
Visual Object Tracking by Using Ranking Loss

Hakan Cevikalp1, Hasan Saribas2, Burak Benligiray2, Sinem Kahvecioglu2

1Eskisehir Osmangazi University, 2Eskisehir Technical University

Electrical and Electronics Engineering Department, Eskisehir, Turkey

hakan.cevikalp@gmail.com, {hasansaribas,burakbenligiray,skahvecioglu}@eskisehir.edu.tr

Abstract

This paper introduces a novel deep neural network

tracker for robust object tracking. To this end, we employ

a ranking loss which provides a fine-tuning of the target

object position and returns more precise bounding boxes

framing the target object. This is achieved by systematically

learning to give higher scores to the candidate regions bet-

ter framing the target object than the regions that frame the

object with less accuracy. As a result, the risk of tracking

error accumulation and drifts are largely mitigated, and the

object is tracked more successfully. When the proposed net-

work is used with a simple yet effective model update rule,

our proposed tracker achieves the state-of-the-art results

on all tested challenging tracking datasets. Especially, our

results on the OTB (Object Tracking Benchmark) datasets

are very promising. The proposed tracker outperforms both

deep neural network and correlation filter based trackers,

MDNet and ECO, by about 2%, which is a significant im-

provement over the previous state-of-the-art.

1. Introduction

The visual object tracking aims at tracking an unknown

object in the subsequent frames specified mostly by a

bounding box in the first frame. It is one of the most

widely studied problems in computer vision and it has nu-

merous applications in many domains including surveil-

lance, video and activity analysis, human-machine interac-

tions, and robotics. Despite great research efforts, object

tracking is still a challenging problem since target objects

often undergo significant appearance changes caused by de-

formation, pose variation, abrupt motion, cluttered back-

ground and occlusion. Severe illumination changes and

similar objects close to the tracked object make the problem

even harder. The main difficulty arises from the fact that we

have access only to the bounding box of the target object

in the first frame and typically no other appearance model

or prior information are available. The tracker has to learn

all variations of the tracked object in the subsequent frames

based on a very limited amount of information, therefore

most trackers easily drift away from the target.

Related Work: Generally, earlier tracking algorithms be-

long to either one of two categories: generative and dis-

criminative trackers. Generative tracking methods are built

based on the assumption that target appearances can be rep-

resented by using generative models, and hence these track-

ers search for the target regions that fit those generative

models best. Some representative methods use sparse repre-

sentation [31,51,42], density estimation [15,21], subspace

learning [34,42], dictionary learning [50], and regression

networks [18]. In contrast, discriminative trackers treat the

problem as binary classification and learn a classifier to sep-

arate the foreground from the background. To this end, var-

ious classifier learning methods have been used including

multiple instance learning [3], linear SVM (Support Vector

Machine) [1], structured output SVM [16], online boosting

[12], ensemble of classifiers [2,22], etc. For a more com-

plete list of earlier tracking methods and their comparisons,

the keen reader is referred to papers [49,48].

The most recent state-of-the-art tracking methods can be

roughly divided into two categories: CNN (Convolutional

Neural Network) based trackers and correlation filter based

trackers. CNN based trackers [33,30,44,27,43,45,20] usu-

ally use small deep neural networks since it has been shown

in many studies that the last layers of large CNN networks

are more effective in capturing semantics, and they are not

suitable for tracking because of their insufficiency in captur-

ing fine-grained spatial details that are important for track-

ing. For example, same kind of object instances such as

basketball players or pedestrians can be considered as both

the target and background in a given frame, thus the fea-

tures learned for separating the human category will not

work well in this case. On the other hand, earlier layers

are more sensitive to appearance changes of objects, and

this makes those layers to be more precise in localization

of targets. Small networks are also necessary for speed is-

sues since updating parameters of large networks is slow

and it cannot be accomplished in real-time for online visual

tracking. One of the earliest deep neural network learning



tracker [45] used a stacked de-noising auto-encoder to learn

generic image features from a large dataset as auxiliary data

and then transferred the learned features to the online track-

ing task. Hong et al. [20] used CNNs and SVM classifier

to learn target-specific saliency maps. Li et al. [27] intro-

duced an online learning method based on a CNN network

using multiple image cues. Wang et al. [44] pre-trained a

large CNN network offline and transferred the learned fea-

tures to the online tracking as in [45]. Ma et al. [43] used

CNN layers of a large deep neural network to learn multiple

adaptive correlation filters for encoding target appearances.

Nam and Han [33] introduced the Multi-Domain Network

(MDNet) for object tracking. Beside some online training

tricks such as long-term and short-term update strategies,

the main novelty of the paper was to show how to transfer

rich and effective features for tracking. To this end, Nam

and Han [33] treated each video sequence as a separate do-

main and trained a network that includes shared layers and

multiple branches of domain-specific layers offline. Once

the features are learned, all existing branches used in the

training phase are removed, and a new network using a sin-

gle branch is fine-tuned online to adapt to the new target

during tracking.

Correlation filter (CF) based trackers on the other hand

learn a correlation filter to localize the target object in con-

secutive frames by solving a ridge regression problem ef-

ficiently in the Fourier frequency domain. The learned fil-

ter is applied to a region of interest in the next frame, and

the maximum correlation filter response determines the ob-

ject location in the new frame. Then, the filter is updated

by using this new object location. Since the problem is

solved in the frequency domain, CF based trackers are ex-

tremely fast compared to the deep neural network based

trackers. Bolme et al. [6] introduced a very fast correlation

filter based method using the minimum output of squared

error (MOSSE) for visual tracking. Kernelized correlation

filters using circulant matrices and multi-channel features

have been proposed in [19]. Danelljan et al. [9] introduced

a sophisticated formulation using continuous convolutional

operators, which paved the way for efficiently integrating

multi-resolution deep feature maps into the convolution fil-

ter based trackers. In [7], this method has been improved

more by introduction of factorized convolutional operators.

Initially, CF trackers used gray levels or hand-crafted fea-

tures such as histogram of oriented gradients (HOGs) [19],

color names [10] or color histograms [4]. On the other hand,

CF trackers proposed in [30,8] utilized CNN features ex-

tracted from pre-trained CNN networks. The most recent

studies introduced methods to learn both deep CNN fea-

tures and correlation filters simultaneously [39,47,13]. The

best performing tracker [13] of the VOT2017 [24] challenge

uses this methodology. There are also different variations

of CF trackers that have been proposed to improve tracking

performance [32,28,26].

There are also studies using distance (or similarity) met-

ric learning methods for visual object tracking [38,5,41,

14]. Fully-convolutional Siamese network models are uti-

lized for this purpose. Initially, these methods [38,5]

are trained on larger datasets such as ILSVRC15 and the

learned metric (i.e., matching function) is simply evaluated

online during tracking, and these methods did not have the

ability to update the previously learned distance function

during tracking. Later, Guo et al. [14] and Wang et al. [41]

proposed methods that update the learned distance function

online during tracking.

Motivation and Contributions: Existing deep learning

based trackers typically draw positive and negative training

samples around the estimated target location based on Inter-

section over Union (IoU) ratio, and then update the model

online by using these samples. As a typical rule, samples

whose IoU ratios are greater than 70% are regarded as pos-

itive samples and samples are taken as negative samples if

the ratios are smaller than 50% or 30%. In general, this

is not a good strategy in the sense that it does not encour-

age to obtain a sharper and more precise target localization.

As a result, even slight inaccuracies affect the classifier and

the learned model, and gradually cause the trackers to drift

and eventually fail to track the target object. The success

of correlation filters on the other hand is mostly because of

the precise localization of the target object center (but not

the whole bounding box framing the target). This is due

to the efficient and approximate dense sampling performed

by circularly shifting training samples. In case of homo-

geneous backgrounds and when the target object does not

move much, the circular shifts correspond to actual transla-

tion of object and this framework works well. However, in

addition to the boundary effects, the major problem with the

correlation filter based trackers is that it is not straightfor-

ward to estimate aspect ratios of the target object bounding

boxes (To the best of our knowledge, there is only a single

study [25] that addresses this issue for CF trackers). As a

result, despite the precise localization of the object center,

the returned bounding box of the target object is not satis-

factory especially in the case of abrupt aspect ratio changes.

To avoid these limitations, we propose a light-weight

deep neural network based tracker that not only estimates

the position of the target object but also provides a fine-

tuning of the position and returns more precise bounding

boxes framing the target object. This is achieved by us-

ing a novel classification loss adopted at the last stage of

the deep neural network and employing simple but effec-

tive model update strategies during online learning. More

precisely, we introduce a loss function that includes two

terms where the first term aims to separate the positive sam-

ple instances from the negative ones whereas the second

term encourages to return more precise location of the tar-



O
u
r

M
et

h
o
d

M
D

N
et

E
C

O
O

u
r

M
et

h
o
d

M
D

N
et

E
C

O

Figure 1: Visual comparison of the proposed tracker to the state-of-the-art trackers, MDNet and ECO. Yellow rectangles are

the ground-truth and the green bounding boxes are the tracker outputs. The proposed tracker returns much better bounding

boxes framing the target. In fact, the returned bounding boxes for the most of the fish video frames are even better than

the ground-truth. In contrast, both MDNet and ECO fail to track the fish and return less accurate bounding boxes for the

swimmer in the diving video.

get object. The latter objective is achieved by using a rank-

ing loss. This loss term can also be interpreted as a way

to learn a distance metric in a more principled way with

Siamese networks. Regarding the model update, we follow

a simple yet effective update rule: We update the model in

each frame as long as scores of the best target position re-

turned by the current model and a cache model (obtained

from previous frames and updated at every 10 frames) are

larger than a pre-defined threshold. This is in contrast to the

update strategy of the state-of-the-art deep neural network

tracker MDNet [33], where the model is updated only in

some pre-defined time periods or whenever potential track-

ing failures are detected. However, our studies show that it

is crucial to update the model in each frame to adapt to ap-

pearance and scale/aspect ratio changes and to circumvent

possible drifts. Fig. 1 qualitatively compares our method

to the state-of-the-art deep neural network tracker (MDNet)

[33] and correlation filter tracker ECO [7] on two challeng-

ing video sequences. Object appearances and aspect ratios

of bounding boxes framing the objects dramatically change

in these video frames. The first and the last images in the

figure correspond to the second and the last images of the

video sequences, whereas the other images in the figure cor-

respond to intermediate frames. As seen in the figure, the

proposed tracker returns much better bounding boxes fram-

ing the target object compared to MDNet and ECO, whereas



both MDNet and ECO fail to track the fish. MDNet and

ECO can estimate scale changes well, but they fail to adapt

to aspect ratio changes. In contrast, the proposed methodol-

ogy adapts to both scale and aspect ratio changes success-

fully.

Briefly, our contributions are summarized as follows:

• We introduce a deep neural network tracker that uses

a novel ranking loss function. Using ranking loss

causes the tracker to return more precise bounding

boxes framing the target object. Therefore, the tracker

successfully adapts itself to appearance, scale and as-

pect ratio changes.

• A cache model is utilized to make the tracker more

robust against occlusion.

• A simple yet effective model update rule which is com-

patible with the proposed tracker is implemented to

take full advantage of the ranking loss.

2. Method

Our proposed tracker uses a light-weight deep neural net-

work classifier for online learning as in [33]. The deep neu-

ral network classifier includes 5 hidden layers with 3 con-

volutional layers and 2 fully connected layers. As opposed

to the classical soft-max loss used in many deep neural net-

works, we use a novel classification loss function that is

more suitable for tracking and more robust to potential drifts

from the tracked targets.

For offline learning, we used the same strategy as in [33].

More precisely, we treat each training video sequence as a

separate domain, and train the network with K branches

of domain-specific layers. Each domain (video sequence)

is trained separately and iteratively while the shared layers

are updated in each iteration. Once the network is trained

with K training video sequences, the multiple branches of

domain-specific layers are removed from the network and

they are replaced with a single branch for the new test se-

quence. Then, this network with a single branch is fine-

tuned online to adapt to the new target object. During on-

line learning, we employ completely different model update

strategies compared to [33]. Next, we will first explain the

proposed novel loss function and then describe the over-

all online tracking system and the model update tricks used

during online learning.

2.1. Robust Ranking Loss for Object Tracking

During online learning, the deep learning classifier is

first used to estimate the best target location in a given frame

and then positive and negative samples are created based on

the IoU ratios with this estimated target location. Finally,

these positive and negative samples are used to update the

deep neural network classifier. Therefore, we also have IoU

ratio belonging to each selected sample, and these ratios

play a crucial role in our learning algorithm.

Let xi, (i = 1, . . . , n) represent the visual feature of a

sampled region during tracking and yi ∈ {−1, 1} is the cor-

responding label. Our proposed deep neural network clas-

sifier uses the following loss function,

min
w

λ

2
trace(w⊤

w) +

nr∑

r=1

L(r)H1(w
⊤
xr1 −w

⊤
xr2)

+ κ

n∑

i=1

H1(yi(w
⊤
xi)), (1)

where L(.) is a weighting function for different ranks,

H1(t) = max(0, 1 − t) is the classical hinge loss, and λ

and κ are the parameters that must be set by the user. The

first term in the optimization problem (1) is the regulariza-

tion term and various regularization methods are already

implemented in deep learning frameworks. Therefore, we

will focus on the other terms in (1). The last term in the

optimization problem aims to separate the positive samples

from the negatives, and this term ensures that the result-

ing classifier returns positive scores (≥ 1) for the posi-

tive samples and negative scores (≤ −1) for the negative

ones. In fact, this term along with the first term in the

optimization just implement a linear SVM classifier, and

it is better suited for object tracking settings where there

are very limited training samples. As given in the experi-

ments, the tracker with the classifier using the first and the

last terms even performs slightly better than MDNet, which

uses soft-max loss. This is very natural since soft-max clas-

sifier is a probabilistic and nonlinear function which needs

many training samples. The similar findings are obtained in

[11], where the authors achieve better accuracies with linear

SVM compared to soft-max classifier in the context of vi-

sual object detection. For labeling, the samples whose IoU

ratios are greater than 0.7 are regarded as positive samples,

and samples whose IoU ratios smaller than 0.3 are treated

as negative samples.

The second loss term in (1) is the major novelty in the

proposed loss function, and it is specifically introduced for

online object tracking. The main goal of this term is to en-

sure that the classifier gives higher scores to the sampled

regions that frame the target object better. To this end, we

use the samples whose IoU ratios are larger than or equal

to 0.1. We randomly select pairs and use the ones where

the difference between IoU ratios are greater than or equal

to 0.4 as illustrated in Fig. 2. xr1 is the visual feature of

the region that frames the target object better, and xr2 is

the visual feature of the region that frames the object with

less accuracy. If the score difference, (w⊤
xr1 −w

⊤
xr2) is

larger than 1, there is no loss; otherwise there exists a cost

determined by L(.). To compute L(.), we simply use the



IoU(xr1) = 0.70

IoU(xr2) = 0.25

IoU(xr1)− IoU(xr2) > 0.40 �

CNN

CNN

xr1

xr2

xr1 xr2

Ranking
Loss

∑
Classifier
Loss

Negative

Positive

CNN

CNN

xn

xp

Hinge
Loss

Figure 2: Selection of candidate regions for the proposed

classifier loss function. For ranking loss, we use the candi-

date regions where difference between IoU ratios are greater

than or equal to 0.4.

following formula,

L(r) = [IoU(xr1)− IoU(xr2)] γ, (2)

where IoU(xr1) denotes IoU ratio of the sample xr1, and γ

is a parameter that must be set by the user. Thus, L(r) can

take values between 0.4γ and 0.9γ. In each frame, the clas-

sifier learns to give higher scores for the sampled regions

that frame the target object better since the classifier pro-

duces the highest score for the best target position. As a re-

sult, the tracking failures caused by accumulation of errors

due to the small drifts are largely reduced. There are other

advantages of using this loss term: Although we do not di-

rectly target to use the context information, this term also

takes advantage of context information since the samples

with IoU ratios between 0.1 and 0.3 include regions mainly

coming from the background. The proposed loss term can

also be interpreted as a more systematic way of using dis-

tance learning controlled by the L(.) function. Therefore,

the proposed tracker can also be regarded as a more ad-

vanced and specialized Siamese network tracker.

2.2. Implementation Details

During online tracking, we draw 256 samples in each

frame with varying scales and aspect ratios near the target

object position found in the previous frame. To this end,

we create a ROI (Region of Interest) whose size and as-

pect ratio depend on the current bounding box of the target.

The bounding box of the target appears in the middle of the

ROI, and the size of ROI is approximately 7 times of the

target bounding box size. Both random sampling and an ef-

ficient region proposal method (Edge Boxes) [53] are used

to create candidate regions. The candidate region which has

the maximum classifier score is temporarily assigned as the

new target position, then we also make another local search

around this position. For local search, we densely draw an-

other 256 candidates around the temporary target position

and obtain classifier scores. If a region produces a higher

score than the score of the temporary target position, the

final target object position in the current frame is assigned

to this position, otherwise the temporary target position be-

comes the final target position. This local search is crucial

for the proposed tracker since our network classifier is very

sensitive to even small target position changes because of

the ranking loss used in its optimization.

Once we determine the new position of the target object

in a current frame, we need to update the deep neural net-

work model. We only update the weights of the classifier

layer and the fully connected layers online due to speed is-

sues. To update the network, we draw 64 positive samples,

256 negative samples and 48 sample pairs where the differ-

ence between IoU ratios are larger than 0.4 except for the

first frame, in which we used 750 positives, 7000 negatives

and 200 sample pairs to fine-tune the pre-trained network.

To decide whether to update the model, we also keep a net-

work model in cache which is quite similar to the current

active model, and this model is updated in every 10 frames.

We update the current network model as long as the scores

of the best target position for both models are larger than

a pre-defined threshold which is set to 0. This model up-

date strategy contrasts with the one proposed in [33], where

short-term updates are conducted only whenever potential

tracking failures are detected. However, updating the model

in each frame (unless scores are lower than 0, which indi-

cates that the target has disappeared probably because of an

occlusion) is very important to keep track of scale and as-

pect ratio changes of the bounding boxes framing the target.

The maximum number of iterations is set to 7 during model

updates.

We needed to maintain another model in cache because

the active model rapidly adopts itself to smooth appearance

changes since it is updated in every frame. As a result, when

the object undergoes an occlusion in a gradual way, the ac-

tive model sometimes learns the background instead of the

object and cannot recover even if the object appears again

in the scene. To avoid such incidents, we keep a model

that ensures that the active model is only updated when the

object is mostly visible. We currently use only one cache

model, but one may use multiple models for different pur-

poses based on different applications. For instance, con-

sider aerial tracking of a car from a UAV (Unmanned Aerial

Vehicle). Since both the target and the camera move, there

will be various aerial car views in different orientations.

When the car disappears from the scene because of an oc-

clusion, and then it reappears in the scene with a completely

different view, the active model may struggle to locate the

target. For such cases, cache models trained with different

views will be helpful to relocate the target easily.



Table 1: Comparisons with the state-of-the-art trackers on the OTB datasets. Red, green, and blue fonts indicate 1st, 2nd, 3rd

performance, respectively.

Tracker
OTB-2013

AUC

OTB-2013

Prec.

OTB-50

AUC

OTB-50

Prec.

OTB-100

AUC

OTB-100

Prec.

RankingTVOT 72.8 94.8 67.3 91.0 70.1 91.8

RankingTVOT-NoRanking 70.7 93.4 64.9 89.7 68.1 90.6

RankingTVOT-NoCache 71.9 94.1 67.1 90.8 69.5 91.3

RankingTILSVRC15 71.3 93.9 65.9 89.5 68.3 91.2

RankingTILSVRC15-NoRanking 69.5 91.6 64.1 87.8 66.4 89.4

Vital 71.0 95.0 65.7 90.5 68.2 91.7

LSART - - - - 67.2 92.3

DRT 72.0 95.3 - - 69.9 92.3

MCCT 71.4 92.8 - - 69.5 91.4

CFCF 69.2 92.2 62.6 86.3 67.8 89.9

MDNet 70.8 94.8 64.5 89.0 67.8 90.9

ECO 70.9 93.0 64.3 87.3 69.1 91.0

CCOT 67.2 89.9 61.4 84.3 67.1 89.8

Setting Design Parameters: There are three parameters

of the proposed method that must be set by the user: the

regularization parameter λ, the weight γ in L(.), and the

weight κ of the ranking loss that enforces the classifier to

return positive scores for positive class samples and nega-

tive scores for negative class samples, as seen in Eq. (1).

For deep neural networks, the regularization parameter is

commonly called as the weight decay. We set the weight

decay parameter to 0.0005 as in [33]. To determine the best

values of κ and γ, we randomly selected 40 videos from the

ImageNet dataset and evaluated accuracies for different val-

ues. The best accuracy is obtained for κ = 0.5 and γ = 4.5
values.

3. Experiments

We tested the proposed tracker, RankingTracker (Rank-

ingT), on the challenging OTB (Object Tracking Bench-

mark) and VOT2017 (Visual Object Tracking 2017)

datasets. We experimented with 2 different trackers which

are initialized from different pre-trained models. For pre-

training our first network model, RankingTVOT, we used

the same 58 video sequences collected from different VOT

datasets as in [33]. Although, the videos from the same do-

mains were used for both training and testing in different

trackers, this is not a fair strategy as pointed out by [4] and

the VOT committee because of concerns related to over-

fitting to the scenes and objects in the benchmarks. To ad-

dress this issue, we also used 2156 ILSVRC 2015 video

sequences to pre-train our network, RankingTILSVRC15, as

in [4].

The proposed tracker is implemented using MatConvNet

toolbox [40] on a GPU server including eight cores of 2.1

GHz Intel Xeon E5-2600 and 16 GB Quadro P5000 GPU.

The average speed of the proposed tracker with a single

GPU is approximately 3 FPS. We compared our trackers

to other state-of-the-art and recently published trackers, in-

cluding Vital (CVPR 2018) [35], LSART (CVPR 2018)

[37], DRT (CVPR 2018) [36], MCCT (CVPR 2018) [46],

CFCF (T-IP 2018) [13], MDNet (CVPR 2016) [33], ECO

(CVPR 2017) [7], CCOT (ECCV 2016) [9], CFWCR (IC-

CVW 2017) [17], Gnet (ICIP 2017) [23], CSRDCF (CVPR

2017) [29] and MCPF (CVPR 2017) [52].

3.1. Results on OTB

OTB is a very common tracking benchmark that includes

100 videos sequences with 11 different attributes such as

fast motion, background clutter, deformation, in-plane rota-

tion, etc. We tested our tracker on the OTB-2013, OTB-50

and OTB-100 benchmarks which contain 50, 50 and 100

fully annotated videos, respectively. The standard OTB

evaluation protocol is used to compare the tracking meth-

ods. According to this, we report the results in one-pass

evaluation (OPE) protocol with both precision and success

plots, and the OTB evaluation toolkit is used to generate

the plots and performance scores. The precision plot cal-

culates the Euclidean distance of center locations between

ground-truth and estimated target position then reports the

percentage of frame locations that are within 20 pixels dis-

tance from those of the ground truth. The success measures

IoU ratios of the ground-truth and predicted target bound-

ing boxes, and the success plot shows the rate of bound-

ing boxes whose IoU ratios are larger than a given thresh-

old. Tracking algorithms are ranked based on the area under

curve (AUC) scores obtained from these plots.

The results are given in Table 1. The red, green, and

blue fonts in the table respectively indicate the best, the



second best and the third best accuracy scores. The cor-

responding precision and success plots are given in Fig. 3.

As seen in the results, the proposed RankingTVOT achieves

the best success rates on all tested datasets, and achieves

the best precision score on the OTB-50 dataset, the second

best precision score on the OTB-100 dataset, and the third

best precision score on the OTB-2013 dataset. Another pro-

posed tracker fine-tuned from the model using ILSVRC15,

RankingTILSVRC15, obtains the third best success rate on the

OTB-50 dataset. As seen in the results, the proposed track-

ers achieve the best success rates but precision scores are

not always the best. This is due to the fact that the cor-

relation filter based trackers are very good at estimating

the center of the target object position, but the predicted

bounding boxes are not very good because of scale/aspect

ratio changes. Proposed trackers on the other hand esti-

mate the bounding boxes with a very high precision, but

their centers are not necessarily very accurate compared to

correlation filter based trackers. In general, the proposed

tracker, RankingTVOT, which is fine-tuned from the model

pre-trained by using VOT dataset videos, achieves the best

accuracy followed by the one that is fine-tuned from the

model pre-trained by using ILSVRC15 videos. Both of our

proposed trackers using different pre-trained models out-

perform MDNet which also uses a deep neural network for

tracking.

To demonstrate the importance of the ranking loss term

introduced in optimization problem (1), we also conducted

some tests by removing this term from the optimization.

The resulting trackers, RankingTVOT(ILSVRC15)-NoRanking,

just use SVM hinge loss and these trackers are also

pre-trained by using videos from VOT(ILSVRC15)

datasets. Therefore, they are directly comparable to the

RankingTVOT(ILSVRC15) trackers. As seen in the results, in-

cluding the ranking loss term in the classifier improves suc-

cess rates around 2% for both trackers. In addition, we

also conducted tests to measure the effect of the cache

model on the accuracy. Removing the cache model from the

tracker slightly decreased the performances between 0.2%

and 0.9% in terms of AUC.

Lastly, we report the results on various attributes in the

OTB-100 dataset. The proposed tracker, RankingTVOT,

achieves the best success rates on 9 of 11 attributes in the

dataset and it obtains the second best accuracies on the re-

maining 2 attributes. Fig. 4 visualizes the 4 attributes in

which the proposed tracker achieves the best accuracies.

This plot clearly shows that the proposed tracker success-

fully handles all kinds of challenging tracking situations.

3.2. Results on VOT2017

The VOT2017 [24] benchmark consists of 60 challeng-

ing video sequences selected from a pool of about 390 se-

quences, with 6 different attributes, such as occlusion, il-

Figure 3: Precision and success plots on the OTB datasets

(RankingT corresponds to RankingTVOT in the figure).

Table 2: Results of the tested trackers on the VOT2017.

Tracker EAO A R AO

RankingTVOT 0.33 0.55 13.32 0.48

RankingTVOT-NoRanking 0.31 0.54 15.04 0.46

RankingTVOT-NoCache 0.32 0.54 14.21 0.46

RankingTILSVRC15 0.27 0.50 19.84 0.46

LSART 0.32 0.48 11.20 0.44

CFWCR 0.30 0.47 14.33 0.37

CFCF 0.29 0.49 15.17 0.38

ECO 0.28 0.46 15.33 0.40

Gnet 0.27 0.49 13.33 0.42

MCCT 0.27 0.52 14.0 0.43

CCOT 0.27 0.46 17.67 0.39

CSRDCF 0.26 0.49 18.50 0.34

MCPF 0.25 0.51 21.29 0.44

lumination change, camera motion and so on. The VOT

challenge protocol uses reset-based methodology in which

a tracker is re-initialized whenever the tracking fails. The

accuracy is measured in terms of expected average over-

lap (EAO), which quantitatively reflects both bounding

box overlap ratio (accuracy-A) and re-initialization times

(robustness-R). In addition, the VOT2017 evaluation pro-

tocol also applies no-reset based OTB protocol where the

performance is measured in terms of the average overlap



Figure 4: Comparison of performances on different attributes of the OTB-100 dataset.

Table 3: Comparison of performances for the challenging attributes on the VOT2017 dataset.

Tracker
Camera Motion Illum. Changes Motion Changes Occlusion Size Changes

A R A R A R A R A R

RankingTVOT 0.55 19.93 0.56 0.80 0.56 8.33 0.52 18.33 0.56 4.93

RankingTILSVRC15 0.53 30.13 0.46 6.07 0.53 21.20 0.47 25.67 0.51 10.47

LSART 0.51 19.73 0.48 0.53 0.50 8.67 0.44 20.80 0.46 9.00

CFWCR 0.54 28.00 0.48 3.00 0.49 12.00 0.39 19.00 0.45 12.00

CFCF 0.54 29.00 0.44 0.00 0.51 15.00 0.44 20.00 0.49 8.00

ECO 0.51 25.00 0.50 4.00 0.48 18.00 0.35 22.00 0.45 9.00

Gnet 0.55 23.00 0.50 1.00 0.50 14.00 0.41 14.00 0.49 9.00

CCOT 0.52 26.00 0.45 6.00 0.48 19.00 0.39 22.00 0.45 14.00

(AO).

The results are given in Table 2, and all results are

again obtained by the provided VOT evaluation toolkit. We

tested our RankingTVOT and RankingTILSVRC15 trackers on

this dataset. The proposed tracker, RankingTVOT, achieves

the best results in terms of accuracy (A), expected aver-

age overlap (EAO) and average overlap (AO), and it sig-

nificantly outperforms other state-of-the-art trackers includ-

ing the VOT2017 challenge winner, CFCF. However, its ro-

bustness performance is not the best, and it comes the sec-

ond after the score of LSART. The other proposed tracker,

RankingTILSVRC15, obtains the second best AO score after

RankingTVOT. As in OTB results, removing the ranking loss

term from the tracker decreases the results by 2% in terms of

EAO whereas the results decrease by 1% if the cache model

is not utilized in the proposed tracker. Table 3 gives the re-

sults for different attributes on the VOT2017 dataset. The

proposed tracker, RankingTVOT, again obtains the best ac-

curacies for all tested attributes and obtains the best robust-

ness scores for Size Changes and Motion Changes. More-

over, it obtains the second best results for Camera Motion

and Occlusion. Obtaining the best scores of both accu-

racy and robustness for the Size Changes attribute clearly

demonstrates that the proposed tracker better adapts itself

to scale/aspect ratio changes compared to other state-of-the-

art trackers. The other proposed tracker, RankingTILSVRC15,

achieves the second best accuracies for the three of the five

tested attributes.

4. Summary and Conclusions

This paper introduces a deep neural network classifier

for visual tracking. In contrast to other deep neural network

based trackers, we use a new classification loss specifically

designed for tracking settings. To this end, we use hinge

loss which is better suited for separation of data samples

when there is a limited amount of training data for learning.

Moreover, we also introduce a novel ranking loss which

ensures that the classifier gives much higher scores to the

candidate regions that frame the target object better. This

reduces the risk of tracking error error accumulation and

avoids possible drifts from the tracked object. The proposed

classifier achieves the state-of-the-art results on the chal-

lenging OTB and VOT datasets when used with simple on-

line classifier update strategies. Experimental results show

that the proposed tracker successfully estimates the best tar-

get positions as long as the object appearance changes are

not very harsh. Especially, the estimation of the aspect ra-

tios of target bounding boxes is very successful whereas the

majority of state-of-the-art detectors fail to do so only with

a very few exceptions.

Acknowledgments: This work was supported by the

Scientific and Technological Research Council of Turkey

(TUBİTAK) under grant number EEEAG-116E080. The

authors also would like to thank NVIDIA for GPU dona-

tion used in this study.



References

[1] Shai Avidan. Support vector tracking. IEEE Transactions on

PAMI, 26:1064–1072, 2004. 1

[2] Shai Avidan. Ensemble tracking. In CVPR, 2005. 1

[3] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. Ro-

bust object tracking with online multiple instance learning.

IEEE Transactions on PAMI, 33:1619–1632, 2011. 1

[4] Luca Bertinetto, Jack Valmadre, Stuart Golodetz, Ondrej

Miksik, and Philip HS Torr. Staple: Complementary learners

for real-time tracking. In CVPR, 2016. 2, 6

[5] Luca Bertinetto, Jack Valmadre, Joao F Henriques, Andrea

Vedaldi, and Philip HS Torr. Fully-convolutional siamese

networks for object tracking. In arXiv:1606.09549, 2016. 2

[6] David S Bolme, J Ross Beveridge, Bruce A Draper, and

Yui Man Lui. Visual object tracking using adaptive corre-

lation filters. In CVPR, 2010. 2

[7] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. Eco: Efficient convolution operators for

tracking. In CVPR, 2017. 2, 3, 6

[8] Martin Danelljan, Gustav Hager, Fahad Shahbaz Khan, and

Michael Felsberg. Convolutional features for correlation fil-

ter based visual tracking. In ICCV Workshops, 2015. 2

[9] Martin Danelljan, Andreas Robinson, Fahad Shahbaz Khan,

and Michael Felsberg. Beyond correlation filters: Learn-

ing continuous convolution operators for visual tracking. In

ECCV, 2016. 2, 6

[10] Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg,

and Joost Van de Weijer. Adaptive color attributes for real-

time visual tracking. In CVPR, 2014. 2

[11] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014. 4

[12] Helmut Grabner, Michael Grabner, and Horst Bischof. Real-

time tracking via on-line boosting. In BMVC, 2006. 1

[13] Erhan Gundogdu and A Aydın Alatan. Good features to cor-

relate for visual tracking. IEEE Transactions on Image Pro-

cessing, 27:2526–2540, 2018. 2, 6

[14] Qing Guo, Wei Feng, Ce Zhou, Rui Huang, Liang Wan, and

Song Wang. Learning dynamic siamese network for visual

object tracking. In ICCV, 2017. 2

[15] Bohyung Han, Dorin Comaniciu, Ying Zhu, and Larry S

Davis. Sequential kernel density approximation and its appli-

cation to real-time visual object tracking. IEEE Transactions

on PAMI, 30:1186–1197, 2008. 1

[16] Sam Hare, Stuart Golodetz, Amir Saffari, Vibhav Vineet,

Ming-Ming Cheng, Stephen L Hicks, and Philip HS Torr.

Struck: Structured output tracking with kernels. IEEE

transactions on pattern analysis and machine intelligence,

38(10):2096–2109, 2015. 1

[17] Zhiqun He, Yingruo Fan, Junfei Zhuang, Yuan Dong, and

HongLiang Bai. Correlation filters with weighted convolu-

tion responses. In ICCV Workshops, 2017. 6

[18] David Held, Sebastian Thrun, and Silvio Savarese. Learning

to track at 100 fps with regression networks. In ECCV, 2016.

1

[19] João F Henriques, Rui Caseiro, Pedro Martins, and Jorge

Batista. High-speed tracking with kernelized correlation fil-

ters. IEEE Transactions on PAMI, 37:583–596, 2015. 2

[20] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung

Han. Online tracking by learning discriminative saliency

map with convolutional network. In ICML, 2015. 1, 2

[21] Allan D Jepson, David J Fleet, and Thomas F El-Maraghi.

Robust online appearance models for visual tracking. IEEE

Transactions on PAMI, 25:1296–1311, 2003. 1

[22] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. IEEE Transactions on PAMI,

34:1409–1422, 2012. 1

[23] Thanikasalam Kokul, Clinton Fookes, Sridha Sridharan,

Amirthalingam Ramanan, and UAJ Pinidiyaarachchi. Gate

connected convolutional neural network for object tracking.

In Image Processing (ICIP), 2017 IEEE International Con-

ference on. IEEE, 2017. 6

[24] Matej Kristan, Aleš Leonardis, Jiri Matas, Michael Felsberg,

Roman Pflugfelder, Luka Čehovin Zajc, Tomas Vojir, Gustav

Häger, Alan Lukežič, Abdelrahman Eldesokey, and Gustavo

Fernandez. The visual object tracking vot2017 challenge re-

sults, 2017. 2, 7

[25] Feng Li, Yingjie Yao, Peihua Li, David Zhang, Wangmeng

Zuo, and Ming-Hsuan Yang. Integrating boundary and center

correlation filters for visual tracking with aspect ratio varia-

tion. In ACM International Conference on Multimedia, 2015.

2

[26] Feng Li, Yingjie Yao, Peihua Li, David Zhang, Wangmeng

Zuo, and Ming-Hsuan Yang. Integrating boundary and center

correlation filters for visual tracking with aspect ratio varia-

tion. In ICCV Workshops, 2017. 2

[27] Hanxi Li, Yi Li, and Fatih Porikli. Deeptrack: Learn-

ing discriminative feature representations online for robust

visual tracking. IEEE Transactions on Image Processing,

25(4):1834–1848, 2015. 1, 2

[28] Si Liu, Tianzhu Zhang, Xiaochun Cao, and Changsheng Xu.

Structural correlation filter for robust visual tracking. In

CVPR, 2016. 2

[29] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas,

and Matej Kristan. Discriminative correlation filter with

channel and spatial reliability. In CVPR, 2017. 6

[30] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual tracking.

In ICCV, 2015. 1, 2

[31] Xue Mei and Haibin Ling. Robust visual tracking using l1

minimization. In ICCV, 2009. 1

[32] Matthias Mueller, Neil Smith, and Bernard Ghanem.

Context-aware correlation filter tracking. In CVPR, 2017.

2

[33] Hyeonseob Nam and Bohyung Han. Learning multi-domain

convolutional neural networks for visual tracking. In CVPR,

2016. 1, 2, 3, 4, 5, 6

[34] David A Ross, Jongwoo Lim, Ruei-Sung Lin, and Ming-

Hsuan Yang. Incremental learning for robust visual track-

ing. International Journal of Computer Vision, 77:125–141,

2008. 1



[35] Yibing Song, Chao Ma, Xiaohe Wu, Lijun Gong, Linchao

Bao, Wangmeng Zuo, Chunhua Shen, Rynson WH Lau, and

Ming-Hsuan Yang. Vital: Visual tracking via adversarial

learning. In CVPR, 2018. 6

[36] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan

Yang. Correlation tracking via joint discrimination and re-

liability learning. In CVPR, 2018. 6

[37] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan

Yang. Learning spatial-aware regressions for visual track-

ing. In CVPR, 2018. 6

[38] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders.

Siamese instance search for tracking. In CVPR, 2016. 2

[39] Jack Valmadre, Luca Bertinetto, João Henriques, Andrea

Vedaldi, and Philip HS Torr. End-to-end representation

learning for correlation filter based tracking. In CVPR, 2017.

2

[40] Andrea Vedaldi and Karel Lenc. Matconvnet: Convolutional

neural networks for matlab. In ICCV Workshops, 2017. 6

[41] Bing Wang, Li Wang, Bing Shuai, Zhen Zuo, Ting Liu, Kap

Luk Chan, and Gang Wang. Joint learning of convolutional

networks temporally constrained metrics for tracklet associ-

ation. In CVPR Workshops, 2016. 2

[42] Dong Wang, Huchuan Lu, and Ming-Hsuan Yang. Online

object tracking with sparse prototypes. IEEE Transactions

on Image Processing, 22:314–325, 2013. 1

[43] Lijun Wang, Wanli Ouyang, Xiaogang Wang, and Huchuan

Lu. Visual tracking with fully convolutional networks. In

ICCV, 2015. 1, 2

[44] Naiyan Wang, Siyi Li, Abhinav Gupta, and Dit-Yan Yeung.

Transferring rich feature hierarchies for robust visual track-

ing. In arXiv:1501.04587, 2015. 1, 2

[45] Naiyan Wang and Dit-Yan Yeung. Learning a deep compact

image representation for visual tracking. In NIPS, 2013. 1, 2

[46] Ning Wang, Wengang Zhou, Qi Tian, Richang Hong, Meng

Wang, and Houqiang Li. Multi-cue correlation filters for ro-

bust visual tracking. In CVPR, 2018. 6

[47] Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, and

Weiming Hu. Dcfnet: Discriminant correlation filters net-

work for visual tracking. In arXiv:1704.04057, 2017. 2

[48] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. In CVPR, 2013. 1

[49] Alper Yilmaz, Omar Javed, and Mubarak Shah. Object track-

ing: a survey. ACM Computing Surveys, 38:1–45, 2006. 1

[50] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra

Ahuja. Low-rank sparse learning for robust visual tracking.

In ECCV, 2012. 1

[51] Tianzhu Zhang, Bernard Ghanem, Si Liu, and Narendra

Ahuja. Robust visual tracking via multi-task sparse learn-

ing. In CVPR, 2012. 1

[52] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.

Multi-task correlation particle filter for robust object track-

ing. In CVPR, 2017. 6

[53] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating

object proposals from edges. In ECCV, 2014. 5


