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Eldesokey4Jani Käpylä7Gustavo Fernández5Abel Gonzalez-Garcia18Alireza

Memarmoghadam50Andong Lu9Anfeng He52Anton Varfolomieiev37Antoni Chan17Ardhendu Shekhar

Tripathi23Arnold Smeulders45Bala Suraj Pedasingu29Bao Xin Chen58Baopeng Zhang12Baoyuan Wu43Bi

Li28Bin He10Bin Yan19Bing Bai20Bing Li16Bo Li40Byeong Hak Kim25,33Chao Ma41Chen Fang35Chen

Qian40Cheng Chen38Chenglong Li9Chengquan Zhang10Chi-Yi Tsai42Chong Luo34Christian

Micheloni55Chunhui Zhang16Dacheng Tao54Deepak Gupta45Dejia Song28Dong Wang19Efstratios

Gavves45Eunu Yi25Fahad Shahbaz Khan4,30Fangyi Zhang16Fei Wang40Fei Zhao16George De

Ath49Goutam Bhat23Guangqi Chen40Guangting Wang52Guoxuan Li40Hakan Cevikalp21Hao Du34Haojie

Zhao19Hasan Saribas22Ho Min Jung33Hongliang Bai11Hongyuan Yu16,34Houwen Peng34Huchuan

Lu19Hui Li32Jiakun Li12Jianhua Li19Jianlong Fu34Jie Chen57Jie Gao57Jie Zhao19Jin Tang9Jing

Li26Jingjing Wu27Jingtuo Liu10Jinqiao Wang16Jinqing Qi19Jinyue Zhang57John K. Tsotsos58Jong Hyuk

Lee33Joost van de Weijer18Josef Kittler53Jun Ha Lee33Junfei Zhuang13Kangkai Zhang16Kangkang

Wang10Kenan Dai19Lei Chen40Lei Liu9Leida Guo59Li Zhang51Liang Wang16Liangliang Wang28Lichao

Zhang18Lijun Wang19Lijun Zhou48Linyu Zheng16Litu Rout39Luc Van Gool23Luca Bertinetto24Martin

Danelljan23Matteo Dunnhofer55Meng Ni19Min Young Kim33Ming Tang16Ming-Hsuan Yang46Naveen

Paluru29Niki Martinel55Pengfei Xu20Pengfei Zhang54Pengkun Zheng38Pengyu Zhang19Philip H.S.

Torr51Qi Zhang Qiang Wang16,31Qing Guo44Radu Timofte23Rama Krishna Gorthi29Richard

Everson49Ruize Han44Ruohan Zhang57Shan You40Shao-Chuan Zhao32Shengwei Zhao16Shihu

Li10Shikun Li16Shiming Ge16Shuai Bai13Shuosen Guan59Tengfei Xing20Tianyang Xu32Tianyu
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Abstract

The Visual Object Tracking challenge VOT2019 is the

seventh annual tracker benchmarking activity organized by

the VOT initiative. Results of 81 trackers are presented;

many are state-of-the-art trackers published at major com-

puter vision conferences or in journals in the recent years.

The evaluation included the standard VOT and other popu-

lar methodologies for short-term tracking analysis as well

as the standard VOT methodology for long-term tracking

analysis. The VOT2019 challenge was composed of five

challenges focusing on different tracking domains: (i) VOT-

ST2019 challenge focused on short-term tracking in RGB,

(ii) VOT-RT2019 challenge focused on “real-time” short-

term tracking in RGB, (iii) VOT-LT2019 focused on long-

term tracking namely coping with target disappearance and

reappearance. Two new challenges have been introduced:

(iv) VOT-RGBT2019 challenge focused on short-term track-

ing in RGB and thermal imagery and (v) VOT-RGBD2019

challenge focused on long-term tracking in RGB and depth

imagery. The VOT-ST2019, VOT-RT2019 and VOT-LT2019

datasets were refreshed while new datasets were intro-

duced for VOT-RGBT2019 and VOT-RGBD2019. The VOT

toolkit has been updated to support both standard short-

term, long-term tracking and tracking with multi-channel

imagery. Performance of the tested trackers typically by far

exceeds standard baselines. The source code for most of

the trackers is publicly available from the VOT page. The

dataset, the evaluation kit and the results are publicly avail-

able at the challenge website1.

1. Introduction

Visual object tracking has consistently been a popular

research area due to significant research challenges track-

ing offers as well as the commercial potential of tracking-

based applications. Tracking research has been historically

promoted by several initiatives like PETS [105], CAVIAR2,

i-LIDS 3, ETISEO4, CDC [31], CVBASE 5, FERET [77],

LTDT 6, MOTC [55, 83] and Videonet 7.

In 2013, the VOT1 initiative has been formed with the

objective of performance evaluation standardisation. The

primary goal of VOT is establishing datasets, evaluation

measures and toolkits as well as creating a platform for

discussing evaluation-related issues through organization of

tracking challenges. Since 2013, six challenges have taken

1http://votchallenge.net
2http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1
3http://www.homeoffice.gov.uk/science-research/hosdb/i-lids
4http://www-sop.inria.fr/orion/ETISEO
5http://vision.fe.uni-lj.si/cvbase06/
6http://www.micc.unifi.it/LTDT2014/
7http://videonet.team

place in conjunction with ICCV2013 (VOT2013 [53]),

ECCV2014 (VOT2014 [54]), ICCV2015 (VOT2015 [51]),

ECCV2016 (VOT2016 [50]), ICCV2017 (VOT2017 [49])

and ECCV2018 (VOT2018 [48]).

This paper presents the VOT2019 challenge, organized

in conjunction with the ICCV2019 Visual Object Tracking

Workshop, and the results obtained. The VOT2019 chal-

lenge covers two categories of trackers.

The first are single-camera, single-target, model-free,

causal trackers, applied to short-term tracking. The model-

free property means that the only training information pro-

vided is the bounding box in the first frame. The short-term

tracking means that trackers are assumed not to be capable

of performing successful re-detection after the target is lost

and they are therefore reset after such an event. Causality

requires that the tracker does not use any future frames, or

frames prior to re-initialization, to infer the object position

in the current frame.

The second category considers single-camera, single-

target, model-free long-term trackers. Long-term tracking

means that the trackers are required to perform re-detection

after the target has been lost and are therefore not reset after

such an event.

With respect to VOT2018, VOT2019 extends the set of

challenges. It includes five challenges dedicated to either

short-term or long-term tracking in RGB, RGB+thermal

and RGB+depth sequences. In the following, we overview

the most closely related works and point out the contribu-

tions of VOT2019.

1.1. Short-term tracker evaluation

The most widely-used methodologies originate from the

“Online Tracking Benchmark” (OTB) [98] and the “Visual

Object Tracking challenge” (VOT) [53, 52]. The OTB [98]

methodology applies a no-reset experiment in which the

tracker is initialized in the first frame and it runs unsuper-

vised until the end of the sequence. Performance is summa-

rized by a curve showing the percentage of frames where

the overlap of the predicted and the ground truth bound-

ing boxes exceeds a series of predefined thresholds. The

area under the plot is the major performance score. This

score has been shown in [89, 91] to be an average over-

lap (AO) computed over the entire sequence of frames. A

downside of the AO is that all frames after the first failure

receive a zero overlap, which increases bias and variance

of the estimator [52]. To increase interpretability and re-

duce the bias, VOT [53, 52] applies a reset-based method-

ology in which the tracker is reset upon drifting off the tar-

get. Accuracy and robustness are defined as two measures

for probing the tracking performance and the expected aver-

age overlap (EAO) is proposed as the primary measure that

combines the two aspects of tracking performance in a prin-

cipled way. VOT introduceed the so-called state-of-the-art



bound (SotA bound) on all their benchmarks. Any tracker

exceeding SotA bound is considered state-of-the-art by the

VOT standard. By introducing the SotA bound, the VOT ini-

tiative aimed at providing an incentive for community-wide

exploration of a wide spectrum of well-performing trackers

and to reduce the pressure for fine-tuning to benchmarks

with the sole purpose of reaching the number one rank on

particular test data.

Most tracking datasets [98, 57, 82, 62, 73, 38, 24, 74]

have partially followed the trend in computer vision of

increasing the number of sequences. In contrast, the

VOT [53, 54, 51, 52, 50, 49, 48] datasets have been con-

structed with diversity in mind and were kept sufficiently

small to allow fast tracker development-and-testing cycles.

In VOT2017 [49] a sequestered dataset was introduced to

reduce the influence of tracker over-fitting without requir-

ing to increase the public dataset size.

Several datasets for measuring short-term tracking per-

formance have been proposed recently. UAV123 [73]

and [110] datasets focus on drone tracking. Lin et al. [104]

proposed a dataset for tracking faces by mobile phones.

Galoogahi et al. [28] introduced a high-frame-rate dataset

to analyze trade-offs between tracker speed and robust-

ness. VOT2017 [49] argued that proper real-timer track-

ing performance should be measured on standard frame-rate

datasets by limiting the tracker available processing time.

Čehovin et al. [93] proposed a dataset with an active cam-

era view control using omni directional videos. Mueller

et al. [74] recently re-annotated selected sequences from

YouTube bounding boxes [78] to consider tracking in the

wild. Similarly, Fan et al. [24] and Huang et al., [38] in-

troduced new large datasets for training and testing visual

object trackers.

It is clear that several recent datasets [38, 24] have

adopted elements of the VOT dataset construction princi-

ples. Despite significant activity in dataset construction, the

VOT dataset remains unique for its carefully chosen and

curated sequences guaranteeing relatively unbiased assess-

ment of performance with respect to attributes.

1.2. Long-term tracker evaluation

A major difference between short-term (ST) and long-

term (LT) trackers is that LT trackers are required to handle

situations in which the target may leave the field of view

for a longer duration. This means that a natural evaluation

protocol for LT trackers is a no-reset protocol.

The set of performance measures in long-term tracking is

quite diverse and has not been converging like in the short-

term tracking. Early work [43, 76] has thus directly adapted

precision, recall and F-measure computed at 0.5 IoU (over-

lap) threshold. Several authors [86, 72] propose a modi-

fication of the average overlap measure by specifying an

overlap equal to 1 when the tracker correctly predicts the

target absence. Since such a measure does not clearly sep-

arate tracking accuracy from a re-detection ability, Lukežič

et. al. [67] proposed tracking precision, tracking recall and

tracking F-measure that do not depend on specifying the

IoU threshold. They have shown that their primary measure,

the tracking F-measure, reduces to a standard short-term

measure (average overlap) when computed in a short-term

setup. They further showed in their extended report [68]

that the measure is extremely robust and allows using a very

sparse temporal target annotation. Recently, [39] introduced

a measure that also directly addresses the evaluation of the

re-detection ability.

The first LT dataset, introduced by the LTDT challenge 6,

offered a collection of specific very long videos from [43,

76, 56, 82]. Mueller et al. [73] proposed an UAV20L

dataset containing twenty long sequences with many target

disappearances. Recently, three benchmarks that propose

datasets with many target disappearances have almost con-

currently appeared [72, 67, 39]. The benchmark [72] pri-

marily analyzes performance of short-term trackers on long

sequences, and [39] proposes a huge dataset constructed

from YouTube bounding boxes [78]. The authors of [67]

argue that long-term tracking does not just refer to the se-

quence length, but more importantly to the sequence proper-

ties, like the number and the length of target disappearances,

and the type of tracking output expected. Their dataset con-

struction approach follows these guidelines. For these rea-

sons VOT2017 based their first long-term challenge on [67].

1.3. Beyond RGB-only tracking

Despite the significant application potential, tracking

with non-RGB and mixed modalities has received signifi-

cantly less attention than pure RGB tracking. Most related

works consider tracking in infrared and thermal imagery

and the combination of RGB with depth. The following

overview thus focuses on these two areas.

The earliest thermal and infrared (TIR) tracking com-

parisons were organized by the Performance Evaluation of

Tracking and Surveillance (PETS) [105] in 2005 and 2015.

These challenges addressed multi-camera and long-term

tracking, and behavior (threat) analysis. In 2015, the VOT

initiative introduced the VOT-TIR [25] challenge that fo-

cused on short-term tracking [25, 26] and adopted the well-

established VOT short-term tracking performance evalua-

tion methodology. The challenge used the LTIR [3] dataset,

which was the most advanced and diverse TIR general ob-

ject tracking dataset at the time. In 2016, the challenge was

repeated with an updated dataset, which was refreshed with

more challenging sequences. Since the dataset did not sat-

urate in the results of 2016, the same dataset was re-used in

the VOT-TIR2017 challenge.

The participants of the VOT-TIR challenges have ex-

pressed growing interest in multi-modal variants, in par-



ticular a combination of RGB and thermal data. The ad-

vantage of multi-modal data is the larger variety of possi-

ble solutions, such as applying single modality trackers and

investigating early and late fusion variants similar to [46]

for increasing tracking performance due to complemen-

tary information in RGB and thermal images, novel aspects

of the problem formulation, such as registration and syn-

chronization issues [47], and novel types of applications,

such as cross-modality learning [4]. In order to design a

novel challenge on joint RGB+thermal (RGBT) tracking,

the VOT-TIR challenge paused 2018. The VOT commit-

tee decided to base the VOT-RGBT-challenge on the exist-

ing RGBT-dataset published by [60]. In contrast to VOT-

TIR and in agreement with the other VOT-challenges, this

dataset has been complemented with annotations for ro-

tated bounding boxes and the VOT attributes (frame-wise

and sequence-wise). The annotation process has been per-

formed semi-automatically based on the video object seg-

mentation method [41] and further details are given in [5].

This methodology is generic and can be applied to other

modalities, such as depth, as well.

A number of datasets in RGB+depth (RGBD) tracking fo-

cus on pedestrian and hand tracking [23, 85, 14, 30] and

object pose estimation for robotics [13, 80]. These datasets

use pre-computed object models and only a few datasets ad-

dress general object tracking. The most popular is Princeton

Tracking Benchmark (PTB) [84], which contains 95 RGB-

D video sequences of rigid and non-rigid objects recorded

with Kinect. The choice of sensor constrains the dataset to

only indoor scenarios and has limited diversity. PTB ad-

dresses long-term tracking, in which the tracker has to de-

tect target loss and perform re-detection. The primary per-

formance measure is the percentage of frames in which the

bounding box predicted by a tracker exceeds a 0.5 overlap

with the ground truth. The overlap is artificially set to 1

when the tracker accurately predicts target absence. Spatio-

Temporal Consistency dataset (STC) [99] was recently pro-

posed to address the drawbacks of the PTB. The dataset is

recorded by Asus Xtion RGB-D sensor and contains only

36 sequences, but some of these are recorded outdoor in

low light. The sequences are relatively short and the short-

term performance evaluation methodology is used. Most

recently, Color and Depth Visual Object Tracking Dataset

and Benchmark (CDTB) [65] was introduced. CDTB con-

tains 80 sequences recorded by several RGBD sensors and

contains both indoor and outdoor sequences recorded un-

der various lighting conditions. The sequences are approx-

imately six times longer than those in PTB and STC and

contain many more occlusions and target disappearances

to simulate realistic tracking conditions. CDTB focuses

on long-term tracking and adopts the long-term tracking

methodology from [67].

1.4. The VOT2019 challenge

VOT2019 considers short-term as well as long-term

trackers in separate challenges. We adopt the definitions

from [67] which are used to position the trackers on the

short-term/long-term spectrum:

• Short-term tracker (ST0). The target position is re-

ported at each frame. The tracker does not implement

target re-detection and does not explicitly detect occlu-

sion. Such trackers are likely to fail at the first occlu-

sion as their representation is affected by any occluder.

• Short-term tracker with conservative updating

(ST1). The target position is reported at each frame.

Target re-detection is not implemented, but tracking

robustness is increased by selectively updating the vi-

sual model depending on a tracking confidence estima-

tion mechanism.

• Pseudo long-term tracker (LT0). The target position

is not reported in frames when the target is not visi-

ble. The tracker does not implement explicit target re-

detection but uses an internal mechanism to identify

and report tracking failure.

• Re-detecting long-term tracker (LT1). The target

position is not reported in frames when the target is

not visible. The tracker detects tracking failure and

implements explicit target re-detection.

The evaluation toolkit and the datasets are provided by

the VOT2019 organizers. The challenge officially opened

on April 17th 2019 with approximately a month available

for results submission. The VOT2019 challenge contained

five challenges:

1. VOT-ST2019 challenge: This challenge was address-

ing short-term tracking in RGB images and has been

running since VOT2013 with annual updates and mod-

ifications.

2. VOT-RT2019 challenge: This challenge addressed

the same class of trackers as VOT-ST2019, except that

the trackers had to process the sequences in real-time.

The challenge was introduced in VOT2017.

3. VOT-LT2019 challenge: This challenge was address-

ing long-term tracking in RGB images. The challenge

was introduced in VOT2018.

4. VOT-RGBT challenge: This challenge was address-

ing short-term tracking in RGB+thermal imagery. This

is a new challenge in VOT2019 and can be viewed as

the next step in evolution of the VOT-TIR challenge

introduced in VOT2015.



5. VOT-RGBD challenge: This challenge was address-

ing long-term tracking in RGB+depth imagery. This is

a new challenge in VOT2019.

The authors participating in the challenge were required

to integrate their tracker into the VOT2019 evaluation kit,

which automatically performed a set of standardized ex-

periments. The results were analyzed according to the

VOT2019 evaluation methodology. Upon submission of

the results, the participants were required to classify their

tracker along the short-term/long-term spectrum.

Participants were encouraged to submit their own new

or previously published trackers as well as modified ver-

sions of third-party trackers. In the latter case, modifica-

tions had to be significant enough for acceptance. Partic-

ipants were expected to submit a single set of results per

tracker. Changes in the parameters did not constitute a dif-

ferent tracker. The tracker was required to run with fixed

parameters in all experiments. The tracking method itself

was allowed to internally change specific parameters, but

these had to be set automatically by the tracker, e.g., from

the image size and the initial size of the bounding box, and

were not to be set by detecting a specific test sequence and

then selecting the parameters that were hand-tuned for this

sequence.

Each submission was accompanied by a short abstract

describing the tracker, which was used for the short tracker

descriptions in Appendix 5. In addition, participants filled

out a questionnaire on the VOT submission page to cate-

gorize their tracker along various design properties. Au-

thors had to agree to help the VOT technical committee

to reproduce their results in case their tracker was selected

for further validation. Participants with sufficiently well-

performing submissions, who contributed with the text for

this paper and agreed to make their tracker code publicly

available from the VOT page were offered co-authorship of

this results paper.

To counter attempts of intentionally reporting large

bounding boxes to avoid resets, the VOT committee an-

alyzed the submitted tracker outputs. The committee re-

served the right to disqualify the tracker should such or a

similar strategy be detected.

To compete for the winner of VOT2019 challenge, learn-

ing on specific datasets (OTB, VOT, ALOV, UAV123, NUS-

PRO, TempleColor and RGBT234) was prohibited. In the

case of GOT10k, a list of 1k prohibited sequences was cre-

ated, while the remaining 9k+ sequences were allowed for

learning. The reason was that part of the GOT10k was used

for VOT-ST2019 dataset update.

The use of class labels specific to VOT was not al-

lowed (i.e., identifying a target class in each sequence

and applying pre-trained class-specific trackers was not al-

lowed). An agreement to publish the code online on VOT

webpage was required. The organizers of VOT2019 were

allowed to participate in the challenge, but did not compete

for the winner titles. Further details are available from the

challenge homepage8.

VOT2019 goes beyond previous challenges by updating

the datasets in VOT-ST, VOT-RT and VOT-LT challenges

and introducing the two new challenges: VOT-RGBT and

VOT-RGBD. The VOT2019 toolkit has been updated to al-

low seamless use of short-term, long-term, 3 channel (RGB)

and 4 channel (RGB-T/D) images.

2. Performance evaluation protocols

Since 2018 VOT considers two classes of trackers: short-

term (ST) and long-term (LT) trackers. These two classes

primarily differ on the target presence assumptions, which

affects the evaluation protocol as well as performance mea-

sures. These are outlined in following two subsections.

2.1. ST performance evaluation protocol

In a short-term setup, the target remains within the cam-

era field of view throughout the sequence, but may undergo

partial short-lasting occlusions. The tracker is required to

report the target position at each frame. The main focus

of ST tracking is designing robust trackers that can track

throughout significant visual appearance changes without

drifting off the target. Tracking sequences are typically rel-

atively short. The ST performance measures should thus

analyze the accuracy of the target localization and drifting.

As in VOT2018 [48], three primary measures were

used to analyze the short-term tracking performance: ac-

curacy (A), robustness (R) and expected average over-

lap (EAO). In the following, these are briefly over-viewed

and we refer to [51, 52, 91] for further details.

The VOT short-term challenges apply a reset-based

methodology. Whenever a tracker predicts a bounding box

not overlapping with the ground truth, a failure is detected

and the tracker is re-initialized five frames after the failure.

Accuracy and robustness [91] are the basic measures used to

probe tracker performance in the reset-based experiments.

The accuracy is the average overlap between the predicted

and ground truth bounding boxes during successful track-

ing periods. The robustness measures how many times the

tracker loses the target (fails) during tracking. The potential

bias due to resets is reduced by ignoring ten frames after

re-initialization in the accuracy measure (note that a tracker

is reinitialized five frames after failure), which is quite a

conservative margin [52].

The third primary measure, called the expected average

overlap (EAO), is an estimator of the average overlap a

tracker is expected to attain on a large collection of short-

term sequences with the same visual properties as the given

dataset. The measure addresses the problem of increased

8http://www.votchallenge.net/vot2019/participation.html



variance and bias of AO [98] measure due to variable se-

quence lengths. Please see [51] for further details on the

average expected overlap measure.

Evaluation protocol. A tracker is evaluated on a dataset

by initializing on the first frame of a sequence and reset

each time the overlap between the predicted and ground

truth bounding box drops to zero. Accuracy, robustness and

EAO measures are then computed. Average accuracy and

failure-rates are reported for stochastic trackers, which are

run 15 times. For reference, the toolkit also ran a no-reset

experiment and the AO [98] was computed (available in the

online results).

2.2. LT performance evaluation protocol

In a long-term (LT) tracking setup, the target may leave

the camera field of view for longer duration before re-

entering it, or may undergo long-lasting complete occlu-

sions. The tracker is thus required to report the target po-

sition only for frames in which the target is visible and is

required to recover from tracking failures. Long-term se-

quences are thus much longer than short-term sequences to

test the re-detection capability. LT measures should there-

fore measure the target localization accuracy as well as tar-

get re-detection capability.

In contrast to the ST tracking setup, the tracker is not

reset upon drifting off the target. To account for the most

general case, the tracker is required to report the target po-

sition at every frame and provide a confidence score of tar-

get presence. The evaluation protocol [67] first used in the

VOT2018 is adapted.

Three long-term tracking performance measures pro-

posed in [67] are adopted: tracking precision (Pr), track-

ing recall (Re) and tracking F-score. These are briefly de-

scribed in the following.

The Pr and Re are derived in [67] from the counterparts

in detection literature with important differences that draw

on advancements of tracking-specific performance mea-

sures. In particular, the bounding box overlap is integrated

out, leaving both measures Pr(τθ) and Re(τθ) depend di-

rectly on the tracker prediction certainty threshold τθ, i.e.,

the value of tracking certainty below which the tracker out-

put is ignored. Precision and accuracy are combined into a

single score by computing the tracking F-measure

F (τθ) = 2Pr(τθ)Re(τθ)/(Pr(τθ) +Re(τθ)). (1)

Long-term tracking performance can thus be visualized

by tracking precision, tracking accuracy and tracking F-

measure plots by computing these scores for all thresholds

τθ [67]. The final values of Pr, Re and F -measure are

obtained by selecting τθ that maximizes tracker-specific F -

measure. This avoids all manually-set thresholds in the pri-

mary performance measures.

Evaluation protocol. A tracker is evaluated on a dataset

of several sequences by initializing on the first frame of

a sequence and run until the end of the sequence without

re-sets. A precision-recall graph is calculated on each se-

quence and averaged into a single plot. This guarantees that

the result is not dominated by extremely long sequences.

The F-measure plot is computed according to (1) from the

average precision-recall plot. The maximal score on the F-

measure plot (tracking F-score) is taken as the long-term

tracking primary performance measure.

3. Description of individual challenges

In the following we provide descriptions of all five chal-

lenges running in the VOT2019 challenge.

3.1. VOT-ST2019 challenge outline

This challenge addressed RGB tracking in a short-term

tracking setup. The performance evaluation protocol and

measures outlined in Section 2.1 were applied. In the fol-

lowing, the details of the dataset and the winner identifica-

tion protocols are provided.

3.1.1 The dataset

Results of the VOT2018 showed that the dataset was not

saturated [48]. But since the same dataset has been used in

VOT2017, it has been decided to refresh the public dataset

by replacing 20% of the sequences (see Figure 1). In ad-

dition, 5% of the sequestered dataset has been updated as

well.

A review of the published datasets showed that currently

the largest dataset with carefully selected and annotated se-

quences is the GOT-10k [38] dataset. The dataset was ana-

lyzed and a list of 1000 diverse sequences9 was created (by

random selection from the training set of GOT-10k). This

has been the pool of sequences used to replace part of the

VOT-ST challenge dataset.

The sequence selection and replacement procedure was

as follows. (i) All sequences in the VOT2018 public dataset

were ranked according to their difficulty, using robustness

measure averaged over a subset of trackers. Out of 20 least

difficult sequences, 12 had been selected for replacement

such that the diversity of the dataset has been maintained.

(ii) Around 150 sequences have been selected at random

from the update pool of 1000 sequences collected from the

GOT-10k dataset. The tracking difficulty measure for each

sequence has been computed using the same procedure as

for the VOT2018 sequence ranking. Out of these sequences,

30 most difficult ones became the candidates for VOT2019.

Of these, 12 were selected, again maintaining diversity. Fig-

ure 1 shows the sequences removed from VOT2018 public

dataset and their replacement.

9http://www.votchallenge.net/vot2019/res/list0 prohibited 1000.txt



Removed from VOT2018 New sequences

Figure 1. Sequences of VOT2018 public dataset (left column) that

were replaced by new sequences in VOT2019 (right column).

Segmentation masks were manually created for track-

ing targets in all frames of the new sequences, and rotated

bounding boxes were fitted to these segmentation masks us-

ing optimization formulation similar to the previous chal-

lenges. Per-frame visual attributes were semi-automatically

assigned to the new sequences following the VOT attribute

annotation protocol. In particular, each frame was anno-

tated by the following visual attributes: (i) occlusion, (ii) il-

lumination change, (iii) motion change, (iv) size change,

(v) camera motion.

The sequestered dataset has been updated using an anal-

ogous procedure.

3.1.2 Winner identification

The VOT-ST2019 winner was identified as follows. Track-

ers were ranked according to the EAO measure on the pub-

lic dataset. Top five ranked trackers were then re-run by the

VOT2019 committee on the sequestered dataset. The top

ranked tracker on the sequestered dataset not submitted by

the VOT2019 committee members was the winner of the

VOT-ST2019 challenge.

3.2. VOT-RT2019 challenge outline

This challenge addressed real-time RGB tracking in a

short-term tracking setup. The dataset was the same as in

the VOT-ST2019 challenge, but the evaluation protocol was

modified to emphasize the real-time component in track-

ing performance. In particular, the VOT-RT2019 challenge

requires predicting bounding boxes faster or equal to the

video frame-rate. The toolkit sends images to the tracker

via the Trax protocol [88] at 20fps. If the tracker does not

respond in time, the last reported bounding box is assumed

as the reported tracker output at the available frame (zero-

order hold dynamic model). As in VOT-ST2018, a reset-

based evaluation protocol with post-reset frame skipping is

applied.

3.2.1 Winner identification protocol

All trackers are ranked on the public RGB short-term track-

ing dataset with respect to the EAO measure. The winner

was identified as the top ranked tracker not submitted by the

VOT2019 committee members.

3.3. VOT-LT2019 challenge outline

This challenge addressed RGB tracking in a long-term

tracking setup and is a continuation of the VOT-LT2018

challenge. As in VOT-LT2018, we adopt the definitions

from [67], which are used to position the trackers on the

short-term/long-term spectrum. A long-term performance

evaluation protocol and measures from Section 2.2 were

used to evaluate tracking performance on VOT-LT2019.

Compared to VOT-LT2018, a significant change is the new

dataset described in the following.

3.3.1 The dataset

The VOT-LT2019 trackers were evaluated on the

LTB50 [67], which is an extension of the LTB35 [67]

used in VOT-LT2018. LTB35 contains 35 sequences,

carefully selected to obtain a dataset with long sequences

containing many target disappearances. The LTB50 dataset

contains 50 challenging sequences of diverse objects (per-

sons, car, motorcycles, bicycles, boat, animals, etc.) with

the total length of 215294 frames. Sequence resolutions

range between 1280 × 720 and 290 × 217. Each sequence

contains on average 10 long-term target disappearances,

each lasting on average 52 frames. An overview of the

dataset is shown in Figure 2. For additional information,

please see [67].

The targets are annotated by axis-aligned bounding

boxes. Sequences are annotated by the following visual

attributes: (i) Full occlusion, (ii) Out-of-view, (iii) Partial

occlusion, (iv) Camera motion, (v) Fast motion, (vi) Scale

change, (vii) Aspect ratio change, (viii) Viewpoint change,

(ix) Similar objects. Note this is per-sequence, not per-

frame annotation and a sequence can be annotated by sev-

eral attributes.

3.3.2 Winner identification protocol

The VOT-LT2019 winner was identified as follows. Track-

ers were ranked according to the tracking F-score on the

LTB50 dataset (no sequestered dataset available). The top



Figure 2. The LTB50 dataset – a frame selected from each se-

quence. Name and length (top), number of disappearances and

percentage of frames without target (bottom right). Visual at-

tributes (bottom left): (O) Full occlusion, (V) Out-of-view, (P) Par-

tial occlusion, (C) Camera motion, (F) Fast motion, (S) Scale

change, (A) Aspect ratio change, (W) Viewpoint change, (I) Simi-

lar objects. The dataset is highly diverse in attributes, target types

and contains many target disappearances. Image reprinted with

permission from [68].

ranked tracker on the dataset not submitted by the VOT2019

committee members was the winner of the VOT-LT2019

challenge.

3.4. VOT-RGBT2019 challenge outline

This challenge addressed short-term trackers using RGB

and a thermal channel. The performance evaluation proto-

col and measures outlined in Section 2.1 were applied. In

the following the details of the dataset and the winner iden-

tification protocols are provided.

3.4.1 The dataset

The community-driven move from the pure thermal in-

frared challenge VOT-TIR to VOT-RGBT (see section 1.3)

requires a completely new dataset. The VOT committee

decided to base the VOT-RGBT-challenge on the existing

RGBT-dataset published by [60]. This dataset contains in

total 234 sequences with an average length of 335 frames

and all sequences have been clustered in the 11-dimensional

global attribute space according to the VOT sequence clus-

tering protocol [50]. From these clusters, 60 sequences for

each dataset, the public dataset and the sequestered dataset,

have been sampled. All frames in the two selected sets of

sequences have been annotated with the attributes (i) occlu-

sion, (iii) motion change, (iv) size change, (v) camera mo-

tion. The attribute (ii), illumination change, has not been

used in the VOT-RGBT dataset, due to too scarce occur-

rences.

The original dataset contains axis-aligned annotations,

but in order to achieve a higher significance of results, also

the RGBT-dataset has been annotated with rotated bound-

ing boxes. Similar to the ST-dataset, the annotation process

has been performed in two steps. First, segmentation masks

have been generated semi-automatically based on the video

object segmentation method [41]. Manually generated seg-

mentation masks in the respectively first and last frame of

the RGB and the thermal stream are used as starting points

for video object segmentation. Whenever the propagated

segmentation mask disagreed significantly, additional man-

ually generated masks have been added. In about 10% of

the sequences, objects were too tiny so that segmentation

masks have been generated manually or the original axis-

aligned bounding boxes have been used. The rotated bound-

ing boxes are generated from the masks using the approach

proposed in [94]. The original axis-aligned bounding boxes

have been used to reduce drift during the automatic proce-

dure. Further details are given in [5]. An example for the

new annotations is given in Figure 3, left.

Figure 3. Examples of images from the VOT-RGBT2019

dataset including annotations. Left: thermal and RGB im-

age (frame 324 from sequence GREEN) illustrating the original

axis aligned annotation (red), the automatically generated segmen-

tation mask (white), and the final rotated bounding box (green).

Right: thermal and RGB image (frame 5 from sequence MAN-

WITHBASKETBALL) illustrating the inconsistent bounding boxes

from the thermal channel (red) and the RGB channel (green), re-

sulting from inaccurate synchronization.

VOT-RGBT is, besides VOT-RGBD, the only multi-



modal tracking challenge in VOT2019. Multi-modal track-

ing adds two difficulties compared to all other challenges:

a) since the different sensors cannot be placed at the same

physical location, the image registration will never be per-

fect. Thus, bounding boxes in the two modalities will never

align exactly. b) since the two sensors are in separate de-

vices and thus synchronized by software, frames with the

same index might be subject to fixed or even varying rel-

ative delays. Also this will lead to inconsistent bounding

boxes, see figure 3, right. Methods not considering a) and

b) properly, will suffer from degraded performance due to

reduced EAO in the RGB or T modality. For addressing

the synchronization issue, we defined the thermal channel

as the primary modality, so all ground truth is temporally

aligned with it and the RGB channel is considered an auxil-

iary modality. Another consequence of the inconsistencies

a) and b) is the upper bound of performance for multi-modal

tracking that is reduced. In case of the VOT-RGBT chal-

lenge, the EAO between the two annotations is about 0.75,

thus no method can achieve a higher EAO.

3.4.2 Winner identification protocol

The VOT-RGBT2019 winner has been identified as follows.

Trackers were ranked according to the EAO measure on

the public VOT-RGBT2019 dataset. The top five trackers

have then been re-run by the VOT2019 committee on the

sequestered VOT-RGBT dataset. The top ranked tracker

on the sequestered dataset not submitted by the VOT2019

committee members was the winner of the VOT-RGBT2019

challenge.

3.5. VOT-RGBD2019 challenge outline

This challenge addressed long-term trackers using RGB

and a depth channel (D). Evaluation of the long-term RGBD

trackers was the same as for the long-term RGB trackers

and therefore the long-term tracking evaluation protocol

and measures from Section 2.2 were used.

3.5.1 The dataset

The VOT-RGBD2019 trackers were evaluated on a new

Color and Depth Visual Object Tracking Dataset and

Benchmark (CDTB) [65]. CDTB contains 80 sequences ac-

quired with three different setups: 1) a Kinect v2 RGBD

sensor, 2) a pair of Time-of-Flight (Basler tof640) and an

RGB camera (Basler acA1920), and 3) a stereo-pair (Basler

acA1920). Kinect was used in 12 indoor sequences, RGB-

ToF pair in 58 indoor sequences and the stereo-pair in 10

outdoor sequences. For all sequences CDTB provides RGB

frames and dense depth frames which are aligned. The

alignment is based on stereo pair calibration using the Cal-

Figure 4. RGB and depth frames from the CDTB dataset [65] that

contains eighty sequences captured outdoors by a stereo pair or

indoors by a ToF-RGB pair or a Kinect sensor. Image reprinted

with permission from [65].

Tech camera calibration toolbox10 and the missing depth

values are added by interpolation. The dataset contains

tracking of various household and office objects (Figure 4).

The sequences contain in-depth rotations, occlusions and

disappearances that are challenging for RGB and, in partic-

ular, depth based trackers. The total number of frames is

101,956 in various resolutions. For more details, see [65].

3.5.2 Winner identification protocol

The VOT-RGBD2019 winner was identified as follows.

Trackers were ranked according to the F-score on the public

VOT-RGBD2019 dataset (no sequestered dataset available).

The top ranked tracker not submitted by the VOT2019 com-

mittee members was the winner of the VOT-RGBD2019

challenge.

10http://www.vision.caltech.edu/bouguetj/calib_

doc



4. The VOT2019 challenge results

This section summarizes the trackers submitted, results

analysis and winner identification for each of the five

VOT2019 challenges.

4.1. The VOT-ST2019 challenge results

4.1.1 Trackers submitted

In all, 46 valid entries were submitted to the VOT-ST2019

challenge. Each submission included the binaries or source

code that allowed verification of the results if required.

The VOT2019 committee and associates additionally con-

tributed 11 baseline trackers. For these, the default param-

eters were selected, or, when not available, were set to rea-

sonable values. Thus in total 57 trackers were tested on

VOT-ST2019. In the following we briefly overview the en-

tries and provide the references to original papers in the Ap-

pendix A where available.

Of all participating trackers, 37 trackers (65%) were cat-

egorized as ST0, 19 trackers (33%) as ST1 and 1 as LT1.

79% applied discriminative and 21% applied generative

models. Most trackers (84%) used holistic model, while

16% of the participating trackers used part-based models.

Most trackers applied either a locally uniform dynamic

model11 (83%), a random walk dynamic model (12%) or

a nearly-constant-velocity dynamic model (5%).

The trackers were based on various tracking princi-

ples: 3 (5%) trackers were based on recurrent neural

network (A3CTD A.1, MemDTC A.28, ROAMpp A.34),

21 (37%) trackers applied Siamese networks (ALTO A.3,

ARTCS A.5, Cola A.10, gasiamrpn A.19, iourpn A.21,

MPAT A.30, RSiamFC A.35, SA-SIAM-R A.36, Siam-

CRF A.37, SiamCRF-RT A.38, SiamDW-ST A.39, Siamf-

cos A.40, SiamFCOSP A.41, SiamFCOT A.42, SiamMar-

gin A.43, SiamMask A.44, SiamMsST A.45, SiamRP-

Npp A.46, SiamRPNX A.47, SPM A.48, TADT A.52),

24 trackers (42%) applied CNN or classical discrimina-

tive correlation filters (ACNT A.2, ANT A.4, ARTCS A.5,

ATOM A.7, ATP A.8, CISRDCF A.9, Cola A.10,

CSRDCF A.11, CSRpp A.12, DCFST A.13, DiMP A.14,

DPT A.15, DRNet A.16, FSC2F A.18, KCF A.23,

LSRDFT A.26, M2C2F A.27, SSRCCOT A.49, STN A.51,

TCLCF A.53, TDE A.54, Trackyou A.55, UInet A.56,

WSCFST A.57), 2 trackers (4%) applied ranking-based

classifier learning (RankingR A.32, RankingT A.33), 4

trackers (7%) were based on classical discriminative and

generative subspaces (IVT A.22, L1APG A.24, MIL A.29,

Struck A.50), 2 trackers (4%) applied histogram-based sim-

ilarity maximization (ASMS A.6, PBTS A.31), 3 trackers

11The target was sought in a window centered at its estimated position

in the previous frame. This is the simplest dynamic model that assumes all

positions within a search region contain the target have equal prior proba-

bility.

(5%) applied optical flow (ANT A.4, FoT A.17, LGT A.25),

and 1 tracker was based on a combination of multiple basic

classical trackers (HMMTxDT A.20).

Many trackers used combinations of several features.

CNN features were used in 69% of trackers – these were

either trained for discrimination (26 trackers) or localiza-

tion (13 trackers). Hand-crafted features were used in 25%
of trackers, keypoints in 4% of trackers, color histograms in

18% and grayscale features were used in 16% of trackers.

4.1.2 Results

The results are summarized in the AR-raw plots and EAO

curves in Figure 5 and the expected average overlap plots

in Figure 6. The values are also reported in Table 2.

The top ten trackers according to the primary EAO mea-

sure (Figure 6) are DRNet A.16, Trackyou A.55, ATP A.8,

DiMP A.14, Cola A.10, ACNT A.2, SiamMargin A.43,

DCFST A.13, SiamFCOT A.42, and SiamCRF A.37.

All trackers apply CNN features for target localiza-

tion. Seven top trackers (DRNet, Trackyou, ATP, DiMP,

Cola, ACNT, DCFST) apply a discriminative correlation-

filter (DCF) for target localization, followed by bounding

box regression. Most of these trackers do not apply a clas-

sical DCF, but rather a CNN formulation of the discrimi-

native correlation filter from ATOM [16] and the bounding

box prediction inspired by [40]. Three trackers (SiamMar-

gin, SiamFCOT and SiamCRF) apply a siamese correlation

filter (i.e., template-based correlation) followed by a bound-

ing box regression. It appears that, similarly to VOT2018,

the top performers contain discriminative correlation filters,

but the formulation has shifted to a learning strategy that in-

volves Gauss-Newton updated implemented via back-prop

computations in standard CNN toolboxes. A strong com-

monality is the bounding box prediction module [40], which

appears to increase the tracking accuracy. The most popu-

lar backbone used appears to be the Resnet-family [36] (in

particular Resnet50 and Resnet18) – most of the top track-

ers apply it. None of the top performers use hand-crafted

features, which is a stark contrast to VOT2018.

The top performer on public dataset is DRNet (A.16).

This tracker applies a two-stage tracking framework: target

position estimation, followed by the bounding box regres-

sion. The localization stage is aimed at increased robust-

ness at a cost of potentially reduced accuracy by applying

a discriminative correlation filter (DCF). The DFC learning

is formulated as a CNN layer. Robustness is increased by

a distractor-aware loss. Target localization is implemented

by DCFs on multiple branches of the backbone networks,

followed by a bounding box regression branch [40]. The

backbone are ResNet50 and ResNetSE pre-trained on Im-

ageNet [22], while the bounding box regression head is

trained on LaSOT [24], TrackingNet [74] and COCO [63]



Figure 5. The VOT-ST2019 AR-raw plots generated by sequence

pooling (left) and EAO curves (right).

datasets.

The second-best ranked tracker is Trackyou (A.55). This

tracker is an extension of ATOM [16] by a dynamic op-

timization approach. A triplet loss is introduced to learn

more discriminative features during offline training. Online

updates are modulated by fuzzy combination of several tar-

get properties estimated during tracking.

The third top-performing tracker (ATP A.8) is also based

on ATOM [16] for target localization, but followed by

SiamMask [96] for target segmentation. A bounding box is

fitted to the segmentation result. Feature pyramid network

is used for fusing low-to-high-level features and an adaptive

search window size is used. Hyperparameter optimization

was applied to tune the performance.

The top-three trackers stand out slightly from the rest in

EAO measure. These three trackers have very high accu-

racy, with ATP obtaining the highest among all 57 trackers.

On the other hand, DRNet and Trackyou result in most ro-

bust tracking with the least number of failures.

While the top-ten trackers share many architectural simi-

larities, we observe that these are shared among other track-

ers which are ranked significantly lower. One reason for this

is that implementation plays a very important part in perfor-

mance. Another reason is that training procedures seem to

play an important role as well. From the tracker descriptions

it is clear that different trackers apply slightly different sam-

pling strategies in training as well as different datasets, ar-

riving at features with varying discrimination properties and

contain slight tracking architectural differences that might

lead to significant performance differences.

The trackers which have been considered as baselines or

state-of-the-art four years ago are positioned at the lower

part of the AR-plots and at the tail of the EAO rank list.

This speaks of the significant quality of the trackers sub-

mitted to VOT-ST2019. In fact, 11 tested trackers (19%)

have been recently (2018/2019) published in major com-

puter vision conferences and journals. These trackers are

indicated in Figure 6, along with their average perfor-

mance (EAO= 0.263), which constitutes the VOT2019

Figure 6. The VOT-ST2019 expected average overlap graph with

trackers ranked from right to left. The right-most tracker is the

top-performing according to the VOT-ST2019 expected average

overlap values. The dashed horizontal line denotes the average

performance of ten state-of-the-art trackers published in 2018 and

2019 at major computer vision venues. These trackers are denoted

by gray circle in the bottom part of the graph.

Figure 7. Failure rate with respect to the visual attributes.

state-of-the-art bound. Approximately 49% of submitted

trackers exceed this bound, which speaks of significant pace

of advancements made in tracking within a span of only a

few years.

CM IC MC OC SC

Accuracy 0.53 0.48 3 0.51 0.44 1 0.48 2

Robustness 0.63 1.18 3 1.44 1 1.20 2 0.56

Table 1. VOT-ST2019 tracking difficulty with respect to the

following visual attributes: camera motion (CM), illumination

change (IC), motion change (MC), occlusion (OC) and size

change (SC).



The number of failures with respect to the visual at-

tributes is shown in Figure 7. The overall top performers

remain at the top of per-attribute ranks as well, but none of

the trackers consistently outperforms all others with respect

to each attribute.

According to the median robustness and accuracy over

each attribute (Table 1) the most challenging attributes in

terms of failures are occlusion and motion change. Illumi-

nation change, motion change and scale change are chal-

lenging, but comparatively much better addressed by the

submitted trackers. Tracking accuracy is most strongly af-

fected by motion change and camera motion.

4.1.3 The VOT-ST2019 challenge winner

Top five trackers from the baseline experiment (Table 2)

were re-run on the sequestered dataset. Their scores ob-

tained on sequestered dataset are shown in Table 3. The top

tracker according to the EAO is ATP A.8 and is thus the

VOT-ST2019 challenge winner.

4.2. The VOT-RT2019 challenge results

4.2.1 Trackers submitted

The trackers that entered the VOT-ST2019 challenge were

also run on the VOT-RT2019 challenge. Thus the statistics

of submitted trackers was the same as in VOT-ST2019. For

details please see Section 4.1.1 and Appendix A.

4.2.2 Results

The EAO scores and AR-raw plots for the real-time ex-

periments are shown in Figure 8, Figure 9 and Table 2.

The top ten real-time trackers are SiamMargin A.43,

SiamFCOT A.42, DiMP A.14, DCFST A.13, SiamDW-

ST A.39, ARTCS A.5, SiamMask A.44, SiamRPNpp A.46,

SPM A.48, SiamCRF-RT A.38.

Seven of the top ten realtime trackers (SiamMargin,

SiamFCOT, SiamDWST, SiamMask, SiamRPNpp, SPM

and SiamCRF-RT) are based on siamese correlation com-

bined with bounding box regression. Most of these ap-

ply region-proposal-like bounding box prediction (e.g., akin

to [59, 87]). SiamFCOT and SiamMask apply target seg-

mentation for improved localization. Three of the top

ten realtime trackers (DiMP, DCFST and ARTCS) apply a

discriminative correlation filter embedded within a CNN.

In particular, DCFST and ARTCS apply the formulation

from [16], while DiMP applies an end-to-end trainable ar-

chitecture for predicting and tuning the filter.

The top performer, SiamMargin, is derived from

SiamRPNpp [58]. The features are trained offline in a stan-

dard siamese framework, but with added discriminative loss

to encourage learning of a discrimintative embedding. Dur-

ing tracking, ROI-align is applied to extract features from

Figure 8. The VOT-RT2019 AR plot (left) and the EAO curves

(right).

Figure 9. The VOT-RT2019 EAO plot (right).

the estimated target region. The template is updated by

these features using a moving average.

SiamMargin is closely followed in EAO by SiamFCOT,

which is in principle a classical Siamese correlation net-

work running on Alexnet backbone. The estimated target

position is further refined by a FCOS detector bounding

box predictor [87] and the search region size is adapted dur-

ing tracking with respect to the estimated target localization

certainty. This tracker applies a Unet-like segmentation net-

work to predict a binary mask in the estimated target region

– the final bounding box is fitted to this mask. Figure 9 indi-

cates that SiamMargin and SiamFCOT evidently stand out

from the rest with respect to the EAO measure, indicating a

clear state-of-the-art.

4.2.3 The VOT-RT2019 challenge winner

According to the EAO results in Table 2, the top performer

and the winner of the real-time tracking challenge VOT-

RT2019 is SiamMargin (A.43).

4.3. The VOT-LT2019 challenge results

4.3.1 Trackers submitted

The VOT-LT2019 challenge received 8 valid entries. The

VOT2019 committee contributed an additional baseline,

thus 9 trackers were considered in the challenge. In the

following we briefly overview the entries and provide the

references to original papers in Appendix B where avail-



baseline realtime unsupervised

Tracker EAO A R EAO A R AO Implementation

1. DRNet 0.395 1 0.605 0.261 1 0.185 0.583 0.757 0.511 3 D P G

2. Trackyou 0.395 2 0.609 0.270 2 0.149 0.571 0.933 0.477 S P G

3. ATP 0.394 3 0.650 1 0.291 0.085 0.426 1.630 0.502 S P G

4. DiMP 0.379 0.594 0.278 3 0.321 3 0.582 0.371 0.508 S P C

5. Cola 0.371 0.613 0.316 0.241 0.582 0.587 0.508 S P G

6. ACNT 0.368 0.626 3 0.278 3 0.231 0.613 2 0.577 0.513 2 S P G

7. SiamMargin 0.362 0.578 0.326 0.366 1 0.577 0.321 1 0.411 D P G

8. DCFST 0.361 0.589 0.321 0.317 0.585 0.376 0.446 S P G

9. SiamFCOT 0.350 0.601 0.386 0.350 2 0.601 0.386 0.470 D P G

10. SiamCRF 0.330 0.625 0.296 0.076 0.484 1.690 0.557 1 S P G

11. LSRDFT 0.317 0.531 0.312 0.087 0.455 1.741 0.413 S P G

12. STN 0.314 0.589 0.349 0.111 0.542 1.309 0.481 S P G

13. MPAT 0.301 0.632 2 0.414 0.256 0.621 1 0.552 0.448 S P G

14. SiamDW ST 0.299 0.600 0.467 0.299 0.600 0.467 0.452 S M G

15. ARTCS 0.294 0.602 0.456 0.287 0.602 3 0.482 0.466 D P G

16. ATOM 0.292 0.603 0.411 0.240 0.596 0.557 0.493 S P G

17. SiamMask 0.287 0.594 0.461 0.287 0.594 0.461 0.415 D P G

18. SiamRPNpp 0.285 0.599 0.482 0.285 0.599 0.482 0.482 D P G

19. SiamCRF RT 0.282 0.550 0.301 0.262 0.549 0.346 3 0.474 S P G

20. ROAMpp 0.281 0.561 0.438 0.110 0.530 1.420 0.416 S P G

21. SPM 0.275 0.577 0.507 0.275 0.577 0.507 0.449 D P C

22. RankingT 0.270 0.525 0.360 0.094 0.297 0.908 0.400 S M G

23. TDE 0.256 0.534 0.465 0.086 0.308 1.274 0.382 S M C

24. UInet 0.254 0.561 0.468 0.238 0.560 0.527 0.417 S P G

25. SA SIAM R 0.253 0.559 0.492 0.252 0.563 0.507 0.392 D P G

26. RankingR 0.252 0.548 0.417 0.091 0.288 0.783 0.435 S M G

27. SiamMsST 0.252 0.575 0.552 0.247 0.574 0.567 0.424 D P G

28. gasiamrpn 0.247 0.548 0.522 0.121 0.501 1.359 0.418 D P G

29. SSRCCOT 0.234 0.495 0.507 0.081 0.360 1.505 0.380 S M C

30. MemDTC 0.228 0.485 0.587 0.228 0.485 0.587 0.376 D P G

31. SiamRPNX 0.224 0.517 0.552 0.189 0.504 0.672 0.363 D P G

32. Siamfcos 0.223 0.561 0.788 0.076 0.372 1.891 0.378 S P G

33. TADT 0.207 0.516 0.677 0.201 0.506 0.702 0.386 S P G

34. CSRDCF 0.201 0.496 0.632 0.100 0.478 1.405 0.320 D C C

35. CSRpp 0.187 0.468 0.662 0.172 0.468 0.727 0.321 D C C

36. FSC2F 0.185 0.480 0.752 0.077 0.461 1.836 0.367 S M C

37. ALTO 0.182 0.358 0.818 0.172 0.365 0.888 0.252 D P G

38. M2C2F 0.177 0.486 0.747 0.068 0.424 1.896 0.349 S M C

39. SiamFCOSP 0.171 0.508 1.194 0.166 0.503 1.254 0.241 S P G

40. TCLCF 0.170 0.480 0.843 0.170 0.480 0.843 0.338 D M C

41. A3CTD 0.165 0.451 0.933 0.150 0.437 0.998 0.271 D P G

42. RSiamFC 0.163 0.470 0.958 0.163 0.470 0.958 0.285 D P G

43. HMMTxD 0.163 0.499 1.073 0.081 0.414 1.981 0.347 D C C

44. WSCF St 0.162 0.534 0.963 0.160 0.532 0.968 0.332 D M C

45. iourpn 0.161 0.495 1.129 0.161 0.495 1.129 0.265 S P G

46. ASMS∗ 0.160 0.479 0.923 0.160 0.479 0.923 0.289 D C C

47. PBTS 0.157 0.336 0.725 0.087 0.368 1.796 0.217 S P C

48. CISRDCF 0.153 0.420 0.883 0.146 0.421 0.928 0.242 D M C

49. DPT 0.153 0.488 1.008 0.136 0.488 1.159 0.289 D C C

50. ANT∗ 0.151 0.458 0.938 0.067 0.434 2.017 0.239 D M C

51. LGT∗ 0.131 0.403 1.038 0.066 0.386 1.951 0.206 S M C

52. FoT 0.129 0.366 1.294 0.129 0.366 1.294 0.135 D C C

53. MIL∗ 0.118 0.398 1.309 0.090 0.380 1.861 0.166 D C C

54. KCF 0.110 0.441 1.279 0.108 0.440 1.294 0.206 D C C

55. Struck∗ 0.094 0.417 1.726 0.088 0.428 1.926 0.174 D C C

56. IVT∗ 0.087 0.391 2.002 0.039 0.366 0.331 2 0.110 D M C

57. L1APG∗ 0.077 0.400 2.420 0.070 0.415 2.428 0.122 S M C

Table 2. The table shows expected average overlap (EAO), as well as accuracy and robustness raw values (A,R) for the baseline and

the realtime experiments. For the unsupervised experiment the no-reset average overlap AO [97] is used. The last column contains

implementation details (first letter: (D)eterministic or (S)tohastic, second letter: tracker implemented in (M)atlab, (C)++, or (P)ython, third

letter: tracker is using (G)PU or only (C)PU). A dash ”-” indicates that the realtime experiment was performed using an outdated version

of the toolkit and that the results are invalid.



Tracker EAO A R

1. ATP 0.2747 1 0.6692 1 0.4046 2

2. DiMP 0.2489 2 0.6110 0.3896 1

3. DRNet 0.2371 3 0.6437 2 0.4465 3

4. Cola 0.2218 0.2080 0.5133

5. Trackyou 0.2035 0.6358 3 0.5301
Table 3. The top five trackers from Table 2 re-ranked on the VOT-

ST2019 sequestered dataset.

able.

All participating trackers were categorized as LT1 ac-

cording to the ST-LT taxonomy from Section 1.4 in that

they explicitly implemented explicit target re-detection.

Eight out of nine trackers were based on CNNs. Six of

these (CLGS B.2, CooSiam B.3, LT-DSE B.5, SiamDW-

LT B.7, Siamfcos-LT B.8, SiamRPNsLT B.9) applied

Siamese matching architectures akin to SiamFc [7] and

SiamRpn [58]. ASINT B.1 applied CNN-based template

matching trained in a siamese setup and mbdet B.6 applied

online trained CNN classifier for target localization. One

tracker was based purely on discriminative correlation fil-

ters on top of hand-crafted features (FuCoLoT B.4).

Four trackers (ASINT, FuCoLoT, LT-DSE, mbdet) up-

dated the long-term visual model only when confident,

Siamfcos-LT and SiamDW-LT applied a constant exponen-

tial forgetting, CLGS and SiamRPNsLT never updated the

model and CooSiam applied mixed temporal updating akin

to [70] with multiple visual model.

4.3.2 Results

The overall performance is summarized in Figure 10. Three

trackers stand out from the rest: LT-DSE, CLGS and

SiamDW-LT. These trackers follow a short-term tracker

long-term detector interaction approach [70], but differ in

architectural details. LT-DSE applies a DCF [16] short-

term tracker on top of extended ResNet18 features for ini-

tial target localization. The target position is refined by a

SiamMask [96] run on the target initial position. The target

presence is then verified by RT-MDNet [42]. If the target is

deemed absent, an image-wide re-detection using a region

proposal network MBMD [108] is applied. The region pro-

posals are verified by the online trained verifier. CLGS ap-

plies a siamese short-term tracker for between-frame track-

ing. When the target is deemed absent, an RCNN region

proposal is activated for generating potential target candi-

dates, which are subsequently verified by a model similar to

MDNet [42]. SiamDW-LT applies a deep-and-wide back-

bone from [109] to construct a short-term frame-to-frame

tracker and a global re-detection module is activated when-

ever the confidence of the short-term tracker drops signifi-

cantly. A model ensemble is applied to further improve the

tracking accuracy and robustness.

Figure 10. VOT-LT2019 challenge average tracking precision-

recall curves (left), the corresponding F-score curves (right).

Tracker labels are sorted according to maximum of the F-score.

LT-DSE achieves the best tracking F-score and best

tracking Recall. This means that it recovers much more cor-

rect target positions that the other trackers (see Figure 10).

This comes at a cost of slightly reduced tracking Precision.

Performance of the baseline tracker FuCoLoT is the lowest

across all attributes, which is likely due to the fact that this

is the only tracker that applies hand-crafted features.

Figure 11 shows tracking performance with respect to

nine visual attributes from Section 3.3. The most challeng-

ing attributes are out of view, viewpoint change, similar

objects and partial occlusion. Performance across the at-

tributes appears to be fairly stable for all trackers except

SiamRPNsLT, whose performance significantly drops on

the viewpoint change attribute.



Tracker F-score Pr Re ST/LT

1. LT DSE 0.695 1 0.715 3 0.677 1 LT1

2. CLGS 0.674 2 0.739 2 0.619 3 LT1

3. SiamDW LT 0.665 3 0.697 0.636 2 LT1

4. mbdet 0.567 0.609 0.530 LT1

5. SiamRPNsLT 0.556 0.749 1 0.443 LT1

6. Siamfcos-LT 0.520 0.493 0.549 LT1

7. CooSiam 0.508 0.482 0.537 LT1

8. ASINT 0.505 0.517 0.494 LT1

9. FuCoLoT 0.411 0.507 0.346 LT1

Table 4. List of trackers that participated in the VOT-LT2019 challenge along with their performance scores (F-score, Pr, Re) and ST/LT

categorization.

Figure 11. VOT-LT2019 challenge maximum F-score averaged over overlap thresholds for the visual attributes. The most challenging

attributes are fast motion, out of view, aspect ratio change and full occlusion.

4.3.3 The VOT-LT2019 challenge winner

According to the F-score, LT-DSE is well ahead of the rest

of the trackers, it also achieves top tracking Recall score

and is third-best tracker in tracking Precision score. Thus,

according to the VOT2019 rules, LT-DSE B.5 is the winner

of the VOT-LT2019 challenge.

4.4. The VOT-RGBT2019 challenge results

4.4.1 Trackers submitted

In all, 10 entries were submitted to the VOT-RGBT2019

challenge. All but one submission included the binaries

or source code that allowed verification of the results if re-

quired. One submission was an earlier version of another.

No additional trackers were contributed by the VOT com-

mittee. Thus in total 8 valid trackers were tested on VOT-

RGBT2019. In what follows we briefly overview the en-

tries and provide the references to original papers in the

Appendix A where available.

All participating trackers use discriminative models with

a holistic representation. 5 trackers (62.5%) were cate-

gorized as ST1 and 3 trackers (37.5%) as ST0. 7 track-

ers (87.5%) applied a locally uniform dynamic model and 1

tracker (12.5%) a random walk dynamic model.

The trackers were based on various tracking princi-

ples: 4 trackers (50%) are based on discriminative corre-

lation filters (CISRDCF C.1, GESBTT C.3, JMMAC C.4,

and mfDiMP C.6), 4 trackers (50%) are based on mul-

tiple CNNs (MANet C.5, mfDiMP C.6, MPAT C.7, and

SiamDW T C.8), 4 trackers (50%) make use of Siamese

CNNs (FSRPN C.2, mfDiMP C.6, MPAT C.7, and

SiamDW T C.8), 2 trackers (25%) apply a Kalman fil-

ter (GESBTT C.3 and JMMAC C.4), and respectively 1

tracker (12.5%) makes use of optical flow (GESBTT C.3)

and ransac (JMMAC C.4).

5 trackers (62.5%) used combinations of several features.

6 trackers (75%) used CNN features and 3 trackers (37.5%)

used hand-crafted features. Respectively 2 trackers (25%)

used keypoints and grayscale features.

4.4.2 Results

The results are summarized in the AR-raw plots and EAO

curves in Figure 12 and the expected average overlap

plots in Figure 13. The values are also reported in Ta-

ble 5. The top five trackers according to the primary EAO

measure (Figure 13) are JMMAC C.4, SiamDW T C.8,

mfDiMP C.6, FSRPN C.2, and MANet C.5.

All trackers apply CNN features for target localization.

This is in contrast to the earlier VOT-TIR challenges, where



Tracker EAO A R

1. JMMAC 0.4826 1 0.6649 1 0.8211 1

2. SiamDW T 0.3925 2 0.6158 0.7839 3

3. mfDiMP 0.3879 3 0.6019 0.8036 2

4. FSRPN 0.3553 0.6362 2 0.7069

5. MANet 0.3463 0.5823 0.7010

6. MPAT 0.3180 0.5723 0.7242

7. CISRDCF 0.2923 0.5215 0.6904

8. gesbtt 0.2896 0.6163 3 0.6350
Table 5. Numerical results of VOT-RGBT2019 challenge on the

public dataset.
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Figure 12. The VOT-RGBT2019 AR plot (left) and the EAO

curves (right). The legend is given in figure 13.
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Figure 13. The VOT-RGBT2019 EAO plot.

CM MC OC SC

Accuracy 0.61 0.61 0.44 0.62

Robustness 0.87 0.62 0.79 0.90

Table 6. VOT-RGBT2019 tracking difficulty with respect to

the following visual attributes: camera motion (CM), motion

change (MC), occlusion (OC), and size change (SC).
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Figure 14. Failure rate with respect to the visual attributes. The

legend is given in figure 13.

hand-crafted features still dominated [25, 26, 49]. Respec-

tively 3 out of 5 trackers apply discriminative correlation-

filters (DCF), multiple CNNs, and Siamese CNNs. Most

trackers are combinations of these methods with few excep-

tions: JMMAC is only using DCFs, but still performing best

on the public dataset. This is remarkable as the other two

trackers solely relying on DCF are ranked lowest. Here,

the use of RANSAC seem to lift the JMMAC performance.

The use of a Kalman filter approach in JMMAC and ges-

btt shows varying outcome, performing both strongest and

weakest. Another exception is FSRPN, solely relying on a

Siamese CNN, but without a significant performance differ-

ence compared to combinations of methods.

The top performer on the public dataset is JM-

MAC (C.4). This tracker applies a two-component ap-

proach, combining motion and appearance cues. The mo-

tion cue is inferred from key-point based camera motion es-

timation and a Kalman filter applied to object motion. The

appearance cues are generated by an extension of the ECO

model [15].

The second-best ranked tracker is SiamDW T (C.8).

This tracker is method-wise a complement to JMMAC and

applies multiple CNNs and Siamese CNNs.

The third top-performing position is taken by

mfDiMP (C.6). mfDiMP combines all approaches

named in the paragraphs above. It is a multi-modal

extension of the Discriminative Model Prediction (DiMP)

tracker [8].

Only the top-ranked tracker stands out from the rest in

EAO measure, otherwise the results are quite similar. Sim-

ilar to earlier challenges, the EAO correlates stronger with

robustness than with accuracy: The ranks 1-3 on robustness

and EAO are shared among the three trackers above. Con-

versely, rank 2 and 3 for accuracy are ranked 4th and 8th in

EAO.

Since this has been the first RGBT-challenge within VOT

and due to the small number of participants, we have not

introduced a state-of-the-art bound as for the VOT-ST chal-

lenge. However, similar to VOT-ST, we analyzed the num-

ber of failures with respect to the visual attributes (exclud-

ing illumination change), see Figure 14. The overall top

performers remain at the top of per-attribute ranks as well,

and JMMAC consistently outperforms all others with re-

spect to each attribute.

According to the median robustness and accuracy over

each attribute (Table 6) the most challenging attributes in

terms of failures are occlusion and motion change. Occlu-

sion strongly affects accuracy whereas motion change af-

fects mostly robustness. Scale change and camera motion

are significantly less challenging attributes.

4.4.3 The VOT-RGBT2019 challenge winner

Top five trackers from the baseline experiment (Table 5)

were selected to be re-run on the sequestered dataset. Their

scores obtained on sequestered dataset are shown in Table 7.



The top tracker according to the EAO is mfDiMP (C.6) and

is thus the VOT-RGBT2019 challenge winner.

Tracker EAO A R

1. mfDiMP 0.2347 1 0.6133 0.3160 1

2. SiamDW T 0.2143 2 0.6515 2 0.2714 2

3. MANet 0.2041 3 0.5784 0.2592 3

4. JMMAC 0.2037 0.6337 3 0.2441

5. FSRPN 0.1873 0.6561 1 0.1755
Table 7. Numerical results of VOT-RGBT2019 challenge on the

sequestered dataset.

4.5. The VOT-RGBD2019 challenge results

4.5.1 Trackers submitted

The VOT-RGBD2019 challenge received 4 valid en-

tries: ATCAIS (D.1), LTDSEd (D.2), SiamDW-D (D.3),

SiamM Ds (D.4). The VOT2019 committee contributed

additional 8 baselines: MDNet [75], MBMD [108], Fu-

CoLoT (B.4) [70], OTR [45], SiamFC [7], CSRDCF-

D [44], ECO [15] and CADMS [64]; thus 12 trackers were

considered in the challenge. In the following we briefly

overview the entries and provide the references to the orig-

inal papers in Appendix D where available.

Two of the baseline trackers were RGBD trackers,

OTR [45] and CSRDCF-D [44], while the remaining six

baseline trackers were well-performing long-term RGB

trackers (MDNet, MBMD, ECO, FuCoLot, SiamFC and

CADMS [64]) which omitted the depth channel. The main

reason to include pure RGB trackers was to evaluate the ad-

ditional value of the depth channel for tracking.

Three of the RGB-only baseline trackers (MDNet,

MBMD and FuCoLoT) outperformed the best baseline

RGBD tracker (OTR), but all four valid entries outper-

formed all baseline trackers. SiamDW-D (D.3) is a vari-

ant of the recent long-term Siamese network tracker [109].

ATCAIS (D.1) is based on the ATOM tracker [16] which

implements a discriminative correlation filter loss for deep

matching. ATCAIS also adopts Chen et al. [12] deep archi-

tecture for instance segmentation. LTDSEd (D.3) uses two

different trackers (inc. ATOM) and visibility of the target

is judged by the outputs of the both. The SiamM Ds (D.4)

tracker is a modified version of SiamMask [96]. The four

entries do not define special processing of the depth chan-

nel beyond using it as an additional feature dimension. All

trackers are based on deep features.

4.5.2 Results

The overall performances are summarized in Figure 15 and

Table 8. The highest ranked tracker is the Siamese net-

work based tracker SiamDW-D. Variants of the same tracker

were ranked 14th in VOT-ST2019 (SiamDW-ST), 3rd in

Tracker F-score Pr Re ST/LT

1. SiamDW D 0.681 1 0.677 1 0.685 2 LT1

2. ATCAIS 0.676 2 0.643 3 0.712 1 LT1

3. LTDSEd 0.658 3 0.674 2 0.643 3 LT1

4. SiamM Ds 0.455 0.516 0.406 LT1

5. MDNet 0.455 0.463 0.447 ST1

6. MBMD 0.441 0.454 0.429 LT1

7. FuCoLoT 0.391 0.459 0.340 LT1

8. OTR 0.336 0.364 0.312 LT1

9. SiamFC 0.333 0.356 0.312 ST1

10. CSRDCF-D 0.332 0.375 0.297 ST0

11. ECO 0.329 0.317 0.342 ST1

12. CADMS 0.271 0.284 0.259 LT0

Table 8. List of trackers that participated in the VOT-RGBD2019

challenge along with their performance scores (F-score, Pr, Re)

and ST/LT categorization.

VOT-LT2019 (SiamDW-LT) and 3rd in VOT-RGBT2019

(SiamDW-T).

The second highest ranked tracker is ATCAIS. ATCAIS

is based on the ATOM tracker [16] and the HTC method for

instance segmentation [12]. ATCAIS does not particularly

handle target loss (see the two last attributes in Figure 16).

The third tracker, LTDSEd, is from the same authors

as ATCAIS. It contains two tracker components, one using

ATOM for tracking with Wang et al. [96] method for fore-

ground segmentation, and another using RT-MDNet [42].

The variant of this method, LT-DSE, won the VOT-LT2019

long-term tracking challenge.

The strength of the three best trackers is likely in their oc-

clusion recovery handling as their other variants performed

well in the long-term tracks of VOT2019. It is unclear how

extensively these methods exploit the depth channel besides

using it as an additional feature channel. The three best

trackers behave similarly for all annotated attributes (Fig-

ure 16), except SiamDW-D which was particularly good

on ”Similar objects” and ATCAIS that completely failed

on ”Full occlusion” and ”Out-of-frame”. All three best

trackers were distinctly better than the rest of the evaluated

RGBD trackers making them good seeds for future work on

long-term RGBD tracking.

4.5.3 The VOT-RGBD2019 challenge winner

It should be noted that there are only minor differences

among the three best RGBD trackers. They all achieve the

maximum F-measure near the same Precision-Recall region

Pr,Re ∈ [0.64, 0.71] (Figure 15). Their performances are

almost comparable also within the different attributes (Fig-

ure 16) (except ATCAIS that does not handle target disap-

pearance).

The winner is selected based on the best F-score and

is SiamDW-D (F-score 0.681). For the winning F-score

SiamDW-D also obtains the best precision (0.677) and the



Figure 15. VOT-RGBD2019 challenge average tracking precision-

recall curves (bottom), the corresponding F-score curves (top).

Tracker labels are sorted according to maximum of the F-score.

second best recall (0.685) which indicate its very strong per-

formance. Interestingly, SiamDW-D also uses ATOM-type

detection refinement, but does not utilize any foreground

segmentation network such as ATCAIS and LTDSEd do.

According to the VOT winner rules, the VOT-RGBD2019

challenge winner is therefore SiamDW-D (D.3).

5. Conclusion

Results of the VOT2019 challenge were presented.

The challenge is composed of the following five chal-

lenges focusing on various tracking aspects and domains:

(i) the VOT2019 short-term RGB tracking challenge (VOT-

ST2019), (ii) the VOT2019 short-term real-time RGB track-

ing challenge (VOT-RT2019), (iii) the VOT2019 long-term

RGB tracking challenge (VOT-LT2019), (iv) the VOT2019

short-term RGB and thermal tracking challenge (VOT-

RGBT2019) and (v) the VOT2019 long-term RGB and

depth (D) tracking challenge (VOT-RGBD2019).

The overall results of the challenges indicate that top

performers on VOT-ST and VOT-RGBD draw heavily on

the recently proposed framework ATOM [16], which com-

bines a robust DCF-like localizer with a IoUNet bounding

box estimation. In contrast, the top performers of VOT-RT

challenge are from the class of classical siamese correla-

tion trackers [7] and siamese trackers with region propos-

als [58]. The VOT-LT challenge top performers apply the

short-term localization and long-term re-detection tracker

structure [70], but differ in design – the dominant method-

ologies are CNN DCF [16] and siamese correlation [7],

region proposals and online trained CNN classifiers [75].

The top performers in VOT-RGBT challenge apply classi-

cal [15] or CNN-based [8] DCFs or siamese [7] approaches.

The top performer on the VOT-ST2019 public dataset

is DRNet A.16, which is based on the recent CNN-based

DCF [16] and adds a distractor-aware loss to increase the

robustness. The top performer on the sequestered dataset

and the VOT-ST2019 challenge winner is ATP A.8. This

tracker combines the recent ATOM [16] and SiamMask [96]

trackers, applies an improved bounding box estimation al-

gorithm and feature pyramids for extraction of rich features.

The top performer and the winner of the VOT-

RT2019 challenge is SiamMargin A.43, which is based on

SiamRpn++ [58] with added discriminative loss in feature

pre-training stage.

The top performer and the winner of the VOT-LT2019

challenge isLT-DSE B.5, wich combines a CNN-based

DCF [16] with a siamese segmentation tracker [96] and an

fast version of an online trained CNN classifier [75].

The top performer on the VOT-RGBT2019 public

dataset is JMMAC (C.4), an approach that combines DCF-

based appearance cues with motion cues derived from key-

point and a Kalman filter. The top performer on the se-

questered dataset and the VOT-RGBT2019 challenge win-

ner is mfDiMP (C.6), an end-to-end tracking framework

for fusing the RGB and TIR modalities based on the

DiMP (Discriminative Model Prediction) tracker [8].

The top performer and the winner of the VOT-

RGBD2019 challenge is SiamDW-D (D.3) – a variant of

the recent Siamese network tracker [109]. The tracker con-

sists of two parts, a region proposal network and a proposal

refinement network. The proposal refinement network is

the same as in ATOM [16]. Since also the second and third

best RGBD trackers were both based on ATOM and their

variants performed well in the VOT-LT2019 challenge the

challenge results indicate that good failure recovery and the

ATOM network structures make a strong combination for

RGBD tracking. However, none of these trackers particu-

larly utilized the depth information which raises the ques-

tion whether depth needs special attention at all - or do

deep tracker architectures learn to exploit depth from train-

ing data.



Figure 16. VOT-RGBD2019 challenge: tracking performance w.r.t. visual attributes. The first eleven attributes correspond to scenarios

with a visible target (showing F-measure). The overall tracking performance is shown in each graph with black dots. The attributes full

occlusion and out of view represent periods when the target is not visible and true negative rate is used to measure the performance.

In all years that we have been using sequestered dataset

for winner identification, we have consistently observed that

the ranks of the top performers change compared to the re-

sults on the public dataset. What is more, the performance

consistently drops for all trackers on the sequestered dataset

by a non-negligible amount. This supports the argument

that the state-of-the-art should not be decided by forcing

top rank on datasets, especially if they are public (which is

the case for all existing benchmarks apart from VOT chal-

lenge). This has been vocalized by VOT for several years

now, and that a more appropriate state-of-the-art identifica-

tion approach is to consider a reasonably high sota-bound.

Trackers well exceeding this bound surely exhibit state-of-

the-art performance.

The VOT primary objective is to establish a platform

for discussion of tracking performance evaluation and con-

tributing to the tracking community with verified anno-

tated datasets, performance measures and evaluation toolk-

its. The VOT2019 was a sevents effort toward this, fol-

lowing the very successful VOT2013, VOT2014, VOT2015,

VOT2016, VOT2017 and VOT2018. Similarly to the previ-

ous challenges, the VOT2019 made several steps beyond,

opening new challenges on new tracking domains. Our fu-

ture work will follow this line of advancements.
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A. VOT-ST2019 and VOT-RT2019 submissions

This appendix provides a short summary of trackers con-

sidered in the VOT-ST2019 and VOT-RT2019 challenges.

A.1. Visual Tracking by means of Deep Reinforce-
ment Learning and an Expert Demonstra-
tor (A3CTD)

M. Dunnhofer, N. Martinel, C. Micheloni

dunnhofer.matteo@spes.uniud.it,

{niki.martinel, christian.micheloni}@uniud.it

A3CTD is a novel real-time tracker built on a deep re-

current regression network architecture. It is trained offline

using a reinforcement learning based framework that takes

advantage of the demonstrations of an expert tracker. Af-

ter training, the proposed tracker is capable of producing



bounding box estimates through the learned policy or by ex-

ploiting the demonstrator. Through the learned state value

function, A3CTD is in fact able to evaluate the quality of its

current tracking policy and of the expert’s one, and to con-

sequently decide if to output its own bounding box estimate

or the one proposed by the demonstrator.

A.2. Adaptive Correction Network based
tracker (ACNT)

T. Xu, Z.-H. Feng, S.-C. Zhao, X.-J. Wu, J. Kittler

tianyang xu@163.com, z.feng@surrey.ac.uk,

zsc960813@163.com, wu xiaojun@jiangnan.edu.cn,

j.kittler@surrey.ac.uk

In the Adaptive Correction Network based Correlation

Filter tracker a correlation filter is employed to predict the

centre location while an IoU net is established to perform

adaptive correction. We modified the loss function in IoU

net of ATOM tracker [16] to jointly consider the bounding

box overlap and centre location error.

A.3. Adversarial Learning for Tracking Ob-
jects (ALTO)

N. Paluru, B. Pedasingu, L. Rout, R. Gorthi

ee17ms004@iittp.ac.in, surajpedasingu@gmail.com,

lr@sac.isro.gov.in, rkg@iittp.ac.in

The tracker ALTO is a novel framework based on adver-

sarial learning to enhance the predictions given by a gener-

ative tracker, by leveraging the powers of a discriminative

classifier and a regressor for effective tracking.

A.4. ANT (ANT)

Submitted by VOT Committee

The ANT tracker is a conceptual increment to the idea

of multi-layer appearance representation that is first de-

scribed in [90]. The tracker addresses the problem of self-

supervised estimation of a large number of parameters by

introducing controlled graduation in estimation of the free

parameters. The appearance of the object is decomposed

into several sub-models, each describing the target at a dif-

ferent level of detail. The sub models interact during target

localization and, depending on the visual uncertainty, serve

for cross-sub-model supervised updating. The reader is re-

ferred to [92] for details.

A.5. Accurate and Robust Tracking based on Cor-
relation filter and SiamRPN (ARTCS)

B. Yan, H. Zhao, D. Wang, H. Lu, X. Yang

yan bin@mail.dlut.edu.cn, zhaohj1995@gmail.com,

{wdice, lhchuan}@dlut.edu.cn,

xiaoyun.yang@intellicloud.ai

The tracker ARTCS consists of a robust Correlation-

Filter-based localization module [16] and an accurate

SiamRPN-based estimation module [58]. During the track-

ing process, ATOM robustly locates the target’s rough po-

sition and a search region is cropped around it. In a second

step, SiamRPN++ predicts the accurate position and the size

of the target.

A.6. Scale Adaptive Mean-Shift Tracker (ASMS)

Submitted by VOT Committee

The mean-shift tracker optimizes the Hellinger distance

between template histogram and target candidate in the

image. This optimization is done by a gradient descend.

ASMS [95] addresses the problem of scale adaptation

and presents a novel theoretically justified scale estima-

tion mechanism which relies solely on the mean-shift pro-

cedure for the Hellinger distance. ASMS also introduces

two improvements of the mean-shift tracker that make

the scale estimation more robust in the presence of back-

ground clutter – a novel histogram colour weighting and

a forward-backward consistency check. Code available at

https://github.com/vojirt/asms.

A.7. ATOM: Accurate Tracking by Overlap Maxi-
mization (ATOM)

G. Bhat, M. Danelljan, F. Khan, M. Felsberg

{goutam.bhat, martin.danelljan}@vision.ee.ethz.ch,

fahad.khan@inceptioniai.org, michael.felsberg@liu.se

ATOM separates the tracking problem into two sub-

tasks: i) target classification, where the aim is to robustly

distinguish the target from the background; and ii) target

estimation, where an accurate bounding box for the target

is determined. Target classification is performed by train-

ing a discriminative classifier online. Target estimation is

performed by an overlap maximization approach where a

network module is trained offline to predict the overlap be-

tween the target object and a bounding box estimate, condi-

tioned on the target appearance in first frame. See [16] for

more details.

A.8. ATP: Accurate Tracking by Progressively re-
fining (ATP)

B. Li, D. Song, L. Wang, X. Tang, C. Zhang, Y. Liu, Z. Ni,

S. Li, K. Wang, Y. Zhou, X. Bai, W. Liu, B. He, J. Liu

{libi, djsong, makalo}@hust.edu.cn,

{tangxu02, zhangchengquan}@baidu.com,

987752424@qq.com,

{nizihan, lishihu, wangkangkang}@baidu.com,

{yuzhou, xbai, liuwy}@hust.edu.cn,

{hebin04, liujingtuo}@baidu.com

We improve the tracking accuracy by progressively re-

fining the target estimation. The process consists of three

stages. At the first stage, we adopt the ATOM tracker [16]

to estimate the axis-aligned target position. At the second

stage, we crop out an image patch centred on the estimated



target and feed it into a segmentation network. Specifically,

SiamMask [96] is used. At the third stage, a rotated bound-

ing box is generated from the segmentation.

A.9. Channel Independent Spatially Regular-
ized Discriminative Correlation Filter
Tracker (CISRDCF)

A. Varfolomieiev

a.varfolomieiev@kpi.ua

The method is based on SRDCF formulation [17], which

defers from the original one in two main points: 1) it cal-

culates the filter channels for each feature channel indepen-

dently, and 2) the regularization in the filter is performed it-

eratively using the ADMM approach [29]. To suppress the

information outside the object’s bounding-box, a rectangu-

lar regularization window with slightly blurred edges is ap-

plied. The method uses the HOG features augmented with

additional channel, which represents the backprojection of

object histogram. This channel is equivalent to the per-pixel

scores used in histogram-related part of Staple tracker [6].

The current version of the tracker extracts the object his-

togram from grayscale images and thus does not employ

any colour information.

A.10. Online Update Tracking Model for Discrimi-
nant Feature Learning (Cola)

C. Chen, Q. Zhang

755062190@qq.com, labyrinth7x@gmail.com

Our tracker is based on ATOM [16]. In order to enable

the network to learn more discriminant features and elim-

inate the deviation of information during supervised learn-

ing, we use the features extracted from the ground truth in

the test branch to modulate the features extracted from the

proposals. In order to better combine the features in the ref-

erence and the test branches, we limit the interval between

these two frames in the video sequence with a maximum

gap of 15 frames. The implementation proves that our net-

work can learn more discriminant features after such opti-

mization processing, and get better results on OTB and VOT

dataset.

A.11. Discriminative Correlation Filter with Chan-
nel and Spatial Reliability (CSRDCF)

Submitted by VOT Committee

The CSRDCF [69] improves discriminative correlation

filter trackers by introducing two concepts: spatial reliabil-

ity and channel reliability. It uses colour segmentation as

spatial reliability to adjust the filter support to the part of

the object suitable for tracking. The channel reliability re-

flects the discriminative power of each filter channel. The

tracker uses HoG and colour-names features.

A.12. Discriminative Correlation Filter with Chan-
nel and Spatial Reliability - C++ (CSRpp)

Submitted by VOT Committee

The CSRpp tracker is the C++ implementation of the

Discriminative Correlation Filter with Channel and Spatial

Reliability (CSR-DCF) tracker A.11.

A.13. Learning Features with Differentiable
Closed-Form Solvers for Tracking (DCFST)

L. Zheng, M. Tang, J. Wang

{linyu.zheng, tangm, jqwang}@nlpr.ia.ac.cn

The tracker DCFST focuses on learning feature embed-

dings in an end-to-end way. DCFST employs ResNet-18

as its backbone and takes both images training and test as

its input. Sample RoIs with target size in each image are

obtained by uniform sampling and their feature maps are

obtained by using PrPool [40] layer. We train a ridge re-

gression model to fit the samples in the training image em-

ploying the trained model to predict the regression values

of samples in the test image. Shrinkage loss function is em-

ployed to calculate the error between the predicted values

and the labels of the test samples. In the online inference we

locate the target with the location of the maximum response

value in the search region. Finally, the target bounding box

is refined by applying ATOM [16] algorithm.

A.14. Learning Discriminative Model Prediction
for Tracking (DiMP)

G. Bhat, M. Danelljan, L. Van Gool, R. Timofte

{goutam.bhat, martin.danelljan, vangool,

timofter}@vision.ee.ethz.ch

DiMP is an end-to-end trainable tracking architecture,

capable of fully exploiting both target and background ap-

pearance information for target model prediction. The ar-

chitecture is derived from a discriminative learning loss by

designing a dedicated optimization process that is capable

of predicting a powerful model in only a few iterations. Fur-

thermore, key aspects of the discriminative loss are them-

selves learned during offline training. See [8] for more de-

tails.

A.15. Deformable part correlation filter
tracker (DPT)

Submitted by VOT Committee

DPT is a part-based correlation filter composed of a

coarse and mid-level target representations. Coarse repre-

sentation is responsible for approximate target localization

and uses HOG as well as colour features. The mid-level

representation is a deformable parts correlation filter with

fully-connected parts topology and applies a novel formu-

lation that threats geometric and visual properties within a

single convex optimization function. The mid level as well



as coarse level representations are based on the kernelized

correlation filter from [37]. The reader is referred to [66]

for details.

A.16. High Accuracy Visual Tracking with Deep
Regression Networks (DRNet)

S. Bai, J. Zhuang, Y. Dong, H. Bai

baishuai@bupt.edu.cn, junfei.zhuang@faceall.cn,

yuandong@bupt.edu.cn, hongliang.bai@faceall.cn

DRNet tracker consists of two phases, namely box se-

lection and scale regression. The first phase predicts

the location of the target, learning target-specific infor-

mation by online updating a discriminative correlation fil-

ters (DCF) module [16]. A distractor-aware loss is designed

for online learning by adaptively penalizing the interfer-

ence peaks. During this phase, the fusion of ResNet50 and

SE-ResNet50 with two independent DCF module branches,

which use backbone features from the Block4 of ResNet50

and SE-ResNet5 as input, is introduced. The second phase

uses the position predicted in the first phase and the size

of the previous frame as the proposal box, extracts features

using PrRoIPooling [40] and estimates the scale applying

box regression. The box regression takes backbone fea-

tures from the Block3 and Block4 of ResNet50 as input.

The backbone network uses the pre-trained model of Im-

ageNet [22] and the network parameters are fixed. In the

offline training process, the scale regression sub-network

is trained to predict the offset between the proposal box

and the target with Large-scale Single Object Tracking (La-

SOT) [24], TrackingNet [74] and COCO [63] datasets. Dur-

ing the online updating, the Conjugate Gradient is applied

to update the DCF module.

A.17. Flock of Trackers (FoT)

Submitted by VOT Committee

The Flock of Trackers (FoT) is a tracking framework

where the object motion is estimated from the displace-

ments or, more generally, transformation estimates of a

number of local trackers covering the object. Each local

tracker is attached to a certain area specified in the object

coordinate frame. The local trackers are not robust and as-

sume that the tracked area is visible in all images and that it

undergoes a simple motion, e.g. translation. The FoT object

motion estimate is robust if it is from local tracker motions

by a combination which is insensitive to failures.

A.18. Fast Saliency-guided Continuous Correlation
Filter-based tracker (FSC2F)

A. Memarmoghadam

a.memarmoghadam@yahoo.com

FSC2F further enhances the robustness of the effi-

cient ECOhc [15] by adaptively applying the motion-aware

saliency map [32] on the contaminated confidence map.

Moreover, to maintain computational complexity in a rea-

sonable range for real-time tracking, the FSC2F tracker em-

ploys a faster scale estimation technique that improves the

baseline fDSST [18] via jointly learning of the sparsely-

sampled scale-spaces.

A.19. SiamRPN with adaptive anchors and propos-
als (gasiamrpn)

X. Li, J. Li, C. Ma, Z. He, M.-H. Yang

xinlihitsz@gmail.com, lijing@stu.hit.edu.cn,

chaoma@sjtu.edu.cn, zhenyuhe@hit.edu.cn,

mhyang@ucmerced.edu

The gasiamrpn tracker aims to adapt the tracking model

to changes of object states. The tracker exploits the sequen-

tial state information within the Siamese tracking frame-

work and infers the target state. It adaptively generates an-

chor for the RPN model instead of using pre-defined an-

chors with fixed parameters. The adaptive anchors and pro-

posals contribute to accurate bounding box regression and

robust classification of the RPN model. The final target

states are estimated as a Bayesian inference model con-

structed on top of a Siamese-based state prediction model.

A.20. Online Adaptive Hidden Markov Model for
Multi-Tracker Fusion (HMMTxD)

Submitted by VOT Committee

The HMMTxD method fuses observations from comple-

mentary out-of-the box trackers and a detector by utilizing

a hidden Markov model whose latent states correspond to

a binary vector expressing the failure of individual track-

ers. The Markov model is trained in an unsupervised way,

relying on an online learned detector to provide a source

of tracker-independent information for a modified Baum-

Welch algorithm that updates the model w.r.t. the partially

annotated data.

A.21. SiamRPN with giou loss (iourpn)

J. Li, Z. Teng, B. Zhang

{18125219, zteng, bpzhang}@bjtu.edu.cn

The tracker iourpn is an end-to-end tracker based on

SiamRPN [59], but aims to improve the accuracy of object

localization beyond 50%. Furthermore, it can simultane-

ously suppress the background clutters and distractors. The

proposed tracker brings the Generalized Intersection over

Union (GIOU) [79] constraint into the tracking network,

which guides the network with more accurate bounding box

predictions.

A.22. Incremental Learning for Robust Visual
Tracking (IVT)

Submitted by VOT Committee

The idea of the IVT tracker [81] is to incrementally learn

a low-dimensional sub-space representation, adapting on-



line to changes in the appearance of the target. The model

update, based on incremental algorithms for principal com-

ponent analysis, includes two features: a method for cor-

rectly updating the sample mean, and a forgetting factor to

ensure less modelling power is expended fitting older ob-

servations.

A.23. Kernelized Correlation Filter (KCF)

Submitted by VOT Committee

This tracker is a C++ implementation of Kernelized Cor-

relation Filter [37] operating on simple HOG features and

Colour Names. The KCF tracker is equivalent to a Kernel

Ridge Regression trained with thousands of sample patches

around the object at different translations. It implements

multi-thread multi-scale support, sub-cell peak estimation

and replacing the model update by linear interpolation with

a more robust update scheme. Code available at

https://github.com/vojirt/kcf.

A.24. L1APG (L1APG)

Submitted by VOT Committee

L1-APG [2] considers tracking as a sparse approxima-

tion problem in a particle filter framework. To find the tar-

get in a new frame, each target candidate is sparsely repre-

sented in the space spanned by target templates and trivial

templates. The candidate with the smallest projection er-

ror after solving an ℓ1 regularized least squares problem.

The Bayesian state inference framework is used to propa-

gate sample distributions over time.

A.25. Local-Global Tracking tracker (LGT)

Submitted by VOT Committee

The core element of LGT is a coupled-layer visual

model that combines the target global and local appear-

ance by interlacing two layers. By this coupled constraint

paradigm between the adaptation of the global and the local

layer, a more robust tracking through significant appearance

changes is achieved. The reader is referred to [90] for de-

tails.

A.26. Learning Spatially Regularized correla-
tion filters with Deep Features for Track-
ing (LSRDFT)

X.-F. Zhu, X.-J. Wu, J. Kittler, T. Xu, H. Li, Y. Li

{xuefeng zhu95, xiaojun wu jnu}@163.com,

j.kittler@surrey.ac.uk, tianyang xu@163.com,

{lihui, 6171910026}@stu.jiangnan.edu.cn

LSRDFT utilizes UPDT [9] as baseline, equipped with

deep features from VGG16 and ResNet50, which are more

robust and can be easily accelerated by GPU. In contrast

with UPDT, the updating interval of the correlation filters

is shortened in LSRDFT. For both VGG16 and ResNet50,

augmentation is adopted using flip, rotation, blur and shift.

A.27. Multi-Model Continuous Correlation Filter
for visual tracking (M2C2F)

A. Memarmoghadam

a.memarmoghadam@yahoo.com

Inspired by ECO tracker [15], our efficient yet robust

M2C2F tracker adaptively utilizes multiple representative

models of the tracked object thereby estimating the object

position every frame by weighted cumulative fusion of their

respective regressors via a ridge regression optimization

problem [71]. To further accelerate tracking performance,

M2C2F enhances the baseline fDSST approach [18] by ex-

ploiting a faster scale estimation method in which the tar-

get scale filter is learned jointly via sparsely sampled scale-

spaces. To suppress unwanted samples mostly belong to the

occlusion or other non-object data, the M2C2F tracker con-

servatively updates every model on-the-fly in non-uniform

time intervals.

A.28. MemTrack with Distractor Template Cancel-
ing (MemDTC)

T. Yang, A. Chan

tianyyang8-c@my.cityu.edu.hk, abchan@cityu.edu.hk

This tracker extends MemTrack [101], which uses a dy-

namic memory network to maintain the appearance varia-

tions of the object as tracking proceeds, by introducing a

Distractor Template Canceling (DTC) [102] scheme to can-

cel out wrong responses from the object template.

A.29. Multiple Instance Learning tracker (MIL)

Submitted by VOT Committee

MIL tracker [1] uses a tracking-by-detection approach,

more specifically Multiple Instance Learning instead of tra-

ditional supervised learning methods and shows improved

robustness to inaccuracies of the tracker and to incorrectly

labelled training samples.

A.30. More precise box and accurate object track-
ing (MPAT)

L. Zhou

lijun13548184189@outlook.com

MPAT tracker is based on ATOM [16] and it uses three

effective mechanisms. The first mechanism is to use the

predicted target mask for more accurate positioning of the

target position of the regression. In order to have have less

background information and more accurate target informa-

tion in the target, the scale of the target bounding box is

reduced. The second mechanism consists of changing the

method of data augmentation in the process of online learn-

ing. Finally, the scale update of the target sets the learning

rate.



A.31. Part-Based Tracking by Sampling (PBTS)

G. De Ath, R. Everson

{g.de.ath, r.m.everson}@exeter.ac.uk

PBTS [20] describes objects with a set of image patches

represented by pairs of RGB pixel samples and counts of

how many pixels in the patch are similar to them. This em-

pirically characterises the underlying colour distribution of

the patches and allows use of the Bhattacharyya distance.

Candidate patch locations are generated by applying non-

shearing affine transforms to the patches’ previous loca-

tions. The best of these are locally optimised in a small

region around each patch. PBTS uses an alpha matting-

based patch initialisation technique [21] to place patches in

regions of the bounding box that most likely contain the ob-

ject.

A.32. Ranking based tracking using CNNs and op-
tical flow (RankingR)

H. Saribas, H. Cevikalp

{hasansaribas48, hakan.cevikalp}@gmail.com

The tracker RankingR uses a light weight deep neural

network. The major novelty of the method is a novel rank-

ing loss used by the network. We extract CNN features

from both RGB and optical flow images. Ranking loss pro-

vides a fine-tuning of the target object position and returns

more precise bounding boxes framing the target object. As

a result, risk of tracking error accumulation and drifts are

largely mitigated.

A.33. Ranking based tracker using CNNs (Rank-
ingT)

H. Cevikalp, H. Saribas

{hakan.cevikalp, hasansaribas48}@gmail.com

This tracker uses a light weight deep neural network that

uses a novel ranking loss especially designed for tracking.

We extract CNN features from RGB images. The major

novelty of the method is the proposed ranking loss. Rank-

ing loss provides a fine-tuning of the target object position

and returns more precise bounding boxes framing the target

object. As a result, risk of tracking error accumulation and

drifts are largely mitigated and the object is tracked with

more successfully. This tracker differs from our other sub-

mitted tracker ‘RankingR’ A.32 in the way that it does not

use optical flow images and it uses different cache models

and heuristics for updating tracker models.

A.34. ROAM++: Tracking via Resizable Re-
sponse Generator and Bounding Box Re-
gressor (ROAMpp)

T. Yang, Y. Gu, T. Xing, Z. Song, B. Bai, P. Xu, A. Chan

tianyyang8-c@my.cityu.edu.hk, {guyangdavid, xingtengfei,

songzhichao, baibing, xupengfeipf}@didiglobal.com,

abchan@cityu.edu.hk

This tracker extends ROAM (Recurrently Optimizing

trAcking Model) [103] by introducing a resizeable bound-

ing box regressor.

A.35. Robust Siamese Fully Convolutional
Tracker (RSiamFC)

C. Fang

753317249@qq.com

RSiamFC tracker is an extended SiamFC tracker [7] with

a robust training method which puts a transformation on

training sample to generate a pair of samples for feature ex-

traction.

A.36. SA-SIAM-R: A Twofold Siamese Network for
Real-Time Object Tracking With Angle Es-
timation (SA-SIAM-R)

A. He, C. Luo, X. Tian, W. Zeng

heanfeng@mail.ustc.edu.cn, cluo@microsoft.com,

xinmei@ustc.edu.cn, wezeng@microsoft.com

SA-SIAM-R is a variation of the Siamese network-based

tracker SA-Siam [35]. SA-SIAM-R adopts three simple

yet effective mechanisms, namely angle estimation, spatial

mask, and template update. First, the framework includes

multi-scale multi-angle candidates for search region. The

scale change and the angle change of the tracked object are

implicitly estimated according to the response maps. Sec-

ond, spatial mask is applied when the aspect ratio of the tar-

get is apart from 1 : 1 to reduce background noise. Lastly,

moving average template update is adopted to deal with se-

quences with large target deformation.

A.37. Cascade Siamese Conditional Random Fields
Tracker (SiamCRF)

F. Zhao, T. Zhang, Z. Zhang, W. Tang, J. Wang, M. Tang

fei.zhao@nlpr.ia.ac.cn,

{zhangting, zhangzhaoliang, tangwenjie}@ceiec.com.cn,

{jqwang, tangm}@nlpr.ia.ac.cn

Unlike the previous works which divide the Convolu-

tional Neural Network (CNN) and CRF individually, or op-

timize the CRF iteratively, we formulate and approximate

the CRF as a siamese CNN which can be trained end-to-

end with only one forward pass in the inference phase. The

unary terms are modelled by one stream of the siamese

CNN and the pairwise terms are modelled by the dense

relationships between the features of both streams. Based

on the weighted terms, SiamCRF predicts a probability for

each position within the search area which measures how

likely this position belongs to the target. To further improve

the performance of SiamCRF, we save multiple target tem-

plate and we create multiple proposals. Meanwhile, we pro-

pose the Proposal Refine Network (PRN), which can regress

the bounding box in a cascade procedure [10] and select the



best proposal. The PRN consists of two fully connected lay-

ers. PRN outputs the bounding box regression offsets and

predicts which proposal is the best.

A.38. Fast Siamese Conditional Random Field
Tracker (SiamCRF-RT)

F. Zhao, T. Zhang, Z. Zhang, W. Tang, J. Wang, M. Tang

fei.zhao@nlpr.ia.ac.cn,

{zhangting, zhangzhaoliang, tangwenjie}@ceiec.com.cn,

{jqwang, tangm}@nlpr.ia.ac.cn

We formulate and approximate the CRF as a Siamese

CNN which can be trained end-to-end with only one for-

ward pass in the inference phase.

A.39. Online Deeper and Wider Siamese Networks
for Real-Time Visual Tracking (SiamDW-
ST)

Z. Zhang, H. Peng

zhipeng.zhang2017@outlook.com,

houwen.peng@microsoft.com

SiamDW-ST is a variant of [109]. The tracker con-

sists of two parts, named region proposal network (RPN)

and a proposal refinement network (PRN). In RPN net-

work, we further increase the depth of the backbone net-

work in SiamDW [109], and replace it with a much deeper

one, i.e. MobileNetV2. The MobileNet-based backbone

is lightweight, which guarantees the tracker can run at the

real-time speed. Padding cropping operation is conducted

on the backbone to alleviate perceptual inconsistency prob-

lem [109]. The PRN network has the similar architecture

with IOU network [16]. It is appended after RPN to further

refine the estimated bounding boxes of target objects. In

PRN, we use the gradient of predicted IOU as a guidance to

refine the predicted proposal of RPN. The refinement pro-

cess is conducted only one time to guarantee the real-time

speed.

A.40. Siamese Fully Convolutional One-Stage Net-
work for Short-Term Tracking (Siamfcos)

X. Chen, Y. Lian, Y. Li, Y. Chen

{xechen, yclian}@stu.xidian.edu.cn,

{18792687583, 15764395531}@163.com

Siamfcos tracker is based on the structure of

SiamRPN++ [58]. The original anchor-based regres-

sion branch is replaced with an anchor-free regression

branch and regress the distances from each location to the

four sides of the bounding box. We also add a center-ness

sub-branch to the classification branch to infer the center

of the target. When tracking, the confidence score of the

bounding box is obtained by multiplying the classifica-

tion score and center-ness score. We train our network

end-to-end on COCO, ILSVRC and partial data of the

GOT-10k. During the inference phase, a long-term memory

model (LMM) is employed to save and update templates

instead of using only the first frame as a template image.

A.41. Fully Convolutional One-Stage Siamese Net-
work (SiamFCOSP)

Z. Huang, J. Zhang

huangzj@stu.xidian.edu.cn, 2622786022@qq.com

SiamFCOSP is an anchor-free tracker. ResNet50 is

used as backbone to extract and to correlate multi-branch

features, while FCOS is used as predict strategy. In

SiamRPN++ algorithm [58] the multi-level features of the

template image and the multi-level features of the search

region are put into the cross correlation module to get

the multi-channel correlation features. The Siamese Re-

gion Proposal Network (SiamRPN) head is replaced by the

Siamese Fully Convolutional One-Stage Network (FCOS)

head proposed in [87]. The Siamese FCOS head uses

the multi-channel correlation features obtained by three

branches: (i) the classification branch is used to predict

the classification of each pixel, (ii) the centre-ness branch

is used to predict the probability of being a target centre,

and (iii) the regression branch is used to predict the offset

of centre relative to bounding box. Finally, a single convo-

lution layer is used to fusion all predictions.

A.42. Siamese Fully Convolutional Object Tracking
(SiamFCOT)

W. Wang, X. Chen, X. Chen, Y. Xu, Z. Wang

weizhao.wang@pku.edu.cn, chenxingyu2015@ia.ac.cn,

xichen zju@zju.edu.cn, yinda xu@zju.edu.cn,

wangzeyu0408@outlook.com

We propose an anchor-free technique for tracking task,

namely SiamFCOT. Firstly, it performs a feature match-

ing via cross-correlation operation. Next, the fused fea-

ture maps are sent to the head network to outputs on each

feature-level pixel a regressed bounding box with its con-

fidence score. After a penalization process, the box with

the highest score is chosen and the image patch is pro-

cessed by a mask branch to further refine the localization

result. Adaptive search region size and template update are

adopted to assure the robustness of the tracker.

A.43. Discriminative Siamese Embedding for Ob-
ject Tracking (SiamMargin)

G. Chen, L. Chen, G. Li, Y. Chen, F. Wang, S. You, C.

Qian

{chenguangqi, chenlei, liguoxuan, chenyanjie, wangfei,

youshan, qianchen}@sensetime.com

SiamMargin is based on the SiamRPN++[58] algorithm

and it learns discriminative embedding features in Siamese

networks for object tracking. In the training stage, a dis-

crimination loss is added to the embedding layer which im-

posed a margin to the decision boundary to encourage learn-



ing discriminative embeddings. The discriminative embed-

ding is offline learned in the training phase, so it keeps the

high speed of Siamese RPN. In the inference stage we ex-

ploit an online updating method with ROIAlign for Siamese

networks based trackers. The template feature of the ob-

ject in current frame is obtained by ROIAlign from features

of the current search region. Then, the template feature is

updated via a moving average strategy. The discriminative

embedding features are leveraged to accommodate the ap-

pearance change with properly online updating.

A.44. SiamMask (SiamMask)

Q. Wang, L. Zhang, L. Bertinetto, W. Hu, P. Torr

wangqiang2015@ia.ac.cn, {lz, luca}@robots.ox.ac.uk,

wmhu@nlpr.ac.cn, philip.torr@eng.ox.ac.uk

Our method, dubbed SiamMask, improves the offline

training procedure of popular fully-convolutional Siamese

approaches for object tracking by augmenting their loss

with a binary segmentation task. In this way, our tracker

gains a better instance-level understanding towards the ob-

ject to track by exploiting the rich object mask repre-

sentations offline. Once trained, SiamMask solely relies

on a single bounding box initialisation and operates on-

line, producing class-agnostic object segmentation masks

and rotated bounding boxes. Code is publicly available at

https://github.com/foolwood/SiamMask.

A.45. Fitting Siamese Mask with Ellipses for Object
Tracking (SiamMsST)

B. X. Chen, J. Tsotsos

baoxchen@cse.yorku.ca, tsotsos@eecs.yorku.ca

The SiamMsST tracker is an optimized version of

SiamMask [96]. SiamMask tracks the target by generat-

ing masks (segmentation) on the target. SiamMsST applies

an ellipse fitting algorithm [27] to the masks to compute

the bounding boxes. By fitting an ellipse to a contour, the

rotation of the bounding boxes has a better probability to

match the human hand drawing bounding boxes. Then, ro-

tate the mask and apply an up-right bounding rectangle to

the rotated mask. We also developed a new version called

SiamMask E [11].

A.46. SiamRPN++ (SiamRPNpp)

Q. Wang, B. Li, F. Zhang

wangqiang2015@ia.ac.cn, libo@sensetime.com,

fangyi.zhang@vipl.ict.ac.cn

SiamRPN++ utilizes spatial aware sampling strategy

to train a Deep Siamese network for visual tracking.

SiamRPN++ is composed of a multi-layer aggregation

module which assembles the hierarchy of connections to

aggregate different levels of representation and a depth-

wise correlation layer which allows our network to re-

duce computation cost and redundant parameters while

also leading to better convergence. Code is available at

https://github.com/STVIR/pysot.

A.47. SiamRPNX (SiamRPNX)

S. Guan, L. Guo, Y. Zhang, X. Sun

guanshs@mail2.sysu.edu.cn, guoleida@qq.com,

vcheungyi@163.com, winfredsun@tencent.com

SiamRPNX is based on the idea of SiamRPN++ A.46

but focuses on utilizing historical information to alleviate

the problem of longe-term appearance change. Concretely,

instead of initializing the template head only once like

SiamRPN and SiamPPN++, SiamRPNX maintains a histor-

ical window containing K frames (K = 6) during tracking

and adaptively updates the template with the frames in the

window according the confidence scores. Furthermore, it

integrates long-term and short-term information by apply-

ing correlation searching on the initial template and the pre-

vious predicted target respectively and fuses the results to

predict the current target. In addition, the number of RPNs

in our model is reduced to speed up the inference perfor-

mance.

A.48. SPM-Tracker: Series-Parallel Matching for
Real-Time Visual Object Tracking (SPM)

G. Wang, C. Luo, A. He, Z. Xiong, W. Zeng

wgting96@gmail.com, chong.luo@microsoft.com,

heanfeng@mail.ustc.edu.cn, zwxiong@ustc.edu.cn,

wezeng@microsoft.com

SPM-tracker is a two-stage coarse-to-fine tracker that

adopts the SiamRPN as the first stage and the relation net-

work as the second stage. The motivation of the work is

the simultaneous requirements on robustness and discrimi-

nation power of a visual object tracker. The basic idea of

SPM-Tracker is to address the two seemingly contradictory

requirements in two separate matching stages. Robustness

is strengthened in the coarse matching (CM) stage through

generalized training. Seven highest scored proposals pro-

duced by the CM stage are passed to the fine matching (FM)

stage, which adopts a relation network to enhance the dis-

crimination power. The matching scores and box location

refinements of the two stages are fused to generate the final

results.

A.49. Selective Spatial Regularization for Correla-
tion Filter based Tracking (SSRCCOT)

Q. Guo, R. Han, Z. Chen, W. Feng

{tsingqguo, han ruize, zh chen, wfeng}@tju.edu.cn

We propose selective spatial regularization (SSR) for the

CF-tracking scheme that selectively uses target or context

related filters to track the target by employing three different

weight maps for spatial regularization. We formulate the

online selection of these weight maps as a Markov Decision



Process (MDP). We equip the SSR to an existing CF tracker,

namely CCOT [19], to get the final tracker SSRCCOT.

A.50. Struck: Structured output tracking with ker-
nels (struck2011)

Submitted by VOT Committee

Struck [34] is a framework for adaptive visual object

tracking based on structured output prediction. The method

uses a kernelized structured output support vector ma-

chine (SVM), which is learned online to provide adaptive

tracking.

A.51. Semantic Tracking Network: Tracking the
Known and the Unknown by Leveraging Se-
mantic Information (STN)

A. Tripathi, M. Danelljan, L. Van Gool, R. Timofte

{ardhendu-shekhar.tripathi, martin.danelljan, vangool,

timofter}@vision.ee.ethz.ch

Current research in visual tracking is largely focused on

the generic case, where no prior knowledge about the tar-

get object is assumed. However, many real-world tracking

applications stem from specific scenarios where the class

or type of object is known. Here, we propose a tracking

framework that can exploit this semantic information (even

when no semantic information is provided during infer-

ence), without sacrificing the generic nature of the tracker.

In addition to the target-specific appearance, we model the

class of the object through a semantic module (for both,

classification of the target into one of the predefined classes

and detection of objects of different classes in a scene) that

provides complementary class-specific predictions.

A.52. Target-Aware Deep Tracking (TADT)

X. Li, C. Ma, B. Wu, Z. He, M.-H. Yang

xinlihitsz@gmail.com, chaoma@sjtu.edu.cn,

wubaoyuan1987@gmail.com, zhenyuhe@hit.edu.cn,

mhyang@ucmerced.edu

The TADT [61] tracker learns target-aware features for

robust visual tracking. The learning is based on the gradi-

ents of specifically designed losses, which include a regres-

sion loss for generating target-active features and a ranking

loss for generating scale-sensitive features. With the gener-

ated target-aware features, the tracking process is performed

under a VGG based Siamese framework.

A.53. Temporal confidence learning based correla-
tion filter tracker (TCLCF)

C.-Y. Tsai

chiyi tsai@gms.tku.edu.tw

TCLCF is a real-time ensemble correlation filter tracker

based on a temporal confidence learning method. In the

current implementation, we use three different correlation

filters to track the same target cooperatively. The TCLCF

tracker is a fast and robust generic object tracker without

GPU acceleration; therefore, it can be implemented on em-

bedded platforms with limited computing resources.

A.54. Tracking and Detection: A Unified Ap-
proach (TDE)

C. Zhang, S. Zhao, S. Li, K. Zhang, T. Xu, Z. Luo, S. Ge

{zhangchunhui, zhaoshengwei, lishikun,

zhangkangkai}@iie.ac.cn, tianyang xu@163.com,

{luochao, geshiming}@iie.ac.cn

The TDE tracker unifies tracking and detection tech-

nique for adaptive target state estimation, which is based

on a discriminative correlation filter method [106]. More-

over, an adaptive spatial feature selection scheme [100] is

employed to learn a robust deep tracking model. We also

introduce an explicit measure to identify the tracking fail-

ure and utilize the best detection result to refine the target

state. In this way, the TDE tracker achieves robust and ac-

curate target localization in a unified fashion.

A.55. Dynamic optimization tracking algorithm
based on ATOM combined with static pic-
tures (Trackyou)

P. Zheng, X. Qiu, J. Wu

{1023567918, 584237193, 454666966}@qq.com

The tracker Trackyou improves ATOM tracker [16] in

the following three aspects: (1) Training data: it increases

the number of static image pairs to increase diversity of

sample categories. (2) Offline training: it adopts the triplet

loss and the offline classification for extracting discrimina-

tive features during offline training, which sets the network

parameters learned from the offline training as the initial-

ization parameters of online classification to keep the per-

formance of the network more robust. (3) Online tracking

phase: it dynamically updates the tracking algorithm ac-

cording to the fuzzy factor defined by ourselves and the fea-

ture map of the classification network.

A.56. UInet( Single Object tracking based on Unet
and IouNet ) (UInet)

P. Zhang, Y. Xu, D. Tao

pengfeizhang0520@gmail.com, xyf97@mail.ustc.edu.cn,

dacheng.tao@gmail.com

The UInet tracker is based on an extension of

ATOM [16]. A new conv-net segmentation module is in-

troduced to optimize the output to provide a more detailed

localization. The module is trained offline on segmentation

datasets. Multi attention are implemented on the extracted

feature map: Spatial attention enhance its ability to distin-

guish similar targets while channel attention improves its

robustness on complex targets. The tracker uses Resnet [36]

as a backbone.



A.57. Weighted samples based CF tracker (WSCF-
ST)

R. Han, W. Feng, Q. Guo, Z. Chen

{han ruize, wfeng, tsingqguo, zh chen}@tju.edu.cn

In WSCF a simple yet effective energy function, which

can be regarded as assigning the weights to different train-

ing samples, is defined to remedy the annoying boundary

effects of CF tracking.

B. VOT-LT2019 submissions

This appendix provides a short summary of trackers con-

sidered in the VOT-LT2019 challenge.

B.1. Assisted Siamese Instance Search Track-
ing (ASINT)

D. Gupta, E. Gavves, A. Smeulders

{d.k.gupta, e.gavves, ArnoldSmeulders}@uva.nl

This tracker is based on the Siamese tracking frame-

work and is a modified version of the LTSINT tracker from

VOTLT2018 challenge. In addition to the local and global

search methodologies, ASINT uses an evidence-gathering

approach. Under conditions where the object changes its

appearance, invoking global search too early can easily

cause the tracker to lose the target object. Thus, ASINT in-

vokes global search more cautiously. To compensate for the

uncertain similarity range, a short-duration motion model

is employed which validates the predictions from Siamese

search, and decides whether the global search needs to be

invoked or not. In addition, under uncertainty, the choice of

the best candidate also depends on its spatial distance from

the last prediction obtained from local search.

B.2. Complementary Local-Global Search for Ro-
bust Long-term Tracking (CLGS)

H. Zhao*, B. Yan*, D. Wang, H. Lu, X. Yang

zhaohj1995@gmail.com, yan bin@mail.dlut.edu.cn,

{wdice, lhchuan}@dlut.edu.cn,

xiaoyun.yang@intellicloud.ai

In this work, we develop a complementary local-global

search (CLGS) framework to conduct robust long-term

tracking. CLGS tracker is based on SiamMask [96] tracker,

a global detection based on cascade R-CNN [10] and an on-

line verifier based on Real-time MDNet [42]. During online

tracking, the SiamMask model locates the target in local re-

gion and estimates the size of the target according to the

predicted mask. The online verifier is used to judge whether

the target is found or lost. Once the target is lost, a global

R-CNN detector without class prediction is used to gener-

ate region proposals on the whole image. Then, the online

verifier will find the target from region proposals again.

B.3. Synergistic CooSiam Framework based on
Comprehensive Template’s Feature and De-
tection (CooSiam)

R. Zhang, J. Gao, J. Chen

ruohan950427@163.com, gaojie jiangsu@126.com,

chenjie818826@163.com

We proposed a synergistic CooSiam framework based on

comprehensive templates and detection. The templates are

updated by choosing one of the three following possibili-

ties: (i) the first frame’s template, (ii) the average of the first

frame template’s feature and the latest one useful feature,

and (iii) the superposition and average of all the useful tem-

plates’ features obtained before the current frame. The se-

lected template is the template achieving the highest score.

By comparing the tracking results and the detection results

obtained by applying YOLO V3 on the current frame, the

new template is obtained.

B.4. Fully Correlational Long-Term Tracker (Fu-
CoLoT)

Submitted by VOT Committee

FuCoLoT is a Fully Correlational Long-term Tracker. It

exploits the novel DCF constrained filter learning method

to design a detector that is able to re-detect the target in

the whole image efficiently. Several correlation filters are

trained on different time scales that act as the detector com-

ponents. A mechanism based on the correlation response is

used for tracking failure estimation.

B.5. long-term tracking by diving videos into suc-
cessive short episodes (LT-DSE)

K. Dai, Y. Zhang, J. Li, D. Wang, X. Yang, H. Lu

dkn2014@mail.dlut.edu.cn,

{zhangyunhua@mail., jianhual@, wdice@}dlut.edu.cn,

xiaoyun.yang@intellicloud.ai, lhchuan@dlut.edu.cn

The tracker LT-DSE divides each long-term sequence

into several short episodes and tracks the target in each

episode using short-term tracking techniques. If the target

disappears, the image-wide re-detection outputs the possi-

ble location and size of the target. The tracker crops the lo-

cal search region and sends it to the RPN based regression

network. Then, the candidate proposals from the regression

network will be scored by the online learned verifier. The

candidate with the maximum score will be regarded as the

target and the tracker conducts short-term tracking which

contains two components. One is for target localization

based on ATOM algorithm [16]. It uses ResNet18 as the

backbone network and adds two convolutional layers above

it. The other component is the SiamMask network [96] used

for refining the bounding box after locating the centre of

the target. For the verifier RT-MDNet network [42] is used

as backbone and is pre-trained on ILSVRC VID dataset.

The architecture of the region-proposal network is based



on [108]. The network is trained using LaSOT dataset [24]

and ILSVRC image detection dataset.

B.6. mbdet (mbdet)

J. Chen, J. Gao, R. Zhang

chenjie818826@163.com, gaojie jiangsu@162.com,

ruohan950427@163.com

Based on MBMD, mbdet tracker modifies the positive

and negative sample screening mechanism of the classifier,

improves the robustness of the classifier, and adds detection

mechanism and motion information.

B.7. Online Deeper and Wider Siamese Networks
for Long-Term Visual Tracking (SiamDW-
LT)

H. Du, H. Peng, J. Fu

{v-had, houwen.peng, jianf}@microsoft.com

SiamDW-LT is a long-term tracker that equips deeper

and wider tracking networks with fast online updates. The

basic tracking module is a short-term Siamese tracker,

which returns a confidence score to indicate the tracking

reliability. When the Siamese tracker is uncertain on its

tracking accuracy, an online correction module is triggered

to refine the results. When the Siamese tracker is failed,

a re-detection module is activated to search the target in

the images globally. Moreover, object disappearance or

occlusion is also identified by the tracking confidences.

Finally, we introduce model ensemble to further improve

the tracking accuracy and robustness. Code is available at

https://github.com/researchmm/VOT2019.

B.8. Siamese Fully Convolutional One-Stage Net-
work for Long-Term Tracking (Siamfcos-LT)

X. Chen, Y. Lian, Y. Li, Y. Chen

{xechen, yclian}@stu.xidian.edu.cn,

{18792687583, 15764395531}@163.com

Siamfcos-LT tracker is based on the tracker Siamf-

cos A.40. Siamfcos-LT adds yolov3 detection to assist

tracking in order to prevent the tracking box from shifting

to meaningless background or to prevent the error accumu-

lation in the follow-up tracking process caused by the in-

accuracy of the tracking box regression. Thus, the addition

of yolov3 detection algorithm helps finding the target back

when it dissapears.

B.9. Optimize SiamRPN with Random Search for
Long-Term Tracking (SiamRPNsLT)

B. X. Chen, J. Tsotsos

baoxchen@cse.yorku.ca, tsotsos@eecs.yorku.ca

The SiamRPNsLT tracker uses the backbone of

SiamRPN++ [58] with optimized random search strategies

to enhance long-term tracking capability. SiamRPNsLT has

two random search strategies: (1) 5-point random locations,

and (2) random bounding box size. With 5-point random lo-

cation, the tracker allows the target moving out of the frame

and re-entering in the nearest location. By randomizing the

bounding box size, the tracker allows the target to have dif-

ferent sizes once re-entered.

C. VOT-RGBT2019 submissions

This appendix provides a short summary of trackers con-

sidered in the VOT-RGBT2019 challenge.

C.1. Channel Independent Spatially Regular-
ized Discriminative Correlation Filter
Tracker (CISRDCF)

A. Varfolomieiev

a.varfolomieiev@kpi.ua

The CISRDCF method is based on SRDCF formula-

tion [17]. CISRDCF tracker defers from the original

SRDCF in two main points: 1) it calculates the filter chan-

nels for each feature channel independently, and 2) the reg-

ularization in the filter is performed iteratively using the

ADMM approach [29]. To suppress the information out-

side the object’s bounding-box, the rectangular regulariza-

tion window with slightly blurred edges is applied. The

method uses the HOG features augmented with additional

channel, which represents the back-projection of object his-

togram. This channel is equivalent to the per-pixel scores

used in histogram-related part of Staple tracker [6]. The

TIR version of the tracker extracts HOG features and ob-

ject histogram from grayscale images and IR-images, and

find the final correlation by summing the partial correlation

results over channels.

C.2. Fusion SiamRPN Tracker with Spatial Atten-
tion Fusion Strategy (FSRPN)

H. Li, X.-J Wu, J. Kittler, T. Xu, X. Zhu, Y. Li

lihui@stu.jiangnan.edu.cn, xiaojun wu jnu@163.com,

j.kittler@surrey.ac.uk,

{tianyang xu, xuefeng zhu95}@163.com,

6171910026@stu.jiangnan.edu.cn

In FSRPN tracker, spatial attention-based fusion strategy

is applied to Siamese CNN framework. The deep features

are extracted by ResNet-50 from RGB and the thermal im-

ages are fused to get more accurate and more plentiful in-

formation of object. Then, these fused deep features are

utilized to track objects by the RPN-based network [58].

C.3. Gradient of Entropy Sensor based Background
Trackable Tracker (GESBTT)

B. Kim, A. Lukezic, J. Lee, H. Jung, J. Lee, E. Yi, M. Kim

{durumy98, leewer354, ytr789, ark986}@knu.ac.kr,

eunu.yi@hanwha.com, minykim@knu.ac.kr

The tracker GESBTT is a Gradient of Entropy Sensor

based Background Trackable Tracker. The proposed tracker



consists of a global motion-aware method using a gradient

of entropy sensor with multiple analysis both RGB and TIR.

The method increases the robustness of the tracker when the

RGB and TIR cameras are moved. This framework of GES-

BTT can be easily integrated into any visual trackers and

it excelled in the tracker for the camera moving condition

with fast calculation time. The basis of filtering methods

are DSST and Staple. For more details, we refer the reader

to [33, 6].

C.4. Joint Modeling Motion and Appearance Cues
for Robust RGB-T Tracking (JMMAC)

P. Zhang, J. Zhao, M. Ni, D. Wang, H. Lu, X. Yang

zpy.dut@gmail.com,

{zj982853200, ningmeng}@mail.dlut.edu.cn,

{wdice, lhchuan}@dlut.edu.cn,

xiaoyun.yang@intellicloud.ai

In this work, we have found that both motion and ap-

pearance cues are important for designing a robust RGB-T

tracker. The motion cue includes two components: camera

motion and object motion. The camera motion is inferred

based on the key-point-based image registration technique;

and the object motion is estimated based on the camera mo-

tion estimation and the Kalman filter method. The appear-

ance cue is captured based on an improved ECO model,

where complementary features are selected for the RGB-

T tracking task. When the object suffers from heavy or

full occlusion, a motion-guided tracking mechanism is used

to avoid drifting, which makes the tracker be dynamically

switched between the tracking and prediction states.

C.5. Multi-Adapter Convolutional Networks for
RGBT Tracking (MANet)

A. Lu, C. Li, L. Liu, J. Tang

{adlu ah, lcl1314}@foxmail.com, 1210568677@qq.com,

tangjin@ahu.edu.cn

We propose a novel Multi-Adapter convolutional

Network (MANet) to jointly perform modality-shared,

modality-specific and instance-aware feature learning in an

end-to-end trained deep framework for RGBT tracking. We

design three kinds of adapters within our network. In a spe-

cific, the generality adapter is to extract shared object repre-

sentations, the modality adapter aims at encoding modality-

specific information to deploy their complementary advan-

tages, and the instance adapter is to model the appearance

properties and temporal variations of a certain object.

C.6. Multi-modal fusion for end-to-end RGB-T
tracking (mfDiMP)

L. Zhang, A. Gonzalez-Garcia, J. van de Weijer

{lichao, agonzalez, joost}@cvc.uab.es

The mfDiMP tracker contains an end-to-end tracking

framework for fusing the RGB and TIR modalities in RGB-

T tracking [107]. The baseline tracker is DiMP (Discrimi-

native Model Prediction) [8], which employs a carefully de-

signed target prediction network trained end-to-end using a

discriminative loss. The mfDiMP tracker fuses modalities

at the feature level on both the IoU predictor and the model

predictor of DiMP [107].

C.7. More precise box and accurate object track-
ing (MPAT)

L. Zhou

lijun13548184189@outlook.com

For a tracker description, the reader is referred to A.30.

C.8. Online Deeper and Wider Siamese Networks
for RGBT Visual Tracking (SiamDW-T)

Z. Zhang, H. Peng, J. Fu, B. Li, W. Hu

zhipeng.zhang2017@outlook.com, {houwen.peng,

jianf}@microsoft.com, {bli, wmhu}@nlpr.ia.ac.cn

SiamDW-T is based on our previous work [109], and ex-

tends it with two fusion strategies for RGBT tracking. First,

we get two localizations from the RGB and TIR images.

After that, several random bounding boxes are proposed

around these two positions. We fuse these proposals into

a more extensive collection. Then, the individual RGB and

TIR features responded to each localization are extracted.

We introduce a cross-attention module to fuse features of

different domains. Specifically, RGB and TIR features are

fused with channel-wise dot operation. Finally, a simple

fully connected layer is appended to classify each fused

feature to background or foreground. Code is available at

https://github.com/researchmm/VOT2019.

D. VOT-RGBD2019 submissions

This appendix provides a short summary of trackers con-

sidered in the VOT-RGBD2019 challenge.

D.1. Accurate Tracking by Category-Agnostic In-
stance Segmentation for RGBD Image (AT-
CAIS)

Y. Wang, L. Wang, D. Wang, H. Lu, X. Yang

{wym097, wlj}@mail.dlut.edu.cn,

{wdice, lhchuan}@dlut.edu.cn,

xiaoyun.yang@intellicloud.ai

The proposed tracker combines both instance segmenta-

tion and the depth information for accurate tracking. The

tracker ATCAIS is based on the ATOM tracker [16] and the

HTC instance segmentation method [12] which is re-trained

in a category-agnostic manner. The instance segmentation

results are used to detect background distractors and to re-

fine the target bounding boxes to prevent drifting. The depth

value is used to detect the target occlusion or disappearance

and re-find the target. The submitted tracker did not report



the confidence. A version with the confidence is available at

https://github.com/tangjiuqi097/ATCAIS and our own mea-

sured F-1 measure for that updated tracker is 0.7016.

D.2. long-term tracking using depth informa-
tion by diving videos into successive short
episodes (LTDSEd)

Y. Zhang, K. Dai, L. Wang, J. Qi, H. Lu

{zhangyunhua, dkn2014}@mail.dlut.edu.cn,

xingkong19890806@gmail.com,

{jinqing, lhchuan}@dlut.edu.cn

The tracker LTDSEd divides each long-term sequence

into several short episodes and tracks the target in each

episode using short-term tracking techniques. The visibility

of the target is judged by the outputs from short-term com-

ponents. See also the description of LT-DSE from the same

authors (B.5).

D.3. Online Deeper and Wider Siamese Networks
for RGBD Visual Tracking (SiamDW-D)

H. Yu, H. Peng, Z. Wu, Y. Huang, J. Fu, L. Wang

{v-hongyy, houwen.peng, Wu.Zhirong}@microsoft.com,

yhuang@nlpr.ia.ac.cn, jianf@microsoft.com,

wangliang@nlpr.ia.ac.cn

SiamDW-D is a long-term tracker which mainly ad-

dresses the problems of target appearance variations, and

frequent disappearance and re-appearance of target objects.

It contains three parts, i.e. a main tracker, a re-detection

module, and a multi-template matching module. The main

tracker is based on [109], and further equips it with an on-

line updating model, similar to [16, 75]. The re-detection

module is triggered when the main tracker is not con-

fident on its predictions. However, in some cases, the

confidence of main tracker is not reliable for re-detection

module triggering, therefore we introduce a multi-template

matching module. It matches the unreliable tracking re-

sults with history templates, and outputs a more reliable

estimation. Moreover, the depth information is also used

to estimate the disappearance of target objects. Code is

available at https://github.com/researchmm/VOT2019. For

more information see the short-term tracker from the same

group (A.39).

D.4. Enhance SiamMask Tracker Using RGBD Im-
ages (SiamM Ds)

B. X. Chen, J. Tsotsos

baoxchen@cse.yorku.ca, tsotsos@eecs.yorku.ca

The SiamM Ds tracker is a modified version of

SiamMask [96] to track objects in RGB and Depth images.

SiamMask produces segmentation on the tracking target. So

that, by averaging the depth from the depth image in the

same mask could determine the depth of the target. Then,

we apply the constraint that the target can not have a very

large displacement in two consecutive frames.
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A. Leonardis, J. Matas, G. Fernández, L. Čehovin, and
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