
Visual Tracking by means of Deep Reinforcement Learning

and an Expert Demonstrator

Matteo Dunnhofer, Niki Martinel, Gian Luca Foresti and Christian Micheloni

Department of Mathematics, Computer Science and Physics, University of Udine, Italy

dunnhofer.matteo@spes.uniud.it, {niki.martinel, gianluca.foresti, christian.micheloni}@uniud.it

Abstract

In the last decade many different algorithms have been

proposed to track a generic object in videos. Their exe-

cution on recent large-scale video datasets can produce a

great amount of various tracking behaviours. New trends

in Reinforcement Learning showed that demonstrations of

an expert agent can be efficiently used to speed-up the

process of policy learning. Taking inspiration from such

works and from the recent applications of Reinforcement

Learning to visual tracking, we propose two novel trackers,

A3CT, which exploits demonstrations of a state-of-the-art

tracker to learn an effective tracking policy, and A3CTD,

that takes advantage of the same expert tracker to correct

its behaviour during tracking. Through an extensive ex-

perimental validation on the GOT-10k, OTB-100, LaSOT,

UAV123 and VOT benchmarks, we show that the proposed

trackers achieve state-of-the-art performance while running

in real-time.

1. Introduction

Visual object tracking is one of the most challenging

problems in Computer Vision. In its simplest form, it

consists in the persistent recognition and localization –by

means of bounding boxes– of a target object in consecutive

video frames. Even though many efforts have been recently

made (e.g. [43, 50, 26]), the process of automatically fol-

lowing a generic object in a video comes with several dif-

ferent challenges including occlusions, light changes, fast

motion, and motion blur. In addition, many practical appli-

cations of visual tracking, such as video surveillance, be-

havior understanding, autonomous driving and robotics, re-

quire accurate predictions with real-time constraints.

In many current methodologies (e.g. [37, 13, 10, 3]),

Convolutional Neural Networks (CNNs) [29] pre-trained

for image classification showed to be effective for visual

tracking. Due to their discriminative power, CNN gener-

ated feature representations are widely used to search the

target in the consecutive frames. This kind of information is

widely used in classification or tracking-by-detection meth-

ods (e.g. [37, 44]). The most significant drawback of these

methods is that they require computational demanding pro-

cedures to search for candidate targets in new frames. Fur-

thermore, even strong CNN models may not be able to cap-

ture all possible variations of targets and need to be updated

online during tracking. In these scenarios, the tracker shall

understand the quality of its tracking process and the tar-

get’s motion status, in order to take decisions to efficiently

update its model. Solutions that implement such a mech-

anism achieve excellent results (e.g. [37, 5, 52, 39]), but

their processing speed is often far from being real-time.

Moreover, the problem of taking decisions online requires

algorithms capable of deciding intelligently at the right mo-

ments.

To address these issues, tracking methodologies based

on Reinforcement Learning (RL) have been recently pro-

posed [4, 52, 19, 3, 39]. The idea behind such works is to

treat aspects like target searching procedures or tracking sta-

tus evaluation as sequential decision-making problems. In

these settings, an artificial agent is trained to take optimal

sequential decisions to solve a tracking related task which,

ultimately, leads to the development of a strategy to track

the target object. These solutions maintain competitive per-

formance with state-of-the-art methods, however they im-

plement complex and demanding online update procedures

that slow tracking. In addition, these methods are usually

not end-to-end and require at least two training stages, one

initial supervised learning (SL) stage and a following RL

fine-tuning.

We argue that better speed performance can be obtained

and that SL can be incorporated into an RL framework

to make the training end-to-end. We claim that tracking

demonstrations of an expert tracker can be used to guide

RL tracking agents. Furthermore, we propose to simplify

the online update strategy by taking advantage of the ex-

pert during tracking. We will demonstrate that RL func-

tions needed for training can be also used during tracking to

exploit the performance of the expert tracker and to conse-

quentially improve the tracking accuracy.

In particular, in this paper we introduce the following

contributions:

1. a real-time CNN-based tracker named A3CT which is

trained via an end-to-end RL method that takes advan-

tage of the demonstrations of a state-of-the-art tracker;

2. a real-time CNN-based tracker named A3CTD which

uses the RL functions learned during training to im-

prove performance by exploiting the expert during the

tracking phase.

The proposed trackers are built on a deep regression net-

work for tracking [13, 10] and are trained inside an on-

policy Asynchronous Actor-Critic framework [32] that in-

corporates SL and expert demonstrations. A state-of-the-

art tracking algorithm [2] is run on a large-scale tracking

dataset [18] to obtain the demonstrations. Experiments will

show that the proposed A3CT and A3CTD trackers perform

comparably with state-of-the-art methods on the GOT-10k

test set [18], LaSOT [9], UAV123 [35], OTB-100 [50] and

VOT benchmarks [24, 26], while achieving a processing

speed of 90 FPS and 50 FPS respectively.

2. Related work

2.1. Deep RL

RL concerns methodologies to train artificial agents to

solve interactive decision-making problems [45]. Recent

trends in this field (e.g. [33, 34, 41, 42]) showed the suc-

cessful combination of Deep Neural Networks (DNNs) and

RL algorithms (so-called Deep RL) in the representation of

models such as the value or policy functions. Among the

existing approaches, off-policy strategies aim to learn the

state or the state-action value functions, that give estima-

tions about the expected future reward of states and actions

[48, 33, 34]. The policy is then extracted by choosing greed-

ily the actions that yield the highest function values. On the

other hand, on-policy algorithms directly learn the policy

by optimizing the DNN with respect to the expected future

reward [49]. There exist then hybrid approaches, known

as Actor-Critic [22], that maintain and optimize the model

representations of both the policy and state value (or state-

action value) functions.

All these methods however suffer of slow convergence,

especially in cases where continuous or high-dimensional

action spaces are considered. Recent solutions (e.g. [47, 36,

40, 20, 15]) propose to use expert demonstrations to help

and guide the learning process.

2.2. Visual Tracking

Visual Tracking has received increasing interest thanks

to the introduction of new benchmarks [50, 9, 35, 18] and

challenges [28, 23, 24, 25, 26].

Thanks to their superior representation power, in re-

cent years various approaches based on CNNs appeared

[13, 10, 37, 5, 2, 30, 53]. Held et al. [13] and Gordon et al.

[10] showed how deep regression CNNs could capture the

target’s motion. However, these methods are trained using

SL which optimizes parameters for just local predictions. In

contrast, we propose a RL-based training which optimizes

the DNN’s weights for the maximization of performance

in future predictions. Nam et al. [37] proposed an online

tracking-by-detection approach by using a pre-trained CNN

for image classification. Similarly, Danelljan et al. [7, 5]

proposed a discriminative correlation filter approach by in-

tegrating multi-resolution CNN features. These solutions

obtained outstanding results w.r.t. the previous methodolo-

gies, however they are very computationally expensive and

can run at just 1 and 6 FPS respectively. Currently, the ap-

proach based on the Siamese framework is getting signifi-

cant attention for their well-balanced tracking accuracy and

efficiency [2, 11, 31, 30, 54, 53]. These trackers formulate

the visual tracking as a cross-correlation problem and are

leveraging effectively from end-to-end learning of DNNs.

However their performance is susceptible to visual distrac-

tors due to the non-incorporation of temporal information

or online fine-tuning. Conversely to this, our tracker present

the use of an LSTM [16] to model the temporal relation of

target’s appearance between frames.

2.3. Deep RL for Visual Tracking

Very recently, Deep RL has started to be increasingly

used to tackle the Visual Tracking problem. The first solu-

tion in this direction was the work of Yun et al. [52], which

proposed an Action-Decision network to learn a policy for

selecting a discrete number of actions to modify iteratively

the bounding box in the previous frame. Huang et al. [17]

used a Deep-Q-Network [34] to learn a policy for adap-

tively selecting efficient image features during the tracking

process. In the work of [19], the tracker was modeled as

an agent that takes decisions during tracking whether: to

continue tracking with a state-of-the-art tracker or to re-

initialize it; and to update or not the appearance model of

the target object. In [4], authors used a variant of REIN-

FORCE [49] to develop a template selection strategy, en-

couraging the tracking agent to choose, at every frame, the

best template from a finite pool of candidate templates. In

[39], authors presented a tracker which, at every time step,

decides to shift the current bounding box while remaining

on the same frame, to stop the shift process and move to

the next frame, to update on-line the weights of the model

or to re-initialize the tracker if the target is considered lost.

Finally, [3] proposed to substitute the discrete action frame-

work of [52] with continuous actions, thus performing just

a single action at every frame.

All the presented methods include a pre-training step that

uses SL to build a baseline policy or some other module

used later by the tracking agents. Only after, RL is used to

fine-tune such policies and modules. We take inspiration

from RL methods that exploit expert demonstrations and

we propose a novel end-to-end methodology based on on-

policy Actor-Critic framework [32] to train a DNN capable

of tracking generic objects in videos. We also demonstrate

that the state value function learned during training, can be

directly used to exploit the expert during tracking, in order

to adjust wrong tracking behaviors and to consequentially

improve the tracking accuracy.

3. Methodology

The key idea of this paper is to take advantage of an ex-

pert tracker for training and tracking. RL and expert demon-

strations are used to train a DNN which is then capable of

tracking autonomously a generic target object in a video.

The same network is also capable of evaluating its own per-

formance and the one of the expert, thus exploiting the lat-

ter’s knowledge in potential failure cases.

3.1. Problem setting

In our setting, the tracking problem follows the definition

of a Markov Decision Process (MDP). The tracker is treated

as an artificial agent which interacts with an environment

that is obtained as an MDP defined over a video. MDPs are

a standard formulation for RL tasks and are composed of: a

set of states S; a set of actions A; a state transition function

f : S × A → S; a reward function r : S × A → R; and a

discount value γ ∈ R.

The interaction with the video, which we call an

episode, happens through a temporal sequence of obser-

vations s1, s2, · · · , st, actions a1, a2, · · · , at and rewards

r1, r2, · · · , rt. In the t-th frame, the agent is provided with

the state st and outputs the continuous action at which con-

sists in the relative motion of the target object, i.e. it indi-

cates how its bounding box, which is known in frame t− 1,

should move to enclose the target in the frame t. This ap-

proach is similar to the MDP formulation given by Chen

et al. [3], however we propose different definitions for the

states, actions and rewards.

Preliminaries. Given a dataset D = {V0, · · · ,V|D|}, we

consider the j-th video

Vj =
{
Ft ∈ {0, · · · , 255}w×h×3

}Tj

t=0
(1)

as a sequence of frames Ft. Let bt = [xt, yt, wt, ht] be

the t-th bounding box defining the coordinates of the top

left corner, and the width and height of the rectangle that

contains the target object. At time t − 1, given Ft−1 and

bt−1, the goal of the tracker is to predict the bounding box

bt that best fits the target in the consecutive frame Ft.

State. Every state st ∈ S is defined as a pair of image

patches obtained by cropping frames Ft−1 and Ft using the

bounding box bt−1. Specifically, st = ρ(Ft−1, Ft, bt−1, k),
where ρ(·) crops the frames Ft−1, Ft within the area of the

bounding box b′t−1 = [x′
t−1, y

′
t−1, k · wt−1, k · ht−1] that

has the same center coordinates of bt−1 but which width

and height are scaled by k. With this function and by choos-

ing k > 1, we can control the amount of additional image

context information that is provided to the agent.

Actions and State Transition. Each action at ∈ A con-

sists in a vector at = [∆xt,∆yt,∆wt,∆ht] ∈ [−1, 1]4

which defines the relative horizontal and vertical transla-

tions (∆xt,∆yt, respectively) and width and height scale

variations (∆wt,∆ht, respectively) that have to be applied

to bt−1 to predict the bounding box bt. This is obtained

through ψ : A× R
4 → R

4 such that

ψ(at, bt−1) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

xt = xt−1 +∆xt · wt−1

yt = yt−1 +∆yt · ht−1

wt = wt−1 +∆wt · wt−1

ht = ht−1 +∆ht · ht−1

(2)

After performing the action at, the agent moves from the

state st into the state st+1 which is defined as the pair of

cropped images obtained from the frames Ft and Ft+1 using

the bounding box bt.

Reward. The reward function r(st, at) expresses the

quality of the action at taken at state st. Our reward def-

inition is based on the Intersection-over-Union (IoU) metric

computed between bt and the ground-truth bounding box,

denoted as gt, i.e., IoU(bt, gt) = (bt∩gt)/(bt∪gt) ∈ [0, 1].
At every interaction step t, the reward is formally defined as

r(st, at) =

{
ω (IoU(bt, gt)) if IoU(bt, gt) ≥ 0.5

−1 otherwise
(3)

with

ω(z) = 2(⌊z⌋0.05)− 1 (4)

flooring to the closest 0.05 digit, then shifting the input

range from [0, 1] to [−1, 1].

Expert demonstrations. To guide the learning of our

tracking agent we take advantage of the positive demon-

strations of an expert tracker. Given Vj , the bound-

ing box prediction of the expert at time t is denoted

as b
(d)
t . The demonstrations are obtained as sequences

of triplets {(s
(d)
t , a

(d)
t , r

(d)
t)}

Tj

t=0, each containing a state,

an action and a reward, respectively. Precisely, we

have that s
(d)
t = ρ(Ft−1, Ft, b

(d)
t−1, k) and a

(d)
t =

Figure 1. Visual representation of the interaction between the tracking agent and a video. Each pair of frames Ft−1, Ft is cropped by

the function ρ(·) using the bounding box bt−1. The obtained state st is fed to the agent’s DNN which is composed by two branches of

convolutional layers (the blue boxes) followed by, two fully-connected layers (rectangles in yellow), an LSTM layer (in light red) and two

other fully connected layers for the prediction of v and the action at. Finally, the output bounding box bt is built by the function ψ(·)
which moves bt−1 by the relative shift at.

[∆x
(d)
t ,∆y

(d)
t ,∆w

(d)
t ,∆h

(d)
t], where its elements are ob-

tained through φ : R4 × R
4 −→ A, defined as

φ(b
(d)
t , b

(d)
t−1) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆x
(d)
t = (x

(d)
t − x

(d)
t−1)/w

(d)
t−1

∆y
(d)
t = (y

(d)
t − y

(d)
t−1)/h

(d)
t−1

∆w
(d)
t = (w

(d)
t − w

(d)
t−1)/w

(d)
t−1

∆h
(d)
t = (h

(d)
t − h

(d)
t−1)/h

(d)
t−1

(5)

Rewards are calculated as r
(d)
t = r(s

(d)
t , a

(d)
t).

3.2. Agent architecture

Our tracking agent maintains representations of both the

policy π : S → A and the state value function v : S →
R. This is done by using a DNN with parameters θ. In

particular, we used a deep architecture that is similar to the

one proposed by Gordon et al. [10].

The network gets as input two image patches. These

pass through two convolutional branches that have the form

of ResNet-18 CNN architecture [12] and which weights

are pre-trained for image classification on the ImageNet

dataset [8]. The two tensors of feature maps produced by

the branches are first linearized, then concatenated together

and finally fed to two consecutive fully connected layers

with ReLU activations. After that, the features are inputted

to an LSTM [16] RNN. Both the fully connected layers and

the LSTM are composed of 512 neurons. The output of the

LSTM is finally fed to two separate fully connected heads,

one that outputs the action at = π(st|θ) and the other that

outputs the value of the state, i.e. v(st|θ).

In Figure 1 a visual representation of the DNN architec-

ture, together with the interaction process, is presented.

3.3. Training

The proposed DNN is trained solely off-line and in an

end-to-end manner. The implemented training procedure

is based on the on-policy A3C [32] RL framework. This

method exploits P parallel and independent agents that in-

teract with their own environments and that later use the

gained experience to update asynchronously the weights θ
which are shared among all agents. Indeed, each agent owns

a copy θ′ of the weights and this is synchronized with θ af-

ter every learning step. A3C is a standard algorithm in RL,

however it is not designed to take expert demonstrations

into account. To overcome this limitation for our problem,

we set up an A3C framework where a first half of the learn-

ing agents performs the traditional A3C learning, while the

other half learns to imitate the actions of the expert tracker

demonstrator in a supervised fashion.

Imitating agents. Each imitating agent interacts with its

environment by observing states, performing actions and re-

ceiving rewards just as standard A3C agents. Every tmax

steps the agent updates the weights θ of the shared model

with the gradients of the following loss function

Limit =

tmax∑

i=1

|φ(b
(d)
t , bt−1)− at| ·mi. (6)

which is the L1 loss between the actions performed by the

learning agent and the actions that the expert tracker would

take to move the agent’s bounding box bt−1 into the ex-

pert’s b
(d)
t . These absolute values are masked by the val-

ues mi ∈ {0, 1}. Each of these is computed during the

interaction and determines the situation in which the agent

performed worse than demonstrator (mi = 1) or better

(mi = 0). By optimizing the loss function 6, the weights

θ are changed only if the agent’s performance, in terms of

received reward, is lower than the performance of the expert

tracker. In simple words, the demonstrator is used to learn

a baseline behavior on which the RL agent can build up its

own tracking strategy, thus reducing the random exploration

and consequentially speed up the learning process.

RL agents. The training process performed by RL agents

follows the standard structure proposed by Mnih et al. [32]

for continuous control. Each agent interacts with the en-

vironment for a maximum of tmax steps. However, differ-

ently from the imitating agents, at each step t the RL agents

sample actions from a normal distribution N (µ, σ), where

the mean is the predicted action, µ = π(st|θ
′), and the stan-

dard deviation is obtained as σ = |π(st) − φ(gt, bt−1)|
(which is the absolute value of the difference between the

agent’s action and the action that obtains, by shifting bt−1,

the ground-truth bounding box gt). Intuitively, σ shrinks

N when the action at is close to the ground-truth action

φ(gt, bt−1), thus reducing the chance of choosing potential

wrong actions when approaching the correct one. On the

other hand, when the action at is far from φ(gt, bt−1), σ
takes a greater value, spreading N . This allows the agent to

explore more the environment and discover potential good

actions.

Curriculum strategy. In addition to the guiding process

done by the imitating learners using the expert demonstra-

tions, we designed a curriculum learning strategy [1] to fur-

ther facilitate the training. In a similar way as proposed by

[40], we built a curriculum based on the performance of the

learning agents w.r.t. to the expert demonstrator. In par-

ticular, after terminating each episode, a success counter is

increased if the agent performs better than the expert in that

episode, i.e. if the former’s cumulative reward, received up

to T̂j , is greater or equal to the one obtained by the latter. In

formal terms, the success counter is updated if the following

holds

T̂j∑

i=1

ri ≥

T̂j∑

i=1

r
(d)
i . (7)

The counter update is done by testing agents that interact

with the sequences by performing π(st|θ
′) using a local

copy θ′ of the shared weights. The terminal episode in-

dex T̂j is successively increased during the training pro-

cedure by a central process which checks if the ratio, be-

tween the number of episodes in which the learning agent

performs better than the demonstrator and the total number

of episodes terminated, is above the threshold τ . With this

learning setting, we ensure that at every augmentation of T̂j

the agents face a simpler learning problem where they are

likely to succeed and in a shorter time, since they have al-

ready developed a tracking policy that, up to T̂j − 1, is at

least good as the one of the expert.

3.4. Tracking at test time

Despite the fact that the proposed tracker is trained by

taking advantage of an expert’s knowledge, our tracker de-

velops a tracking ability that can be exploited independently

from the tracking strategy used by the demonstrator. Nev-

ertheless, it is possible to take advantage of the expert’s

tracking performance also during the tracking phase. There-

fore we set up two tracking strategies, the first one that

tries to track autonomously the target object and we refer

it as A3CT, and the second one that takes advantage of the

demonstrator’s knowledge also during tracking and that we

name A3CTD.

A3CT. In this setting, A3CT is applied straight away on

an arbitrary sequence. Each tracking sequence Vj , with

target object outlined by g0, is considered as the MDP de-

scribed in section 3.1. The tracker computes states st from

frames Ft, performs actions as by means of the learned pol-

icy at = π(st|θ) which are used to output the bounding

boxes bt = φ(at, bt−1). At the beginning, b0 := g0.

No online update of the network’s weights nor of the

LSTM’s hidden state are performed.

A3CTD. During training, the tracking agent learns both

the policy π(st|θ) and the value function v(st|θ). v(·) is

a function that predicts the reward that the agent expects

to receive from the current state st to the end of the se-

quence. Since our reward definition is a direct measure

of the IoU between the predictions of the agent and the

ground-truth bounding boxes, v(st|θ) gives an estimate of

the total amount of IoU that the tracker expects to obtain

from state st on wards. This function can be exploited

as a performance evaluation for both our tracker and the

expert demonstrator. In particular, at each time step t,

R̂ = v(st|θ) and R̂(d) = v(s
(d)
t |θ) are obtained as the eval-

uation for A3CTD and the expert tracker respectively. The

expert state s
(d)
t is obtained by cropping frames Ft−1, Ft

using its previous prediction b
(d)
t−1. By comparing R̂ and

R̂(d), our strategy decides if to output the bounding box

of A3CTD or the bounding box produced by the expert

tracker. More formally, if R̂ ≥ R̂(d) then the tracker outputs

bt := φ(at, bt−1) otherwise it outputs bt := b
(d)
t .

3.5. Implementation details

In this section we report the results of the hyperparame-

ters search which led to the best performance.

Before being fed to the DNN, the image crops that forms

the MDP states are resized to [128 × 128 × 3] pixels and

standardized, per channel, by subtracting the mean and di-

viding by the standard deviation calculated on the ImageNet

dataset [8]. The dilating factor k is set to 1.5.

A total number of P = 16 training agents was used. The

discount factor γ was set to 1. The length of the rollout was

defined in tmax = 5 steps. τ was set to 0.25. The model was

trained for 40000 episodes using the Adam optimizer [21].

The learning rate for both imitating and training agents was

set to 10−6. A weight decay of 10−4 was also added to the

L1 loss of the imitating agents as regulatory term.

Training and experiments have been conducted running

our Python code with the PyTorch [38] machine learning li-

brary on an Intel Xeon E5-2690 v4 @ 2.60GHz CPU with

320 GB of RAM, four NVIDIA TITAN V GPUs and an

NVIDIA TITAN Xp GPU each with 12 GB of memory. The

training took around 4 days. In the evaluation of trackers’

speed, we ignore disk read times since they do not depen-

dent on the tracking algorithm.

Expert Tracker. The role of expert tracker was assigned

to SiamFC [2]. The choice was motivated by the fact that

this solution is nowadays an established methodology in

the visual tracking panorama, and it shows great balance

in results across many different benchmarks. In particular,

SiamFC has currently one of the best performance on the

public leader-board of the GOT-10k test set. Additionally,

the source code was publicly available.

To obtain tracking demonstrations, we ran SiamFC on

the training set of GOT-10k dataset [18]. The implemented

SiamFC was trained on the ImageNet VID dataset [8].

This is an important aspect because, to train our tracking

agent, we want examples of the tracker’s real behaviour, that

must be obtained on never seen before sequences. More-

over, demonstrations that are clearly useful are needed.

So, of all the trajectories produced, we retained just the

ones considered positive, i.e. the trajectories that satisfy

IoU(b
(d)
t , gt) > 0.5 for all t ∈ {1, . . . , Tj}. All the others

were discarded.

Training Dataset. To train A3CT and A3CTD we lever-

aged of the training set of the GOT-10k dataset [18]. This

is a large-scale dataset containing 9335 training videos, 180

validation videos and other 180 videos for testing. In total,

this dataset provides 1.5M bounding boxes that identify 10k

different target objects. The latters belong to 563 distinct

object classes. The actual number of training sequences

we used is however inferior. In fact, just the videos which

obtained a positive demonstration from the expert tracker

were employed for training. Furthermore, as we aimed to

take part to the VOT 2019 challenge, we removed 1000 se-

quences from the training set. These overlapped with the

pool of videos used by the VOT committee for evaluation.

After these pruning steps, the total amount of training sam-

ples, |D|, resulted in 1782 videos.

4. Experiments

In this section we report the experimental setup and we

discuss the results, obtained by the proposed trackers A3CT

and A3CTD, on the benchmarks GOT-10k [18], LaSOT [9],

UAV123 [35], OTB-100 [50], VOT-2018 [26] and VOT-

2019.

4.1. GOT-10k Test Set

The GOT-10k [18] test set comprises 180 videos. Target

objects belong to 84 different classes and 32 forms of object

motion are present. To ensure a fair evaluation, the trackers

that are evaluated on this benchmark are forbidden from us-

ing external datasets for training. The evaluation protocol

proposed by the authors is the one-pass evaluation (OPE)

[50]. The metrics used are the average overlap (AO) and

the success rates (SR) with overlap thresholds 0.5 and 0.75.

KCF MDNet ECO CCOT GOTURN SiamFC SiamFCv2 ATOM A3CT A3CTD

[14] [37] [5] [7] [13] [2] [46] [6]

AO 0.203 0.299 0.316 0.325 0.347 0.348 0.374 0.556 0.415 0.425

SR0.50 0.177 0.303 0.309 0.328 0.375 0.353 0.404 0.634 0.477 0.495

SR0.75 0.065 0.099 0.111 0.107 0.124 0.098 0.144 0.402 0.212 0.205

Table 1. State-of-the-art comparison on the GOT-10k test set in

terms of average overlap (AO), and success rates (SR) with overlap

thresholds 0.5 and 0.75. Except for ATOM, both versions of our

approach outperform the previous methods in all three measures.

In Table 1 we report the results of A3CT and A3CTD

against the state-of-the-art. A3CT outperforms the state-of-

the-art trackers which, at the time of writing, appear on the

GOT-10k test set leaderboard. In particular, it has a bet-

ter tracking performance w.r.t. to the demonstrator tracker

SiamFC [2], with a performance gain of 6.7% and in AO,

12.4% in SR0.50, and 11.4% in SR0.75. A3CTD increases

additionally the performance of A3CT, with an improve-

ment of 1% in AO, 1.8 in SR0.50 but with a loss of 0.7% in

SR0.75. We perform worse than ATOM [6], however we re-

mark that these results are obtained considering just 1782 of

the 9335 sequences (19%) contained in the GOT-10k train-

ing set.

4.2. OTB-100

The OTB-100 [50] benchmark is a set of 100 challeng-

ing videos and it is widely used in the tracking literature.

The standard evaluation procedure for this dataset is the

OPE method and the metrics used are the success plot and

the precision plot. The Area Under the Curve (AUC) of

these curves are referred as success score (SS) and preci-

sion scores (PS) respectively.

In Table 2 we report the success and and precision

scores against state-of-the-art solutions. On this bench-

GOTURN RE3 KCF SiamFC ACT MDNet ECO SiamRPN++ A3CT A3CTD

[13] [10] [14] [2] [3] [37] [5] [30]

SS 0.395 0.464 0.477 0.575 0.625 0.677 0.691 0.696 0.419 0.535

PS 0.534 0.582 0.693 0.762 0.859 0.909 0.910 0.914 0.568 0.717

Table 2. State-of-the-art comparison on the OTB-100 benchmark

in terms of success score (SS) and precision score (PS).

mark, A3CT and A3CTD have lower performance than

ECO [5], MDNet [37], SiamRPN++ [30] and the expert

SiamFC [2]. However, A3CT still performs better than GO-

TURN [13]. A3CTD instead outperforms RE3 [10] and

KCF [14], with a 5.8-7.1% performance gain in SS and 1.8-

13.5% in PS. In this setting, the help of the expert tracker

is crucial to improve the results of A3CT, which sees an

improvement of 11.6% in SS and 14.9% in PS.

4.3. LaSOT

We performed evaluations of A3CT and A3CTD perfor-

mance on the test set of LaSOT benchmark [9]. This dataset

is composed of 280 videos with a total of more than 650k

frames and an average sequence length of 2500 frames. To

evaluate our tracker, we use the same methodology and met-

rics used for the OTB-100 experiments.

In Table 3 we present the results against state-of-the-art

trackers. In this setting, in terms of SS A3CT performs

comparably to ECO [5] and RE3 [10] but much better than

GOTURN [13]. Also in this case, the aid of the expert

tracker is crucial, which results in a increment of 10.9% in

SS and of 12.2% in PS. A3CTD so outperforms the expert

SiamFC [2] in SS by 7.9% and MDNet [37] by 1.8%. Both

our trackers are however weaker than SiamRPN++ [30].

KCF GOTURN ECO RE3 SiamFC MDNet SiamRPN++ A3CT A3CTD

[14] [13] [5] [10] [2] [37] [30]

SS 0.178 0.214 0.324 0.325 0.336 0.397 0.496 0.306 0.415

PS 0.166 0.175 0.301 0.301 0.339 0.373 - 0.246 0.368

Table 3. State-of-the-art comparison on the LaSOT benchmark in

terms of success score (SS) and precision score (PS).

4.4. UAV123

The UAV123 [35] is a benchmark composed of 123

videos acquired from low-altitude UAVs. The dataset is

inherently different from traditional visual tracking bench-

marks like OTB and VOT, since it offers sequences with an

aerial point of view. To evaluate our trackers, we use the

same methodology and metrics used for the OTB-100 ex-

periments.

In Table 4 we present the scores against state-of-the-art

trackers. A3CT performs 14%, 8.2% and 5.6% better, in

terms of SS, than KCF [14], GOTURN [13] and ACT [3] re-

spectively. A3CTD has a 9.4% SS and a 13.2% PS improve-

ments than A3CT and these lead to outperform SiamFC [2],

ECO [5] and MDNet [37] with a gain of, respectively, 4.2%,

4%, 3.7% in SS and 2.4%, 1.3%, 0.7% in PS.

KCF GOTURN ACT RE3 SiamFC ECO MDNet SiamRPN++ A3CT A3CTD

[14] [13] [3] [10] [2] [5] [37] [30]

SS 0.331 0.389 0.415 0.514 0.523 0.525 0.528 0.613 0.471 0.565

PS 0.523 0.548 0.636 0.667 0.730 0.741 0.747 0.807 0.622 0.754

Table 4. State-of-the-art comparison on the UAV123 benchmark in

terms of success score (SS) and precision score (PS).

Figure 2. Accuracy-Robustness plot against some of the VOT-2018

[26] competitors.

4.5. VOT benchmarks

The VOT benchmarks are datasets used in the annual

VOT tracking competition. These sets change year by year,

introducing challenging tracking scenarios and increasing

the difficulty of the task. Within the framework used by the

VOT committee, trackers are evaluated based on Expected

Average Overlap (EAO), Accuracy (A) and Robustness (R)

[27]. We performed experiments on the test sets of VOT-

2018 and VOT-2019 challenges. Both two benchmarks pro-

vide 60 (non completely overlapping) challenging videos.

VOT-2018. In Figure 2 we present the Accuracy-

Robustness plot including A3CTD’s performance in com-

parison with some of the partecipants to the VOT-2018 chal-

lenge. A3CTD achieves an EAO of 0.1847, an accuracy

of 0.4536 while it failed (i.e. the IoU with the ground-

truth becomes zero) 34.89 times. Our method perform defi-

nitely worse than the best solutions LADCF [51], SiamRPN

[31] and ECO [5] that achieved an EAO of 0.3889, 0.3837

and 0.2809 respectively. A3CTD’s performance is however

comparable to the one of SiamFC [2], which achieved an

EAO of 0.1875.

VOT-2019. At the time of writing, the results of VOT-

2019 challenge are not available. We submitted just the

A3CTD tracker, since it resulted in the best performance

generally. It achieved an EAO of 0.1652 and of 0.1497

for the baseline and realtime experiments respectively. The

overlap in the baseline experiment resulted in 0.4510.

Figure 3. Qualitative examples of A3CT and A3CTD performance.

4.6. Ablation Study

To assess the validity of all the features of our proposed

solution we performed an ablation study on the GOT-10k

test set. In particular, we ran experiments where we trained

A3CT and A3CTD without the curriculum strategy (A3CT-

no-curr and A3CTD-no-curr respectively) and A3CT with

just imitating agents (A3CT-SL). In Figure 4 we report the

success plot with the comparison of the different models in-

volved. A3CT-SL performs worse than A3CT, suggesting

that the use of RL agents is crucial to improve the baseline

behaviour learned by the imitating agents. Moreover, since

the state value function is learned by RL agents, this setup

does not allow to exploit the demonstrator in the tracking

phase. A3CT-no-curr performs comparably to A3CT-SL,

4.1% lower than A3CT. The curriculum learning strategy al-

lows the tracking agent to learn a more precise tracking pol-

icy. Interestingly, A3CTD-no-curr outperforms A3CTD by

2%. We believe that the increased length of the sequences

during training allows the learning of a more accurate state

value function, which is then able to make better predictions

about the future behaviours of A3CT and the expert tracker.

However, we chose A3CT and A3CTD as our final solution

because of their lower difference in performance.

In terms of processing speed, A3CT runs at 90 FPS while

A3CTD runs at 50 FPS.

Finally, in Figure 3 we present some qualitative exam-

ples of the tracking performance of A3CT and A3CTD.

5. Conclusions and Future Work

Thanks to the availability of a great amount of visual

tracker and inspired by recent trends in RL, in this paper we

proposed two novel trackers that are built on a deep regres-

sion network [13, 10]. The state-of-the-art tracking algo-

Figure 4. Success plot for the ablation study of A3CT and A3CTD.

rithm SiamFC [2] was executed on the large-scale tracking

dataset GOT-10k [18] to obtain expert demonstrations. The

proposed network was then trained inside an RL on-policy

asynchronous Actor-Critic framework [32] that incorpo-

rated parallel SL agents. Experiments showed that the pro-

posed A3CT and A3CTD trackers outperform state-of-the-

art methods on the most recent the GOT-10k test set [18],

LaSOT [9], UAV123 [35] benchmarks, and perform compa-

rably with the state-of-the-art on OTB-2015 [50] and VOT

benchmarks [26]. Moreover, A3CT and A3CTD achieved

a processing speed of 90 and 50 FPS respectively and thus

are suitable for real-time applications.

Future works will focus on the integration of more ex-

pert trackers. In particular, we will study how the perfor-

mance of our proposed trackers change when different ex-

pert trackers and when pools of experts are considered as

demonstrators.

References

[1] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In Proceedings of the 26th Annual Interna-

tional Conference on Machine Learning - ICML ’09, pages

1–8, New York, New York, USA, 2009. ACM Press.

[2] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and

P. H. S. Torr. Fully-Convolutional Siamese Networks for Ob-

ject Tracking. jun 2016.

[3] B. Chen, D. Wang, P. Li, S. Wang, and H. Lu. Real-time

’Actor-Critic’ Tracking. In The European Conference on

Computer Vision (ECCV), 2018.

[4] J. Choi, J. Kwon, and K. M. Lee. Visual Tracking by Rein-

forced Decision Making. CoRR, abs/1702.0, 2017.

[5] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. ECO:

Efficient Convolution Operators for Tracking. In Interna-

tional Conference on Computer Vision and Pattern Recgni-

tion, nov 2017.

[6] M. Danelljan, G. Bhat, F. S. Khan, and M. Felsberg. ATOM:

Accurate Tracking by Overlap Maximization. In Interna-

tional Conference on Computer Vision and Pattern Recogni-

tion, nov 2018.

[7] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg. Be-

yond Correlation Filters: Learning Continuous Convolution

Operators for Visual Tracking. In European Conference on

Computer Vision, aug 2016.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, Kai Li, and Li Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 248–255. IEEE, jun 2009.

[9] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai,

Y. Xu, C. Liao, and H. Ling. LaSOT: A High-quality Bench-

mark for Large-scale Single Object Tracking. In Interna-

tional Conference on Computer Vision and Pattern Recogni-

tion, sep 2019.

[10] D. Gordon, A. Farhadi, and D. Fox. Re3: Real-Time Re-

current Regression Networks for Visual Tracking of Generic

Objects. IEEE Robotics and Automation Letters, 3(2):788–

795, 2018.

[11] Q. Guo, W. Feng, C. Zhou, R. Huang, L. Wan, and

S. Wang. Learning Dynamic Siamese Network for Visual

Object Tracking. In 2017 IEEE International Conference on

Computer Vision (ICCV), pages 1781–1789. IEEE, oct 2017.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-

ing for image recognition. In International Conference on

Computer Vision and Pattern Recognition, pages 770–778,

2016.

[13] D. Held, S. Thrun, and S. Savarese. Learning to Track at 100

{FPS} with Deep Regression Networks. European Confer-

ence on Computer Vision, abs/1604.0, 2016.

[14] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

Speed Tracking with Kernelized Correlation Filters. CoRR,

abs/1404.7, 2014.

[15] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,

B. Piot, D. Horgan, J. Quan, A. Sendonaris, G. Dulac-

Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys.

Deep Q-learning from Demonstrations. In AAAI, apr 2018.

[16] S. Hochreiter and J. Schmidhuber. Long Short-Term Mem-

ory. Neural Comput., 9(8):1735–1780, nov 1997.

[17] C. Huang, S. Lucey, and D. Ramanan. Learning Policies

for Adaptive Tracking with Deep Feature Cascades. In 2017

IEEE International Conference on Computer Vision (ICCV),

pages 105–114. IEEE, oct 2017.

[18] L. Huang, X. Zhao, and K. Huang. GOT-10k: A Large

High-Diversity Benchmark for Generic Object Tracking in

the Wild. oct 2018.

[19] J. S. S. III and D. Ramanan. Tracking as Online Decision-

Making: Learning a Policy from Streaming Videos with Re-

inforcement Learning. CoRR, abs/1707.0, 2017.

[20] B. Kang, Z. Jie, and J. Feng. Policy Optimization with

Demonstrations. In ICML 2018, volume 80, pages 2474–

2483, 2018.

[21] D. P. Kingma and J. Ba. Adam: {A} Method for Stochastic

Optimization. CoRR, abs/1412.6, 2014.

[22] V. R. Konda and J. N. Tsitsiklis. Actor-Critic Algorithms. In

Advances in Neural Information Processing Systems, 2000.

[23] J. . L. A. . F. M. . C. L. . F. G. . V. T. . H. G. . N. G. . P.

Kristan, Matej ; Matas.

[24] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,

R. Pflugfelder, L. Čehovin, T. Vojı́r, G. Häger, A. Lukežič,

G. Fernández, et al. The Visual Object Tracking VOT2016

Challenge Results. In European Conference on Computer

Vision, pages 777–823. Springer, Cham, 2016.

[25] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,

R. Pflugfelder, L. C. Zajc, T. Vojir, et al. The Visual Object

Tracking VOT2017 Challenge Results. In 2017 IEEE In-

ternational Conference on Computer Vision Workshops (IC-

CVW), pages 1949–1972. IEEE, oct 2017.

[26] M. Kristan, A. Leonardis, J. Matas, M. Felsberg,

R. Pflugfelder, L. Č. Zajc, T. Vojı́r, G. Bhat, A. Lukežič,

A. Eldesokey, G. Fernández, et al. The Sixth Visual Object

Tracking VOT2018 Challenge Results. In European Confer-

ence on Computer Vision, pages 3–53. Springer, Cham, sep

2019.

[27] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. Čehovin.

A Novel Performance Evaluation Methodology for Single-

Target Trackers. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38(11):2137–2155, nov 2016.

[28] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas,

L. Čehovin, G. Nebehay, T. Vojı́, G. Fernández, A. Lukežič,

et al. The Visual Object Tracking VOT2014 Challenge Re-

sults. In European Conference on Computer Vision, pages

191–217. Springer, Cham, 2015.

[29] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. In Proceed-

ings of the IEEE, pages 2278–2324, 1998.

[30] B. Li, W. Wu, Q. Wang, F. Zhang, J. Xing, and J. Yan.

SiamRPN++: Evolution of Siamese Visual Tracking with

Very Deep Networks. dec 2018.

[31] B. Li, J. Yan, W. Wu, Z. Zhu, and X. Hu. High Performance

Visual Tracking with Siamese Region Proposal Network. In

2018 IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 8971–8980. IEEE, jun 2018.

[32] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lilli-

crap, T. Harley, D. Silver, and K. Kavukcuoglu. Asyn-

chronous Methods for Deep Reinforcement Learning. CoRR,

abs/1602.0, 2016.

[33] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves,

I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Play-

ing Atari with Deep Reinforcement Learning. CoRR,

abs/1312.5, 2013.

[34] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Ve-

ness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K.

Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,

I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg,

and D. Hassabis. Human-level control through deep rein-

forcement learning. Nature, 518(7540):529–533, feb 2015.

[35] M. Mueller, N. Smith, and B. Ghanem. A Benchmark and

Simulator for UAV Tracking. In European Conference on

Computer Vision, pages 445–461. Springer, Cham, 2016.

[36] A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and

P. Abbeel. Overcoming Exploration in Reinforcement Learn-

ing with Demonstrations. In Proceedings - IEEE Interna-

tional Conference on Robotics and Automation, pages 6292–

6299. Institute of Electrical and Electronics Engineers Inc.,

sep 2018.

[37] H. Nam and B. Han. Learning Multi-Domain Convolutional

Neural Networks for Visual Tracking. CoRR, abs/1510.0,

2015.

[38] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in PyTorch. 2017.

[39] L. Ren, X. Yuan, J. Lu, M. Yang, and J. Zhou. Deep Rein-

forcement Learning with Iterative Shift for Visual Tracking.

In The European Conference on Computer Vision (ECCV),

2018.

[40] T. Salimans and R. Chen. Learning Montezuma’s Revenge

from a Single Demonstration. In Proceedings of NeurIPS

2018 Workshop on Deep RL, dec 2018.

[41] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.

Mastering the Game of {Go} with Deep Neural Networks

and Tree Search. Nature, 529(7587):484–489, 2016.

[42] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou,

A. Huang, A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton,

Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driess-

che, T. Graepel, and D. Hassabis. Mastering the game of Go

without human knowledge. Nature, 550:354—-, 2017.

[43] A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara,

A. Dehghan, and M. Shah. Visual Tracking: An Experi-

mental Survey. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 36(7):1442–1468, 2014.

[44] Y. Song, C. Ma, L. Gong, J. Zhang, R. Lau, and M.-H. Yang.

CREST: Convolutional Residual Learning for Visual Track-

ing. In Internationaò Conference on Computer Vision, aug

2017.

[45] R. S. Sutton and A. G. Barto. Reinforcement Learning: An

Introduction. MIT Press, Cambridge, MA, USA, 2nd edition,

2018.

[46] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi, and

P. H. S. Torr. End-to-End Representation Learning for Cor-

relation Filter Based Tracking. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

5000–5008. IEEE, jul 2017.

[47] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin,

B. Piot, N. Heess, T. Rothörl, T. Lampe, and M. Riedmiller.

Leveraging Demonstrations for Deep Reinforcement Learn-

ing on Robotics Problems with Sparse Rewards. jul 2017.

[48] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine

Learning, 8(3):279–292, 1992.

[49] R. J. Williams. Simple Statistical Gradient-Following Al-

gorithms for Connectionist Reinforcement Learning. Mach.

Learn., 8(3-4):229–256, may 1992.

[50] Y. Wu, J. Lim, and M.-H. Yang. Online Object Tracking: A

Benchmark. In CVPR, pages 2411–2418. IEEE Computer

Society, 2013.

[51] T. Xu, Z.-H. Feng, X.-J. Wu, and J. Kittler. Learning Adap-

tive Discriminative Correlation Filters via Temporal Consis-

tency Preserving Spatial Feature Selection for Robust Visual

Tracking. IEEE Transactions on Image Processing, jul 2019.

[52] S. Yun, J. Choi, Y. Yoo, K. Yun, and J. Y. Choi. Action-

Decision Networks for Visual Tracking with Deep Rein-

forcement Learning. In 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 1349–1358.

IEEE, jul 2017.

[53] Z. Zhang and H. Peng. Deeper and Wider Siamese Networks

for Real-Time Visual Tracking. In International Conference

on Computer Vision and Pattern Recognition, jan 2019.

[54] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan, and W. Hu.

Distractor-aware Siamese Networks for Visual Object Track-

ing. In European Conference on Computer Vision, aug 2018.

