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Abstract

Using unmanned aerial vehicle (UAV) to estimate and

predict the position and motion of the ground target has

been widely focused on in many computer vision tasks. This

work aims to address the development of a vision-based

ground target localization and estimation for a fixed-wing

UAV. Limited by the lightweight onboard processor, it is

conflicting with the need for online onboard operation and

the computing resource limitation of the platform. In this

paper, we develop a practical approach to recover dynamic

targets based on extended Kalman filter (EKF) for localiza-

tion and locally weighted regression for trajectory smooth-

ing. Our methods run online in real time with the only data

up to the current timestep. The flight experiment results

show the effective tracking and localization of the ground

moving target.

1. Introduction

Unmanned aerial vehicles (UAVs) are playing increasing

prominent roles in civil and military fields. Equipped with

color cameras and other sensors, UAVs are widely used in

disaster search and rescue [8], aerial surveillance and map-

ping [9], wildlife surveillance and protection [7][15] and so

on. Among these tasks, moving targets tracking and local-

ization is the foundation of their performance of important

tasks [13], which still leaves lots of issues to solve.

Tracking methods vary depending on whether the mo-

bile target is a cooperative one. Because of the uncertainty

of target motion, coupled with the high mobility of fixed-

wing drone, it is extremely challenging for a fixed-wing

UAV to track a ground non-cooperative mobile target in out-

door environment. Most of the previous studies either only

studied one aspect of the tracking problem [10][18], or only

conducted pure theoretical research [34][22]. In this paper,

we focus on the entire process of non-cooperative tracking,

from target detection to motion estimation, and carried out

the flight experiment verification.

Another challenge, for the non-cooperative tracking, is

the online operation with limited computing resource [28].

Due to the restrictions of the payload capability and power

consumption of the UAV, the embedded onboard processor

has limited resources. If we want to implement onboard

processing, algorithm optimization is a necessity. In addi-

tion, to achieve robust tracking of the target by the drone,

it is often necessary to accurately localize the target and es-

timate the motion. Therefore, in this work, we focus on

the fixed-wing UAV’s online tracking and processing for

ground mobile targets. The main contributions are summa-

rized as:

(1) We proposed a framework of fixed-wing tracking

ground mobile targets, including targets detection, localiza-

tion and trajectory smoothing.

(2) To complete online processing, the method of EKF-

based localization and the locally weighted regression-

based [6] trajectory smoothing are proposed and imple-

mented on a lightweight processor.

The remainder of the paper is organized as follows. Sec-

tion 2 introduces relevant work on target localization and es-

timation. In Section 3, system overview and frames defini-

tion are illustrated briefly. Section 4 describes the proposed

methods of EKF localization, outlier detection and online

smoothing. The flight experiments results are discussed in

Section 5. Finally, the paper ends with some conclusion

remarks and future works.

2. Related works

Object detection has witnessed tremendous progress

with the development of deep learning. Many CNN-based

state-of-the-art object detection methods have been pro-

posed, such as two-stage methods for R-CNN [12], Fast

R-CNN [11] and Faster R-CNN [27], and one-stage meth-

ods for YOLO [24] and SSD [20]. However, object de-

tection in aerial image is still a challenging task [33] due

to the cluttered environment, changing scales and limited

resources. Redmon et al. proposed an improved YOLO

v3 [26] method based on YOLO [24] and YOLO v2 [25]



for predicting across scales, but they must run on GPU.

Kaaniche et al. [17] employed feature extraction methods

with the Canny-Edge Detector and Harris Detector from

aerial images, but it cant meet the real-time requirements

with lightweight onboard processors.

Numerous studies have focused on target localization

with an aerial vehicle. However, these works mainly con-

centrate on stationary targets. Zhang et al. [30] designed

a stereo vision technique with multiple view to localize

singe stationary target using a quadrotor drone. Barber et

al. [2] presented four techniques, in terms of recursive least

squares (RLS) filtering, bias estimation, flight path selection

and wind estimation, to reduce ground stationary localiza-

tion error. There are also some studies on the motion targets

localization. Wang et al. [28] proposed a tracking and lo-

calization framework for a single fixed-wing UAV to track a

ground target. Minaeian et al. [21], achieved motion target

detection and localization onboard, but they need unmanned

ground vehicles (UGVs) as landmarks to aid in localization.

Unlike the studies mentioned above, our work will focus on

onboard online localization with only a UAV and a monoc-

ular camera.

The position of the target is discrete for the vision-based

localization. However, the movement of the target is smooth

due to the constraints of kinematic. Canonical smoothers,

such as square-root information smoother [4], Rauch-Tung-

Striebel (RTS) smoother [23], provide a good solution for

smoothing. However, they make use of all the data to es-

timate every state, which is not causal and cant be used

online [3]. Therefore, those methods are not applicable in

our case. In the case of online smoothing, Anderson et al.

[1] proposed a real-time trajectory generation algorithm for

UAV flying. They use a sequence of successive waypoint

path segments with kinematic constraints to generation tra-

jectories. Wang et al. [29] presented a trajectory smoothing

algorithm based on Dubins-Helix method, which is used to

generate an effective trajectory and achieve real-time com-

putation.

3. System Overview

Our focus in this paper is online localization and simul-

taneously predicting the target motion trajectory where the

motion of the target is completely unknown beforehand. As

is shown in Figure 1, a fixed-wing UAV equipped with IMU,

GPS and a pan-tilt gimbal where the color camera is fixedly

mounted, tracks a ground mobile target. The onboard pro-

cessor keeps the camera pointing to the ground target by

controlling the gimbal, captures the images and then detects

the bounding box of ground target. With a simple pinhole

camera model, the target in camera coordinate frame {C}
is obtained with the measurement:

[
u
v

]
=

f

zc

[
xc

yc

]
(1)

where Zk = [u v]Tare the center of the target bounding box

and f is the focal length of the camera. PC = [xc yc zc 1]
T

denote the relative position of {C} with respect to the tar-

get. The transform relation between UAV body frame {B},

gimbal coordinate frame {G} and camera coordinate frame

{C}, which is generally called extrinsic, is calibrated of-

fline with iteration and optimization method inspired by the

hand-eye calibration idea [32]. Finally, the position of target

in world coordinate frame {W}, namely North-East-Down

(NED) coordinate frame in this paper, can be obtained with

the GPS and IMU. The transformation from{C} to {G},

{G} to {B} and {B} to {W} are denoted as TG
C , TB

G and

TW
B respectively. Then, the position of target in {W} is:

p = TW
B TB

G TG
C PC (2)

where T , including 3x3 rotation matrices R3×3 and 3x1

translation vector t3×1, is 4x4 matrices of the form:

T =

[
R3x3 t3x1
01x3 1

]
(3)

Eq. (2) gives the targets world position. However, the

uncertainty of target motion brings more challenges to de-

tection and localization; sensor noise and target false de-

tection can cause great localization deviation. To solve this

problem, an EKF-based method is used to localize the mo-

bile target. Moreover, we employ locally weighted regres-

sion to smooth target trajectory and predict the mobile tar-

gets motion in real time.

Figure 1. Equipped with GPS, IMU, gimbaled camera and embed-

ded processor, UAV tracks and localizes ground mobile target.



4. Mobile Target Localization and Estimation

4.1. EKF Target Localization

The target localization in Eq. (2) provides a one-shot

estimate of the target location. Unfortunately, this equa-

tion is highly sensitive to measurement errors. For exam-

ple, rapid movement of the fixed-wing UAV may cause the

target to be lost in the image field of view. Considering

long-term tracking and localization, as well as target mo-

tion and drone observation are statistically independent, it is

valid to assume the problem as a Gaussian process. Based

on above assumption, we present an EKF-based method to

solve the localization problem in this section. Rearranging

Eq. (2), assume the target moves at a flat ground and the

altitude of the UAV h can be measured with a GPS mod-

ule. Then, the relationship between the position of target

in {W} PC = [xc yc zc 1]
T

and pixel coordinate of target

[u v]T , noted as hk, can be rewritten as:

⎡
⎣

u
v
1

⎤
⎦ =

f

zc
TC
G TG

B TB
W

⎡
⎣

xw

yw
zw

⎤
⎦ (4)

where zc = h/ cosϕ and ϕ is the angle between the cam-

eras optimal axis and vertical direction as shown in Figure

1, which can be measured from the gimbal drive and IMU.

Then, the state equation of target localization can be:

xk = Axk−1 + wk−1 (5)

where xk = (xW , yw, vwx, vwy)
T

is the target state variable

at the time k; vwx,vwy are the targets positions and speed on

the X and Y axis; wk−1 is a white Gaussian noise sequence

state with the covariance of Qk. The state transition matrix

will be:

A =

⎡
⎢⎢⎣

1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (6)

where ∆t is sampling time. And the observation model is:

Zk = Hxk + vk (7)

where Zk = [u v] is the system measurement, vkis errors

and H is system observation matrix that can be described

with the Jacobian matrix of Eq. (4):

H =
∂hk(u, v)

∂xk
(8)

Finally, if the Kalman gain is noted as Kk, the state of

the target xk can be updated:

x̂k = x̂k +Kk

(
zk −Hx̂k

)
(9)

4.2. Outlier Detection

When fixed-wing UAV tracks ground mobile targets

at high speed, its attitude and direction change drasti-

cally, causing the target out-of-view and re-appearance fre-

quently. As a result, localization results may contain some

outliers, which have a large impact for the tracking tasks.

In general, outlier detection techniques are offline methods

such as clustering-based methods and statistical methods

[5]. These supervised learning and unsupervised learning

methods require much data and computing resource, which

may not be applicable for online tasks. Therefore, an outlier

detection algorithm based on target motion state is proposed

to get the wrong localization results.

The main idea of this algorithm is to estimate the current

position through the kinematics model of the target. We

employ the state model as described in Eq. (5), and then

estimate current target position with the results of the last

time step. The standard deviation of estimated localization

results is determined experimentally. Since the localization

errors is Gaussian distribution, we can regard the values that

are not in the 3-sigma range as outliers. The detailed proce-

dure is summarized as follows:

Algorithm 1 outlier detection for target localization

Input:

target motion state:

observation at time k, xk

localization results at time k − 1, xk̄−1

target motion state matrix, A
standard deviation of localization solution, S

Output: outlier results of target localization

Procedure:

(1) establish motion state model

i. establish a target kinematic state space model and

get the state matrix, A;

ii. calculate the standard deviation S, which is

obtained from experiment;

(2) target position prediction

i. calculate the localization values of prediction,

x̂k = Ax̂k−1;

ii. calculate the target position confidence interval,

xmin =
(
xk − x̂k

)
−3∗S, xmax =

(
xk − x̂k

)
+3∗S;

(3) outlier detection

If xk ∈ [xmin ymax], xk is regarded as a normal

value; otherwise, it is regarded as an outlier.

4.3. Online Smoothing

In general, when the UAV tracks the ground target, the

object detection takes a certain amount of time, so the local-

ization results are a series of discrete points. However, due

to kinematic constraints, the motion of the target is continu-



ous. Therefore, this part proposes an online target trajectory

smoother based on locally weighted regression.

Suppose X = [x1, x2, . . . , xn] is n points ordered in

time series and xn is current time point; wi is weights; θ
is coefficient. Define loss function:

J(θ) =
1

n

n∑

i=1

ωi (yi − θ∗xi)
2
=

1

n
ω ‖Y −X∗θ‖2 (10)

Namely,

J(θ) =
1

n

(
Y TωY − θTXTωY − Y TωXθ + θTXTωXθ

)

(11)

Derive Eq. (11) with respect to and let it equals 0, then we

can get:

θ =
(
XTωX

)−1

XTωY (12)

Because of X ∗ θ = X
(
XTωX

)
−1

XTωY = Ŷ = ĤY ,

thus

Ĥ = X
(
XTωX

)−1

XTω (13)

Then, current trajectory prediction is given by weight func-

tion W (x) and the regression model Ŷ :

W (x) =

(
1−

∣∣∣ x

dmax

∣∣∣
3
)3/2

(14)

Ŷ = X
(
XTωX

)−1

XTωY (15)

where dmax = |xn − x1|
Eq. (13) gives the estimation value of current trajectory

points. Unfortunately, considering the real-time require-

ments of online smoothing, it is necessary to reduce the

computational complexity.

J(θ) =
1

n

∥∥∥Ỹ − X̃∗θ
∥∥∥
2

(16)

where X̃ =
√
ωX; Ỹ =

√
ωY . Then Eq. (13) can be

rewritten as:

Ĥ = X (XτωX)
−1

Xτω =
√
ω
−1

X̃
(
X̃T X̃

)
−1

X̃τ
√
ω

(17)

Then, QR decomposition for X , namely, X P=QR, where

Q is an orthogonal matrix, R is an upper triangular matrix,

and P is a column permutation matrix. Then, we have:

X̃
(
X̃T X̃

)
−1

X̃T = QRPT
(
PRTQTQRPT

)−1

PRTQT

= QRPT
(
PT

)−1

R−1
(
RT

)−1

P−1PRTQT

= QRR−1
(
RT

)−1

RTQT

= QQT

(18)

Finally, Eq. (13) can be write as:

Ĥ =
√
ω
−1

X̃
(
X̃τ X̃

)
−1

X̃τ
√
ω =

√
ω
−1

QQτ
√
ω (19)

Obviously, Eq. (13) is equivalent to Eq. (19). If we

solve Eq. (13), its condition number can be computed

with κ
(
XTX

)
= κ

(
V ΣTUTUΣV H

)
= κ

(
V Σ2V H

)
=

κ(X)2. That is, the condition number of (XTX is the

square of X . While Eq. (19) obtains the orthogonal ma-

trix Q by QR decomposition. Since the condition number

of the orthogonal matrix is 1, it will not amplify the condi-

tion number.

5. Flight experiment

5.1. Implementation Details

We have conducted a series of field experiments to eval-

uate our proposed methods. The fixed-wing UAV and

ground target, as shown in Figure 2, are used as our ex-

periment platforms. The main characteristics of the exper-

imental UAV are listed in Table 1. The aerial platform is

equipped with a gimbaled camera that make it always point

to the ground target and capture the images with 30 HZ and

1280x720 frame size. The autopilot of the drone is PIX-

HAWK which fuses the IMU and GPS data. An ODROID-

XU4 with eight CPU cores was selected as the onboard pro-

cessor. It is run in the ROS system and all our algorithms are

running on the system. The ground target platform is a Pa-

jero, which carries a DGPS to record its position as ground

truth.

(a)

(b)
Figure 2. Aerial and ground target platform used in experiments:

(a) Fixed-wing UAV; (b) ground mobile target.



Figure 3. Onboard ground target detection results. From top to bottom: origin images, saliency map, proposal regions, and classification

results. The classification results of Pajero, bus, pickup trucks and others are indicated by red, green, blue and purple.

The fixed-wing UAV tracks the ground target with the

manner of loitering. The flying height is about 100m.

Datasets captured by the onboard gimbaled camera includes

different challenging scenarios, such as multiple objects,

background interference and illumination. The detection

results and estimated trajectory are shown in subsection 5.2

and 5.3 respectively.

Parameter Value Unit

Wingspan 1.8 m

Maximum weight 4.2 kg

Cruising speed 16 m/s

Flight speed 14-23 m/s

Table 1. Specifications of the experimental UAV prototype.

5.2. Onboard Ground Object Detection

Object detection on the fixed-wing UAV platform is still

a challenging task due to large scales and limited sources.

Feature-based methods provide a good solution for object

detection, but they have poor robustness in cluttered en-

vironment. Deep learning based object detection methods

show greater advantages, especially in terms of robustness

and accuracy. The disadvantage is that they require more

computing resources. In consideration of the real-time de-

tection, localization and online smoothing, as well as a lim-

ited computing resource of onboard processor detections,

we use a two-stage method [31]: the first step is saliency de-

tection for region of interest (ROI) and the second is classifi-

cation with a shallow convolutional neural network (CNN).

Figure 4 shows the run time of classic saliency detection

algorithms, such as SR [16], PQFT [14] and HFT [19]. In

order to reduce the time of image processing, we use SR

to obtain saliency map. The results of SR detection and

CNN-based classification are shown in Figure 3. We use

the Fourier transform to obtain a saliency map from the fre-

quency domain. The saliency maps will provide the targets

proposal regions. Once we get the proposal regions, a CNN-

based classification network will be used to classify differ-

ent categories of targets. For roads, houses, flocks, etc. in

the environment, we classify them as other categories.

To select suitable resolution for image processing, ori-

gin images of 1280x720 resolution are downsampled 4x,

9x, 16x and 25x. The measured run times on ODROID-

XU4 at different resolutions is shown in Table 2. Both of

the consumed time and number of saliency region increase

with higher resolution. But low resolution may cause miss-

ing detection. In order to reduce the run time of detection,

achieving online localization, as well as in consideration of

the accuracy, we chose the resolution of 320x180.

5.3. Mobile Target Online Localization and
Smoothing

Given the estimated target detection bounding box, the

target tracking results could be projected to the world frame

W with perspective projection and rigid-body transform.

And further, we use EKF to improve the robustness of the

localization results. In our experiment, a Pajero (see Figure

2 (b)) is adopted as the tracking target, which is controlled



Figure 4. Run time of saliency region detection.

Resolution SR/ms SR+CNN/ms
Number of

objects

1280x720 778.44 978.62 17.83

640x360 178.92 266.04 7.81

426x240 111.42 169.54 4.71

320x180 44.44 98.28 4.36

256x144 28.30 82.01 4.55

Table 2. Run time of objection detection.

on the ground with random motion. Figure 5 illustrates the

EKF localization error of X axis (red), Y axis (green) and

X-Y planar (blue) respectively. At starting point, the fixed-

wing UAV searches for the ground target in the air, leading

to a large localization errors. When the ground target is

captured by the aerial platform, a stable localization result

is obtained. Sometimes the localization results are close to

2 m distance from the actual position. Unfortunately, long

time ground target tracking can result in loss of some infor-

mation during transmission. At this time, the localization

error may increase. But as long as the UAV recaptures the

target, the localization result will tend to be stable. In the

whole process of initial search, stable tracking, information

loss, search and re-tracking, the average absolute error is

11.48 m in X axis, 11.63 m in Y axis and 18.03 m in X-Y

planar (see Table 3).

In order to better optimize the localization results and

position prediction, we use an online smoother as shown in

Eq. (19). We only employ data up to the current timestep to

estimate the state of ground target. For the initial value of

the smoother, we use its EKF localization results directly.

Then the smoother smooths the trajectory using span as

the number of points used to compute current state estima-

tion. Table 3 shows the average absolute error, memory size

and processing time with different value of span. As the

smoothing data used increases, the optimization results are

significantly improved. Correspondingly, memory size and

processing time increase as well. Although growing number

of data can reduce the localization errors, it may lengthen

initialization and processing time. The memory usage also

increases. Therefore, the selection of span from 91 to 121

is a suitable choice.

Figure 5. Average localization errors of long-term tracking. From

top to bottom: X axis (red), Y axis (green) and X-Y planar (blue)

localization errors.

Figure 6. Ground target trajectory smoothing and optimization, in-

cluding the actual trajectory, EKF localization results and smooth-

ing results for every timestep.

The trajectories of ground target, including the actual tra-

jectory, the estimated EKF localization measurements and

the optimized smoothing trajectory, are shown in Figure 6.

In order to make a quantitative analysis of the experiment

results, all of the data are transformed into meter-scaled data

with the UAV takeoff point as the origin, X pointing to the

north and Y pointing to the east. In Figure 6, the gradi-

ent color is the result of each time step of online smoothing

and the final optimized trajectory is indicated by blue. The



smoothing trajectory is somewhat different from the actual

trajectory, especially the upper right has a remarkable devi-

ation. Three possible reasons are summarized as follows:

(1) Occasional false detection resulting in EKF localiza-

tion and trajectory smoothing errors.

(2) Information loss: the upper rights deviation is the

reason of the loss of data transmission.

(3) Delay of the obtained data used for online smooth-

ing. Sensors such as onboard IMU, GPS and camera are

not synchronized.

X/m Y/m X-Y/m
Memory

/KB

Time

/ms

EKF 11.48 11.63 18.03 - -

span=5 11.55 11.72 18.16 0.27 2.0

span=21 12.19 12.52 19.28 0.54 2.8

span=41 10.02 10.19 15.66 0.87 3.8

span=71 8.62 8.26 13.00 1.30 5.2

span=91 8.36 8.01 12.69 1.59 6.1

span=121 8.15 7.94 12.644 2.03 7.5

span=151 8.19 8.30 13.03 2.48 8.9

span=201 8.43 9.21 14.10 3.21 11.1

Table 3. Testing results of average absolute error, memory size and

processing time of trajectory smoothing.

6. Concluding remarks

In this paper, we proposed a framework for a fixed-wing

UAV to track a single mobile ground target. With the vision-

based method, a lightweight target detection algorithm and

its experimental results are presented. The detection results

are used to localize the mobile targets in real time with a

developed EKF-based localization method. To estimate the

motion and position prediction, we provided an online tra-

jectory smoothing algorithm. The results show good per-

formance of tracking and estimation. In future work, we

will focus on the scenarios and cooperation algorithm de-

sign multiple UAVs cooperative tracking on one or more

moving targets.
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