84.5 87.0 55.88 31.91 81.97 6.73 2.7 52.69 54.76

Resnet-101 FT(4-shot) 93.91 61.47 82.69 20.91 32.75 84.44 83.27 56.85 31.61 81.45 13.06 6.06 54.81 54.1

Ours (4-shot) 94.36 62.68 84.02 29.69 42.01 85.94 87.72 59.16 35.83 83.12 10.58 20.02 58.0 57.93 (+3.83/3.17)

JT (5-shot) 94.17 61.6 82.98 27.27 41.55 84.32 85.65 54.81 26.68 82.57 28.56 15.55 50.5 56.63

Resnet-101 FT (5-shot 93.48 58.73 83.0 20.64 37.22 85.25 81.84 57.58 30.77 81.8 25.31 22.61 52.22 56.19

Ours (5-shot) 94.41 63.31 84.47 30.91 50.87 86.05 88.19 61.34 28.17 86.32 35.5 24.17 58.56 60.94 (+4.75/+4.31)

Figure 4: Example results of adapted scene parsing on SYNTHIA-to-CITYSCAPES. For each test image, we show the

source-only (before adaptation), fine-tuning and our adapted results in the output space.



Table 3: Mean IoU results of adapting GTA5-to-CITYSCAPES. We compare our results with the conventional SDA, FT,

and JT. FT denotes fine-tuning. JT denotes jointly training the scene parser using supervised source data and few supervised

target data.

Gta5→Cityscapes

Base Method ro
ad

si
d

ew
al

k

b
u

il
d

in
g

w
al

l

fe
n

ce

p
o

le

li
g

h
t

si
g

n

v
eg

te
rr

ai
n

sk
y

p
er

so
n

ri
d

er

ca
r

tr
u

n
k

b
u

s

tr
ai

n

m
o

to
r

b
ik

e

mIoU

FCN wild [17] 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CyCADA (pixel) [16] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8

VGG-16 MAA (single) [35] 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

LSD [30] 88.0 30.5 78.6 25.2 23.5 16.7 23.5 11.6 78.7 27.2 71.9 51.3 19.5 80.4 19.8 18.3 0.9 20.8 18.4 37.1

Source-only (Ours) 85.94 40.34 81.4 24.19 16.63 26.58 28.3 15.04 79.75 27.5 83.47 49.81 20.91 71.97 22.11 21.03 0.01 18.41 24.05 38.76

Resnet-101 ROAD [3] 76.3 36.1 69.6 28.8 22.4 28.6 29.3 14.8 82.3 35.3 72.9 54.4 17.8 78.9 27.7 30.3 4.0 24.9 12.6 39.4

MAA [35] 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

JT (1-shot) 90.79 56.41 81.57 33.85 18.45 30.64 29.31 28.73 83.66 37.27 84.71 49.69 17.52 69.5 24.68 27.1 1.98 16.47 26.15 42.55

Resnet-101 FT (1-shot) 93.41 60.58 82.72 21.19 23.93 30.66 27.04 29.57 84.45 39.13 66.37 52.32 20.44 84.54 35.7 29.65 1.05 12.81 33.76 43.65

Ours (1-shot) 94.49 62.67 82.76 25.03 19.23 32.59 28.83 36.9 84.71 39.81 83.55 54.87 25.19 84.87 31.85 29.39 0.0 16.8 48.56 46.43 (+2.78/+3.88)

JT (2-shot) 92.03 53.0 82.93 32.69 24.66 32.06 30.46 30.75 84.45 41.44 84.59 52.4 13.22 80.98 42.19 37.24 1.43 11.26 42.34 45.8

Resnet-101 FT (2-shot) 94.51 62.45 83.62 23.88 28.17 32.05 31.72 30.47 84.84 39.97 78.62 53.14 8.76 85.09 34.58 28.3 16.66 14.19 40.76 45.88

Ours (2-shot) 94.07 61.62 84.68 35.9 25.56 34.29 34.51 37.83 86.41 43.65 85.07 55.97 17.91 84.54 39.74 36.03 2.22 21.94 51.37 49.12 (+3.24/+3.32)

JT (3-shot) 92.43 54.1 83.0 33.81 24.46 32.49 34.29 35.76 84.91 39.82 86.13 53.72 25.5 82.27 31.04 30.89 12.38 19.52 45.38 47.47

Resnet-101 FT (3-shot) 94.65 63.45 84.72 26.2 25.69 34.64 34.45 38.06 86.29 41.93 88.55 56.28 24.52 86.04 32.1 7.52 20.7 26.42 44.78 48.26

Ours (3-shot) 94.34 64.64 85.25 35.63 27.35 36.13 36.93 40.12 86.25 45.17 85.85 58.3 31.09 83.39 31.82 29.28 11.25 29.2 56.42 50.97 (+2.71/+3.5)

JT (4-shot) 92.67 54.58 83.27 29.0 25.25 34.16 32.36 34.87 84.6 41.82 82.01 54.71 26.97 80.7 36.8 28.49 3.16 20.33 48.1 47.04

Resnet-101 FT (4-shot) 94.35 65.17 84.54 28.67 30.52 34.82 32.99 39.72 85.78 44.85 77.77 56.45 25.08 86.05 13.17 31.72 0.03 7.76 45.3 46.57

Ours (4-shot) 94.42 62.99 85.21 38.52 29.34 35.36 33.16 45.07 86.73 45.11 88.83 59.18 32.64 85.6 40.65 29.17 0.0 21.08 53.64 50.88 (+4.31/+3.84)

JT (5-shot) 92.78 59.9 83.72 31.11 25.92 32.14 34.69 42.54 84.63 40.51 84.36 54.16 26.09 79.25 39.23 43.38 2.71 8.86 49.34 48.18

Resnet-101 FT (5-shot) 95.26 65.53 84.91 22.5 28.87 34.91 33.38 42.07 86.36 42.83 83.86 55.33 27.08 86.43 47.8 43.64 3.91 23.08 44.14 50.1

Ours (5-shot) 94.61 65.12 85.57 33.68 27.25 37.31 36.75 48.63 86.79 47.94 87.56 60.51 32.12 85.68 41.18 45.27 14.75 32.1 54.6 53.55 (+3.45/+5.37)

Table 4: Ablation study shows the effect of each component

on the final performance of our method on SYNTHIA-to-

CITYSCAPES.

Method mean IoU

Source-only 33.51
Ours w/o data paring 48.35
Ours w/o two-stage 51.31

Ours w/o training alternately 51.75
Ours w/o filtering 52.13

Ours (1-shot) 53.8

the conventional SDA, joint training and fine-tuning. The

mean IOU of our method is 46.43 in the case of 1-shot,

which is 4.03% higher than the existing best-performing

conventional SDA method [35]. Besides, our method ex-

ceeds fine-tuning by 2.78% (1-shot), 3.24% (2-shot), 2.71%

(3-shot), 4.31% (4-shot) and 3.45% (5-shot). The perfor-

mance of the joint training is also similar to that of the fine-

tuning.

5.4. Analysis

Ablation Study. In this experiment, we show how each

component in our framework affects the final performance.

We consider 5 cases: (a) Ours w/o data paring: we do not

pair source data with target data. In this case, the discrimi-

nator distinguishes whether the input is from the source do-

main or the target domain. (b) Ours w/o two-stage: the first-

stage is discarded, we only use the second-stage. (c) Ours

w/o training alternately: we only perform the first training

phase, i.e, jointly training the scene parser and discrimina-

tors. (d) Ours w/o filtering: the semantic label of the in-

put image is not filtered and is used directly by the second-

stage. (e) Ours: the full implementation of our method. The

mean IoU results are reported in Table 4. It can be observed

that each component in our framework is of great impor-

tance to obtain full improvement in test performance.

Analysis of Convergence Performance. We compare

the convergence performance on segmentation loss of our

method (1-shot) with the conventional SAD method [35].

Figure 5 shows that our method converges faster and more

smoothly than the conventional SAD method [35]. As can

be seen from the graph, our model converges after 10000

iterations of training, and the loss fluctuation is relatively

stable. While the conventional SAD model still does not

converge after 20000 iterations of training. We think this is

because our model uses far fewer target data, so it converges

faster and the training is more stable under the supervision

of a few target semantic labels.



Figure 5: The convergence performance on segmentation

loss of our few-shot SDA model and the conventional SAD

model [35]. The horizontal axis represents the number of

iterations. Best viewed in color.

6. Conclusion

In this paper, we presented a novel framework to address

the problem of few-shot structured domain adaptation for

virtual-to-real scene parsing. Even if only one target image

is available for each scene, our framework can work well.

The experimental results on GTA5-to-CITYSCAPES and

SYNTHIA-to-CITYSCAPES have demonstrated the effec-

tiveness of our method. We also have set a new state-of-the-

art in the experiments.
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