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Abstract

Video object detection has drawn great attention re-

cently. The Vision Meets Drone Object Detection in Video

Challenge 2019 (VisDrone-VID2019) is held to advance the

state-of-the-art in video object detection for videos captured

by drones. Specifically, there are 13 teams participating

the challenge. We also report the results of 6 state-of-the-

art detectors on the collected dataset. A short description

is provided in the appendix for each participating detec-

tor. We present the analysis and discussion of the chal-

lenge results. Both the dataset and the challenge results

are publicly available at the challenge website: http:

//www.aiskyeye.com/.

1. Introduction

Although great progress has been achieved in detecting

objects on static images, object detection in video has drawn

increasing attention recently. However, it suffers from many

challenging factors such as drastic appearance change, mo-

tion blur and occlusions when extending state-of-the-art ob-

ject detectors from image.

To facilitate extending image object detectors for videos,



some benchmark datasets have been proposed, such as

KITTI [11], ImageNet-VID [29] and UA-DETRAC [34, 23,

22]. Moreover, recent datasets [24, 28, 7] collected from

drones, brings computer vision applications to drones more

and more closely. Driven by these new datasets, the algo-

rithms in video object detection are not usually optimal for

dealing with video sequences generated by drones due to

limited resources and new challenging factors (e.g., camera

change and motion blur) in drone platform. Therefore, a

more general large-scale VisDrone-VDT2018 dataset [41]

is proposed to further boost research on computer vision

problems with drone platform.

In this paper, we present the “Vision Meets Drone Ob-

ject Detection in Video” (VisDrone-VID2019) Challenge,

organized in conjunction with the 17-th International Con-

ference on Computer Vision (ICCV 2019) in Seoul, Ko-

rea. Based on the success of VisDrone-VDT2018 [41], the

VisDrone-VID2019 Challenge continues to advance detec-

tion methods for various categories of objects from videos

taken from drones. Specifically, 13 teams submit the de-

tection results on the drone based dataset. We believe the

submitted algorithms can facilitate boosting the research on

video object detection with drones.

2. Related Work

In recent years, several video object detection algorithms

are presented in the literature. We briefly discuss some prior

work in video object detection field.

2.1. Feature Aggregation

One of the main-stream approaches [43, 36, 1, 33] is to

enhance per-frame features through aggregating consecu-

tive frames. Zhu et al. [43] perform video object detec-

tion using flow-guided feature aggregation to capture tem-

poral coherence. Xiao and Lee [36] propose a new Spatial-

Temporal Memory module to serve as the recurrent com-

putation unit to model long-term temporal appearance and

motion dynamics. In [1], deformable convolutions are used

to learn spatially sample features from consecutive frames.

MANet [33] can jointly calibrates the features of objects on

both pixel-level and instance-level in a unified framework,

while the pixel-level calibration is flexible in modeling de-

tailed motion while the instance-level calibration captures

more global motion cues.

2.2. Object Association

Another kind of typical solutions [12, 14, 9, 10] fo-

cuses on association between object proposals in sequen-

tial frames. Han et al. [12] use high-scoring object detec-

tions from nearby frames to boost scores of weaker detec-

tions within the same clip for better detection performance.

Kang et al. [14] use a novel tubelet proposal network to

generate spatio-temporal proposals, and a Long Short-term

Memory (LSTM) network to incorporate temporal informa-

tion from tubelet proposals. In [9], a new network is pro-

posed to jointly perform detection and tracking of objects.

Galteri et al. [10] connect detectors and object proposal

generating functions to exploit the ordered and continuous

nature of video sequences in a closed-loop.

3. The VisDrone-VID2019 Challenge

The goal of object detection in videos is to locate vari-

ous categories of object instances in the videos instead of

a static image. Specifically, 10 object categories of inter-

est include pedestrian, person1, car, van, bus, truck, motor,

bicycle, awning-tricycle, and tricycle. The detector is re-

quired to run with fixed parameters on all experiments. No-

tably, the algorithms with detailed description (e.g., speed,

GPU and CPU information) will be published in the ICCV

2019 workshop proceeding with authorship.

3.1. The VisDrone-VID2019 Dataset

The VisDrone-VID2019 Dataset uses the same dataset in

the VisDrone-VDT2018 Challenge, as shown in Figure 1.

That is, it includes 79 sequences with 33, 366 frames in to-

tal, including three non-overlapping subsets, training

set (56 video clips with 24, 198 frames), validation

set (7 video clips with 2, 846 frames), and testing set

(16 video clips with 6, 322 frames). These sequences are

captured from different cities under various weather and

lighting conditions. The annotations for the training

and validation subsets are made available to users, but

the annotations of the testing set are reserved to avoid

(over)fitting of algorithms. The video sequences of the three

subsets are captured at different locations, but share similar

environments and attributes.

For quntitative evaluation, we use the AP, AP50, AP75,

AR1, AR10, AR100 and AR500 metrics, similar to that in MS

COCO [20] and the ILSVRC 2015 challenge [29]. Specif-

ically, AP is the average score over all 10 intersection over

union (IoU) thresholds (i.e., in the range [0.50 : 0.95] with

the uniform step size 0.05) of all object categories. AP50

and AP75 are the score at the single IoU thresholds 0.5 and

0.75 over all object categories, respectively. AR1, AR10,

AR100, and AR500 correspond to the maximum recalls with

1, 10, 100 and 500 detections per frame, averaged over all

categories and IoU thresholds. Note that The submitted al-

gorithms are ranked based on the AP score.

3.2. Submitted Detectors

We have received 13 detectors in the VisDrone-VID2019

Challenge, which are summarized in Table 1. Four detec-

tion methods employ multi-scale representation, including

1If a human maintains standing pose or walking, we classify it as a

pedestrian; otherwise, it is classified as a person.



Figure 1. Some annotated example frames of video object detection. The bounding boxes and the corresponding attributes of objects are

shown for each sequence.

DM2Det (A.6), FRCFPN (A.8), HRDet (A.10) and Sniper+

(A.12). Four detectors are variants of Cascade R-CNN [2],

i.e., DBAI-Det (A.4), DetKITSY (A.5), Libra-HBR (A.11)

and VCL-CRCNN (A.13). Three detectors are based on

anchor-free Cornet-Net [15], AFSRNet (A.1), CN-DhVaSa

(A.2) and CornerNet-lite-FS (A.3). Besides, EODST++

(A.7) and FT (A.9) consider temporal coherency for more

robustness. We present a brief description of the submit-

ted algorithms in Appendix A. We also conduct 6 state-of-

the-art detectors, including 4 image object detectors (i.e.,

FPN [18], CornerNet [15], CenterNet [39] and Faster R-

CNN [27]) and 2 video object detectors (i.e., FGFA [43]

and D&T [9]). In summary, we evaluate 19 detectors in

total in this challenge.

3.3. Results and Analysis

The results of the submitted algorithms are presented in

Table 2. DBAI-Det (A.4) achieves the best AP score of

all submissions, i.e., 29.22. This is attributed to combina-

tion of many recently proposed powerful networks includ-

ing DCNv2 [42], FPN [18] and Cascade R-CNN [2]. AF-

SRNet (A.1) ranks the second place, closely followed by

HRDet+ (A.10). AFSRNet (A.1) takes full use of the ad-

vantages of both anchor based RetinaNet [19] and anchor-

free FSAF [40], which improves the detection performance

significantly. Besides, to reduce computational complex-

ity, only the P2,P4,P6 feature maps of FPN [18] are used

for classification and localization. HRDet+ (A.10) aug-

ments the high-resolution representation by aggregating the

upsampled representations from all the parallel convolu-

tions, leading to more discriminative representations. VCL-

CRCNN (A.13) and CN-DhVaSa (A.2)) rank the 4-th and

5-th place respectively. The former is based on Cascade

R-CNN [2] and the latter is based on CenterNet [39] with

fine-tuned parameters. However, all the video object detec-

tion methods run in the speed of less than 10 fps because of

high computational complexity.

Compared with the submissions in VisDrone-VDT2018

Challenge, the top 5 algorithms (i.e., DBAI-Det (A.4), AF-

SRNet (A.1), HRDet+ (A.10), VCL-CRCNN (A.13) and



Table 1. The descriptions of the submitted video object detection algorithms in the VisDrone-VID2019 Challenge. GPUs and CPUs for

training, implementation details, the running speed (in FPS), external training datasets and the references on the video object detection task

are reported.
Method GPU CPU Code Speed Datasets Reference

AFSRNet (A.1) GTX-1080Ti Intel i7-5930K@3.50GHz Python 4 × RetinaNet [19]

CN-DhVaSa (A.2) Tesla P100 Xeon Silver 4110 Python 4 COCO CenterNet [39]

CornerNet-lite-FS (A.3) RTX 2080TI Python × CornerNet-Lite [16]

DBAI-Det (A.4) Tesla V100 Intel Platinum 8160@2.10GHz Python 1 COCO Cascade R-CNN [2]

DetKITSY (A.5) GTX Titan X Intel i7-6700 C++ 1.5 COCO Cascade R-CNN [2]

DM2Det (A.6) GTX Titan X Python × M2Det [38]

EODST++ (A.7) GTX Titan X Xeon E5-2630v3 Python,C++ 1 ImageNet SSD [21]

FRFPN (A.8) GTX 1080Ti Python × Faster R-CNN [27]

FT (A.9) GTX 1080Ti E5-2620 Python 8 COCO Faster R-CNN [27]

HRDet+ (A.10) RTX 2080Ti Intel E5-2650v4 Python 5 × HRNet [31]

Libra-HBR (A.11) GTX 1080Ti × SNIPER [30]

Sniper+ (A.12) GTX 1080Ti Intel E5-1620v4 Python 3.3 VOC+COCO SNIPER [30]

VCL-CRCNN (A.13) GTX 1080Ti Intel E5-2640 Python 6.7 COCO Cascade R-CNN [2]

Table 2. Video object detection results on the VisDrone-VID2019 testing set. ∗ indicates that the algorithm is submitted by the VisDrone

Team. The best three performers are highlighted by the red, green and blue fonts.

Method AP[%] AP50[%] AP75[%] AR1[%] AR10[%] AR100[%] AR500[%]
AFSRNet (A.1) 24.77 52.52 19.38 12.33 33.14 45.14 45.69

CN-DhVaSa (A.2) 21.58 48.09 16.76 12.04 29.60 39.63 40.42

CornerNet-lite-FS (A.3) 12.65 27.23 10.08 7.50 19.69 24.07 24.07

DBAI-Det (A.4) 29.22 58.00 25.34 14.30 35.58 50.75 53.67

DetKITSY (A.5) 20.43 46.33 14.82 8.64 25.80 33.40 33.40

DM2Det (A.6) 13.52 30.57 9.99 8.21 19.68 23.85 23.85

EODST++ (A.7) 18.73 44.38 12.68 9.67 22.84 27.62 27.62

FRFPN (A.8) 16.50 40.15 11.39 9.72 22.55 28.40 28.40

FT (A.9) 9.15 25.36 4.30 5.91 12.14 13.80 13.80

HRDet+ (A.10) 23.03 51.79 16.83 4.75 20.49 38.99 40.37

Libra-HBR (A.11) 18.29 44.92 11.64 10.69 26.68 35.83 36.57

Sniper+ (A.12) 18.16 38.56 14.79 9.98 27.18 38.21 39.08

VCL-CRCNN (A.13) 21.61 43.88 18.32 10.42 25.94 33.45 33.45

CFE-SSDv2 [37] 21.57 44.75 17.95 11.85 30.46 41.89 44.82

FGFA∗ [43] 18.33 39.71 14.39 10.09 26.25 34.49 34.89

D&T∗ [9] 17.04 35.37 14.11 10.47 25.76 31.86 32.03

FPN∗ [18] 16.72 39.12 11.80 5.56 20.48 28.42 28.42

CornerNet∗ [15] 16.49 35.79 12.89 9.47 24.07 30.68 30.68

CenterNet∗ [39] 15.75 34.53 12.10 8.90 22.80 29.20 29.20

Faster R-CNN∗ [27] 14.46 31.8 11.20 8.55 21.31 26.77 26.77

CN-DhVaSa (A.2)) in this year perform better than the win-

ner of VisDrone-VDT2018 Challenge CFE-SSDv2 [37].

Apart from powerful backbone network, the top video de-

tection methods benefit from multi-scale representation and

multi-stage proposals. On the other hand, there are 4 more

methods (i.e., DetKITSY (A.5), EODST++ (A.7), Libra-

HBR (A.11) and Sniper+ (A.12)) that outperforms or are

on par with the best baseline method FGFA [43]. It is

worth mentioning that EODST++ (A.7) uses the single ob-

ject trackers to capture temporal information. Besides, two

video detectors performs better than the remain three base-

line image detectors. This is because the temporal co-

herency information helps reduce false positives and false

negatives of detections.

3.4. Performance Analysis by Categories

Moreover, as shown in Figure 2, we report the perfor-

mance of each detector in terms of 10 categories. The AP

scores on 5 categories (i.e., pedestrian, car, van, truck and

bus) are obviously better than the rest 5 categories (i.e., per-

son, bicycle, tricycle, awning-tricycle and motor). We can

conclude that the detectors perform not well when several

objects appear at the same time, e.g., the person riding a

bicycle.

DBAI-Det (A.4) performs the best in every object cat-

egory except motor. AFSRNet (A.1) performs the best in

motor and ranks the second place in terms of person, bicy-

cle, car, tricycle, van and bicycle. VCL-CRCNN (A.13)



Figure 2. The average precision scores of the submitted detectors in each object category.

ranks the second place in terms of pedestrian. HRDet+

(A.10) ranks the second place in terms of bus. CN-DhVaSa

(A.2) ranks the second place in terms of truck and awning-

tricycle.

4. Conclusion

This paper concludes the VisDrone-VID2019 Challenge

and its results. The dataset is the same as that in the

VisDrone-VDT2018 Challenge with 10 object categories.

The experiments of VisDrone-VID2019 show that the top

performing detector in terms of the AP score is DBAI-Det

(A.4), which merges several effective networks from recent

published top conferences. Following DBAI-Det (A.4), AF-

SRNet (A.1) and HRDet+ (A.10) achieve similar promis-

ing performance, which demonstrates the effectiveness of

multi-scale representation. However, the complexity of the

current video detection methods is high, which is limited in

real-time practical applications.

The focus of video object detection is on how we exploit

temporal context across consecutive frames to improve ob-

ject detection. One solution is to embed state-of-the-art sin-

gle object trackers such as ECO [6] and SiamRPN++ [17]

into image detectors. It can expand the detections with high

confidence to recall the false negative objects efficiently

(see EODST++ (A.7)). Another solution is to design end-

to-end network based on several consecutive frames. For

example, FT (A.9) takes three consecutive frames as the

input of the network to extract time saliency features by

three-dimensional convolution. Despite the performance

improvement of video object detection on desktop GPUs,

our future work will focus on advancing detectors at lim-

ited computational overhead.
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A. Submitted Detector

In the appendix, we summarize 13 video detection al-

gorithms submitted in the VisDrone2019-VID Challenge,

which are ordered alphabetically.

A.1. Augmented Feature Selected RetinaNet (AFS-
RNet)

Ziming Liu, Jing Ge, Tong Wu, Lin Sun and Guangyu

Gao

liuziming.email@gmail.com,

{398817430,547636024}@qq.com,

lin1.sun@samsung.com, guangyugao@bit.edu.cn

AFSRNet is improved from RetinaNet [19], using the

ResNeXt as backbone [13]. There are several differences

compared with the original RetinaNet. 1) To reduce GPU

memory, we only use P2,P4,P6 of Feature Pyramid Net-

work (FPN) [18]. 2) We add feature selected anchor-free

head (FSAF) [40] into RetinaNet, which improves the

performance significantly. Thus there are one anchor head

and one anchor free head in our model. Next, we will

describe some details of the proposed detection pipeline.



Most importantly, we perform several data augmentations

before model training. Firstly, each original Images is

cropped into 4 patches, while each patch is rescaled to

1920 × 1080, and we also propose an online algorithm to

obtain sub-images. Secondly, the Generative Adversarial

Network is used to transform the image of the day into

the night, which reduces the unbalance of day and night

samples. After that, the overall model is composed of 4
parts, including the ResNet backbone, the FPN network,

and the FSAF module as well as the retina head. Finally,

we train the model in an end-to-end way and test on

multi-scales data to obtain better results. In addition, we

also fuse multi-models to improve performance.

A.2. CenterNet-Hourglass-104 (CN-DhVaSa)

Dheeraj Reddy Pailla, Varghese Alex Kollerathu and Sai

Saketh Chennamsetty

dheerajreddy.p@students.iiit.ac.in,

varghese.kollerathu@siemens.com,

sai.chennamsetty@siemens.com

CN-DhVaSa is derived from the original CenterNet [39].

During the training phase, images are resized to 1024×1024
and the batch size was set to 8. During inference, the multi-

scale strategy is used to increase the performance. An

image with dimension of 2048 × 2048 is resized based on

different scales factors, i.e., 0.5, 0.75, 1, 1.25, 1.5. After

that, a confidence threshold of 0.25 is used to weed out the

false detections.

A.3. CornerNet in light version (CornerNet-lite-FS)

Hongwei Xv, Meng Zhang, Zihe Dong, Lijun Du and Xin

Sun

coolbenn@foxmail.com, sunxin@ouc.edu.cn

CornerNet-lite-FS is improved from CornerNet-Lite [16].

Specifically, we model temporal appearance and enrich

feature representation respectively in a video object detec-

tion framework. When we use CornerNet-Lite, we found

that there lies a wrong big bounding box covering an area

if the top-left and the bottom-right are the same class. We

conquer this problem by removing the bbox if it covers the

area more than 4 times of the average of the sum of top-left

bbox and bottom-right bounding box. We add the features

of adjacent frames to the current frame, which is also one

of the common techniques in video object detection. We

selected all boxes with confidence greater than 0.5 and

average them to serve as their feature representations. Then

all the boxes (classified as pedestrian) will calculate the

cosine-similarity. If the similarity is less than 0.5, we filter

it out.

A.4. DeepBlueAI-Detector (DBAI-Det)

Zhipeng Luo, Feng Ni, Yuehan Yao, Bing Dong and

Zhenyu Xu

{luozp,nif,yaoyh,dongb,xuzy}@deepblueai.com

DBAI-Det is improved from Cascade-RCNN [2] with

the ResNeXt101 backbone. We use FPN [18] based

multi-scale feature maps to exploit robust representation of

the object. Besides, DCNv2 [5] and GCNet [3] are used for

better performance. The proposed model is implemented

using the mmdetection toolbox2.

A.5. KIT’s detector for drone based scenes (DetK-
ITSY)

Wei Tian, Jinrong Hu, Yuduo Song, Zhaotang Chen,

Long Chen and Martin Lauer

{wei.tian, martin.lauer}@kit.edu, utppm@student.kit.edu,

hujr3@mail2.sysu.edu.cn, 761042366@qq.com,

chenl46@mail.sysu.edu.cn

DetKITSY is based on the Cascade R-CNN [2]. There

are two stages in this approach. In the first stage, Region

Proposal Network (RPN) predicts the anchors close to the

objects and regresses the bounding box offsets, which is

similar to Faster R-CNN [27]. RPN outputs a series of

bounding boxes as proposals and feeds them into the second

stage. The second stage consists of three serially connected

bounding box heads, in which the output of previous head

will be used as proposals for the next one. In the training,

an anchor is considered as a positive example only when

the its overlapping (by Intersection over Union (IoU)) with

the ground-truth is bigger than a predefined threshold. For

above three heads, we respectively set the thresholds as 0.5,

0.6, 0.7. Several modifications are applied to the original

Cascade R-CNN to adapt to the VisDrone dataset. First,

to fit the big variance of bounding box aspect ratio, we

add more anchors with different aspect ratios in the RPN.

Second, photo metric distortion and random cropping are

used as data augmentation in training. Third, lower IoU

threshold is used in non-maximum-suppression (NMS)

in the post-processing. The reason is that, according to

our observation, the objects with valid annotation seldom

overlap, while the overlapping objects are usually in the

“ignored” region. Last, multi-scale training and testing are

used to improve the precision.

A.6. DroneEye based on M2Det (DM2Det)

SungTae Moon, Dongoo Lee, Yongwoo Kim and

SungHyun Moon

{stmoon,ldg810,ywkim85}@kari.re.kr,

mosuhy@gmail.com

2https://github.com/open-mmlab/mmdetection



DM2Det is implemented based on M2Det network [38],

which focuses on the detection of small object with general

size in the VisDrone dataset. To check the small objects,

the image is split into 4 pieces without image reduction.

Then each split image is processed by M2Det and merged

again using non-maximum-suppression. For the suitable

detection of drone images, the way for image augmentation

is fine-tuned.

A.7. Efficient Object Detector with the support of
Multi-model Fusion and Spatial-Temporal in-
formation (EODST++)

Zhaoliang Pi, Yingping Li, Xier Chen, Yanchao Lian

and Yinan Wu

{zlpi,ypli 3,xechen,yclian,wuyn}@stu.xidian.edu.cn

EODST++ consists of detection, tracking and false

positive analysis modules. For detection, we train the mod-

els of SSD [21] and FCOS [32] to take advantage of their

ability to detect targets with different scales. We combine

the results of the two models at the decision level, based

on the scores and categories of the targets they detected.

For tracking, we use ECO [6] and SiamRPN++ [17] to

conduct single object tracking from the objects with high

score in chosen frame. The two trackers can recall the false

negative objects efficiently. The objects maybe disappear

across many continuous frames, so we will conduct the

tracking process again based on the new recalled objects

after the trajectory is confirmed to be correct, which could

avoid the offset caused by long-term tracking and recall

more lost objects. In terms of false positive analysis, we

conduct box refinement and false positive suppression by

inference according to temporal and contextual information

of videos. First, based on the relationship of contextual

regions, we use the features of different contextual regions

to validate each other (bicycle and people, motor and

people). Second, we evaluate the regional distribution of

objects in each video and the range of object size of each

categories, and remove the singular boxes with low scores.

A.8. Faster RCNN less FPN (FRFPN)

Zhifan Zhu and Zechao Li

{zhifanzhu,zechao.li}@njust.edu.cn

FRFPN is derived from still image detector Faster R-

CNN [27] with ResNet101 backbone. Since the training

set is limited in terms of environment variation, we train on

the detector on patches cropped from original image with

the size of 896 × 896. Two patch sampling strategies are

used: one is to select patch center uniformly from grid that

spreads over image evenly; while another one is to select

x and y coordinates of the center with independent proba-

bility. Note that we crop patches on the fly during training.

We also distort images in brightness, contrast, saturation

and hue, and the SSD style [21] cropping strategy is used

as well. In addition, we use the data augmentation policies

learned by [44].

A.9. Faster R-CNN with temporal information (FT)

Yunfeng Zhang, Yiwen Wang and Ying Li

{zhangyunfeng,wangyiwen94}@mail.nwpu.edu.cn,

lybyp@nwpu.edu.cn

FT is based on Faster R-CNN [27] pre-trained on the

MS COCO dataset [20]. We propose the network structure

based on three-dimensional convolution to extract video

timing information. Specifically, the network takes three

consecutive frames as the input of the network structure to

extract features, fuses the time saliency features obtained

with the features extracted by Faster R-CNN and predicts

the location of the object. In the model training, the two

networks can be trained in parallel, which speeds up the

convergence speed.

A.10. Improved high resolution detector (HRDet+)

Jingkai Zhou, Weida Qin, Qiong Liu and Haitao Xiong

{201510105876,201530061442}@mail.scut.edu.cn,

liuqiong@scut.edu.cn, 201821038528@mail.scut.edu.cn

HRDet+ is improved from HRNet [31]. It maintains

high-resolution representations through the whole process

by connecting high-to-low resolution convolutions in paral-

lel and produces strong high-resolution representations by

repeatedly conducting fusions across parallel convolutions.

The code and models have been publicly available at

https://github.com/HRNet. Beyond this, we

modify HRNet by introducing a guided attention neck and

propose a harmonized online hard example mining strategy

to sample data. At last, HRDet+ is trained on multi-scale

data, and the model assemble is also adopted.

A.11. Hybrid model based on Improved SNIPER,
Libra R-CNN and Cascade R-CNN (Libra-
HBR)

Chunfang Deng, Qinghong Zeng, Zhizhao Duan and

Bolun Zhang

{dengcf,zqhzju,21825106}@zju.edu.cn,

zh98ang@163.com

Libra-HBR is an ensemble of improved SNIPER [30],

Libra R-CNN [25] and Cascade R-CNN [2]. It is proved to

generalize very well in various weather and light conditions

in real-world drone images, especially for small objects.

SNIPER presents an algorithm for performing efficient

multi-scale training in instance level visual recognition



tasks. We replace Faster-RCNN detection framework

in SNIPER with deformable ResNet-101 FPN structure,

which introduce additional context in object detection and

improve accuracy in small objects. We use the max-out

operation for classification, to kill false positive proposals

brought by dense small anchors. On the other hand, we

apply Cascade R-CNN to solve IoU threshold selection

problem. We use ResNext-101 as the backbone network

and use Libra R-CNN to get the better performance.

Moreover, we add deformable convolutional network [5],

attention mechanism [3], weight standardization [26] and

group normalization [35]. In the above mentioned models,

we use balanced-data-augmentation, and adapt the anchor

size during training time. To further boost the performance,

We add bag of tricks during testing steps, including

Soft-NMS, multi-scale detection, flip detection and crop

detection. Finally, we use bounding box voting to integrate

above two novel models to obtain higher performance.

A.12. Improved SNIPER: Efficient Multi-Scale
Training (Sniper+)

Xingjie Zhao, Ting Sun and Guizhong Liu

{zhaoxingjie,sunting9999}@stu.xjtu.edu.cn,

liugz@xjtu.edu.cn

Sniper+ is implemented by SNIPER [30], which can

train on high resolution images for instance level visual

recognition tasks. Our implementation based on Faster

R-CNN3 with a ResNet-101 backbone. We use VisDrone-

VID2019, VOC0712 [8], and COCO2014 [20] datasets for

training.

A.13. VCL’s Cascade R-CNN (VCL-CRCNN)

Zhibin Xiao

xzb18@mails.tsinghua.edu.cn

VCL-CRCNN is based on the PyTorch implementa-

tion of Cascade R-CNN [2] by [4]. We use the model

pre-trained on MS COCO dataset [20] and fine-tuned the

model on VisDrone-VID train set. Besides, we choose

ResNeXt-101 as the backbone network.
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