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Abstract

Semantic segmentation is a hot topic in computer vision

where the most challenging tasks of object detection and

recognition have been handling by the success of semantic

segmentation approaches. We propose a concept of object-

by-object learning technique to detect 11 types of facial

skin lesions using semantic segmentation methods. Detect-

ing individual skin lesion in a dense group is a challenging

task, because of ambiguities in the appearance of the vi-

sual data. We observe that there exist co-occurrent visual

relations between object classes (e.g., wrinkle and age spot,

or papule and whitehead, etc.). In fact, rich contextual

information significantly helps to handle the issue. There-

fore, we propose REthinker blocks that are composed of

the locally constructed convLSTM/Conv3D layers and SE

module as a one-shot attention mechanism whose respon-

sibility is to increase network’s sensitivity in the local and

global contextual representation that supports to capture am-

biguously appeared objects and co-occurrence interactions

between object classes. Experiments show that our proposed

model reached MIoU of 79.46% on the test of a prepared

dataset, representing a 15.34% improvement over Deeplab

v3+ (MIoU of 64.12%).

1. Introduction

Semantic segmentation has been one of the fundamental

and active topic in computer vision for a long time. This

topic is of wide interest for real-world applications of au-

tonomous driving, robotics and a range of medical imaging

applications. Recent improvements and advances in seman-

tic segmentation enable to emerge various new application

areas in skin analysis. For example, facial skin lesion analy-

sis has been attracting a lot of attention as having beautiful

skin without troubles is getting popular and influenced on the

society nowadays. E -cosmetics which involve the beautifi-

cation, facial image simulation, digital makeup and accurate

facial lesion analysis are fast-growing sector in the market-

ing.

Figure 1. The concept of object-by-object learning: In fact,

skin lesion objects have visual relations between each other where

it helps easily human to judge about what type of skin lesions they

are. In the figure, the green and red boxes represent the level of the

image patch’s similarity. The green and red line describe that there

exist positive and negative relations between objects or a group of

objects of each patch.

Accurately and early detecting facial skin problems is an

important clinical task and automated dermatology can be

used to save time and reduce costs [25]. E-cosmetics and der-

matological computer-aided systems are developing rapidly

behind computer vision progresses [49], [26], [25] , [45],

[12], [17], [29]. However, previous methods have shown

only limited improvements and visual understanding of in-

dividual skin lesion in a dense group is still a challenging

task. This is because, it is hard to distinguish some types of

facial skin lesions between each other as the fine-grained ob-

ject categorization problem. Furthermore, facial skin lesions

appear ambiguously with different (typically small) sizes,

which lead a network to assign wrong classes easily. The

use of rich contextual relation information helps to reduce

the issue significantly [42], [27]. For example, there are the

object-object interactions [27] between some skin lesions

where the detection of an object class helps to detect another

by their co-occurrence interactions. The detection decisions

about individual skin lesions can be switched dynamically

through contextual relations among objects. We denote this
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Figure 2. Proposed REthinker block that consists of the locally constructed convLSTM/Conv3D layers and SE module [23] as a one-shot

attention mechanism whose responsibility is to improve network’s sensitivity in local and global contextual representation that helps to

capture ambiguously appeared objects and co-occurrence interactions between object classes.

cognitive process as object-by-object decision-making.

We present a REthinker module based on the SENet mod-

ule [23] [22] and locally constructed convLSTM/conv3D

unit [41] to increase network’s sensitivity in local and global

contextual representations. The proposed modules are easy

to use and applicable in any standard convolutional neural

networks (CNNs). The use of the REthinker modules forces

networks to capture the contextual relationships between

object classes regardless of similar texture and ambiguous

appearance they have.

We experiment our proposed modules by modifying cur-

rent state-of-the-art networks [19], [43], [8] for feature ex-

traction. We originally use the decoder of DeepLabv3+ [7].

Experimental results show that our proposed models outper-

form the state-of-the-art segmentation networks [34],[50],

[7] ,[4], [51], [39] by the high difference of 15.34% MIoU

[5], [21], [52] in detecting of facial skin problems in a pre-

pared dataset. Moreover, our models have shown promising

results on ISIC 2018 segmentation tasks. The overall contri-

butions of our paper can be summarized as follows:

• We introduce a new concept named ”object-by-object”

learning, where an object can be identified by looking

at other objects.

• We propose a novel residual block called REthinker

modules that support ”object-by-object” technique

by capturing contextual relationships between object

classes.

• We develop a novel RethNet architecture that detects

skin lesions with higher accuracy than the recent state-

of-art segmentation approaches.

2. Related Work

Semantic Scene Understanding: Semantic understand-

ing of visual scenes has become ubiquitous in computer

vision. Impressive semantic segmentation approaches are

mostly based on the Fully Convolutional Network (FCNs)

[33], [11], [30], [32], [53] ,[3] , [37]. One key reason for

the success of FCNs is that they use multi-scale (MS) im-

age representations, which are subsequently upsampled to

recover the lost resolution. Moreover, atrous convolution

has proven to be an effective technique by providing a larger

receptive field size without increasing the number of kernel

parameters [3]. Spatial pyramid pooling module [18] has

been successfully applied with atrous convolutions by state-

of-the-art networks [5], [50],[21], [52], [34], [4], [51],[7] ,

[39] on segmentation and object detection benchmarks [14],

[35], [13], [31], [16], [10]. Recently, depthwise separable

convolution [8] has known as an efficient technique to reduce

the computation complexity in convolutional operations and

allow networks to go deeper [5], [39], [21], [52], [34]. Orig-

inally, the depthwise separable convolution consists of the

depthwise and pointwise convolutions where depthwise con-

volution keeps the channels separate and uses the standard

convolution operation in each input channel [8].

Contextual relations: H.S. Hock et al. [20] introduced

early the contextual relations between object scenes by

experiments based on the criteria of familiarity, physi-

cal plausibility, and belongingness. The scene context

information plays a crucial role on the semantic scene

understanding. However, the contextual relation information

between object classes are often ignored [15], [42], [27].

The relative spatial configurations of particular objects yield

the higher-level contextual information while the lower-level

contextual information demonstrates the semantic and visual



Figure 3. Samples of the SiblingsDB [46] dataset. Few samples

with skin problems have been annotated in order to show only the

labelling process of facial skin lesions. Note that we do not disclose

our MSLD dataset samples.

relationships among objects or group of objects. S. Kumar

et al. [27] categorize types of the contextual relationships

of the scene labeling to region-region, object-region and

object-object interactions and provide a hierarchical frame-

work using Conditional Random Fields (CRFs) for semantic

segmentation. CRFs models are widely used to capture the

local contextual interactions of image regions [44] , [42],

[36], [5], [40]. RNNs are investigated broadly to aggregate

global context in the semantic segmentation [48], [2], [38],

[15] [28], [54]. SE modules [23] [22] are successfully

applied to capture global contextual information by simply

exploiting CNN layers.

3. Datasets

We prepare a dataset called ”Multi-type Skin Lesion

Labelled Database” (MSLD) with pixel-wise labelling of

frontal face images. We report that the designing of MSLD

is unique in ML community where it is not available such

dataset with the labelling of multi-type skin lesions of facial

images. We further test the proposed models in the Inter-

national Skin Imaging Collaboration (ISIC) dataset which

holds dermoscopic images with 5 types of skin problems. In

this section, we introduce the process of image accumulation

and annotation of MSLD dataset and announce about ISIC

dataset.

3.1. Image accumulation

We collected a total of 27,790 frontal face images using

kiosks in cosmetics stores during the period from April to

August in 2018. The kiosks have a standard camera whose

image sensor is a 1/3.2 Inch CMOS IMX179. The user’s con-

sent is obtained before capturing images. The total number

of pixels of the image sensor is 3,288 x 2,512 (8.26Mpixel)

with 24-bit depth. The images are captured at autofocus and

auto-white balance in the distance of 20 mm.

3.2. Image Annotation

The collected images are studied carefully. Then 412

images have been annotated with the labelling of 11 common

types of facial skin lesions and 6 additional classes as in

Figure 3 using the PixelAnnotation tool [1]. The skin lesions

are whitehead, papule, pustule, freckle, age spots, PIH 1,

flush, seborrheic, dermatitis, wrinkle and black dot. The

additional classes are normal skin, hair, eyes/mouth/eyebrow,

glasses, mask/scarf and background. We report that we do

not disclose our (MSLD) dataset as the user’s privacy is

taken under the responsibility. We use the collected and

annotated images as research purposes where they are used

only in the training.

3.3. ISIC Dataset

We test the proposed approaches in the TASK 2 2 of the

ISIC, 2018 challenge called ”Lesion Attribute Detection” [9]

in order to provide further experiments. The goal of the task

is to predict 5 skin lesion attributes from dermoscopic im-

ages. These lesion attributes are pigment networks, negative

network, streaks, milia-like cysts, globules, and dots. The

lesion classes that have visual similarity can be seen as a

fine-grained classification problem. There are 2594 images

for training, 100 images for validation, and 1000 images for

the test.

4. Methods

4.1. Squeeze and Excitation module

Squeeze and Excitation network (SENet) [23] has been in-

troduced as a winner of the ILSVRC 2017 classification task

in the top-5 error of 2.251%. SE blocks Figure 4 [a-b] have

proven to be an effective channel-wise attention mechanism

[6] , which enables the network to perform dynamic channel-

wise feature recalibration. SE module is computationally

cheaper and helps the network to learn contextual higher-

level features by the aggregated transformations of the global

pooling. The SE block consists of squeeze and excitation

operations where the squeeze operation uses the global pool-

ing to transform global spatial information to channel-wise

statistics as a channel descriptor. The excitation operation

performs a self-gating mechanism based on 2 fully connected

(FC) layers to capture channel-wise dependencies from the

channel descriptor. Finally, the channel-wise dependencies

are used to exploit the previous input transformation by the

multiplication operation. The role of the SE module in our

proposed module is to pass high-level contextual informa-

tion outside of this region for context-dependent decision

making.

1Post inflammatory hyperpigmentation (PIH) caused usually by inflam-

mation or acnes
2https://challenge2018.isic-archive.com/task2/
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Figure 4. The figure represents comparison of SE blocks (a-b), baseline block (c) and REthinker blocks (d-e): The proposed REthinker

blocks are designed under locally constructed Conv3D (d) and convLSTM (e) layers.

4.2. REthinker module

REthinker modules consist of SE module and the locally

constructed convLSTM/conv3D layers as an one-shot at-

tention mechanism as in Figure 4 [d-e], which are both

responsible for extracting contextual relations from features.

Precisely, as the global pooling of SE module aggregates

the global spatial information, the SE module passes more

embedded higher-level contextual information across large

neighborhoods of each feature map. Whereas, the locally

constructed convLSTM/conv3D layers encode lower-level

contextual information across local neighborhoods elements

of fragmented feature map (patches) while further take spa-

tial correlation into consideration distributively over patches.

The output of locally constructed convLSTM/conv3D re-

cieves 3D , Ud ∈ RH×W×D feature maps from the residual

blocks and passes a transformed 3D , U ′

d ∈ RH×W×D fea-

ture map. The locally constructed convLSTM/conv3D is

identified as follows:

U ′

d = Fpi([Φ(Fip(Ud, N)|vt)|ht], N) (1)

Where, Fip is the image2patches operator function, Fip :

RH×W×C → RN2
×H′

×W ′
×D to provide local spatiotem-

poral 4D data, vt = Fip(Ud, N). Practically, the feature

maps are transformed to patches over channel as spatiotem-

poral data. Here, H ′×W ′ is a patch size (H ′ = H/N,W ′ =
W/N) to be assumed as an object or a group of objects. The

given N is the dimensional slicing coefficient over the spatial

dimensions (W, H) of the feature map. Thus, Φ is conv3D

or convLSTM operator function, Φ : RN2
×H′

×W ′
×D →

RN2
×H′

×W ′
×D to be applied with keeping the depth of

the feature map. The convLSTM/conv3D serves to encode

spatiotemporal correlations between features by viewing

sequentially objects or a group of objects of patches and

passes the output as spatiotemporal data ht = Φ(vt) to the

patches2image operator whose identification function here is

Fpi : R
N2

×H′
×W ′

×D → RH×W×D and U ′

d = Fpi(ht, N).
Note that ht = Φ(vt, ht−1) performs as the hidden states

in the convLSTM. The gates it, ht, ot of the convLSTM are

identified as follows:

it = σ(wvi ⊙ vt + whi ⊙ ht−1 + wci ◦ ct−1 + bi)

ft = σ(wvf ⊙ vt + whf ⊙ ht−1 + wcf ◦ ct−1 + bf )

ct = ft ◦ ct − 1 + it ◦ tanh(wvc ∗ vt + wc ⊙ ht−1 + bc)

ot = σ(wvo ⊙ vt + who ⊙ ht−1 + wco ◦ ct + bo)

ht = ot ◦ tanh(ct)
(2)

Where, ’⊙ ’ represents the convolution operator and ’◦’

denotes the Hadamard product. The output of SE module

is used to exploit the output of locally constructed convL-

STM/conv3D by the channel-wise multiplication operation

as the output of REthinker module whose feature map repre-

sents long-range local and global contextual information to

enable the context-dependent decision making.

4.3. RethNeT

An Encoder Search: In practice, the REthinker blocks

are applicable in any standard CNNs. We consider to em-

ploy current state of the art networks [19], [43], [8]. We

integrate the modern architectures with our proposed RE-

thinker blocks to improve the network’s sensitivity in lo-

cal and global contextual representations enabling object-

by-object learning technique. We experiment ResNet [19],

ResNeXt [47] and Xception [8], [7].

A Decoder Search: We believe that the rich contextual

information is a key to capture ambiguously appeared ob-
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Figure 5. Our proposed RethNet based RE-Xception and the decoder of the DeepLabv3+ [7]. Where D and N is the depth of future maps

and the dimensional slicing coefficient over the spatial dimensions respectively.

.

Models Mean IoU(%) Pixel Acc(%)

DenseASPP [50] 58.31 89.31

PSPNet+ResNet-101 [18] 63.24 91.92

DeepLabv3Plus + ResNet-101 [7] 63.74 92.51

DeepLabv3Plus +ResNeXt-101 [33] 64.64 93.14

DeepLabv3Plus + Xception [7] 64.12 94.08

DeepLabv3Plus + Xception+SE 65.49 94.12

DeepLabv3Plus + Xception+baseline-c 65.52 94.21

RethNet + baseline-c 62.11 92.44

RethNet + Rethinker-d 76.56 96.45

RethNet + Rethinker-e 79.46 96.11

Table 1. Experimental results on test samples of our MSLD dataset.

jects and co-occurrence interactions between object classes

where that is usually obtained in encoders. Therefore, we

do not consider the decoder path. We select the decoder of

DeepLabv3+ [7] to recover object segmentation details of

individual skin lesions.

RethNet: We simply investigate RethNet with the com-

bining of the Xception module and REthinker modules as

in Figure 5 . We modify Xception as follows: (1) We add

REthinker module after each Xception blocks without spatial

loss of feature maps. (2) We remove the final block of the

entry flow of Xception. (3) We keep the patch size as 4x4 in

each REthinker module in order to ”see” future maps wider

in ConvLSTM/conv3D with simply increasing time steps.

(4) The number of parameters is minimized in the middle

flow and exit flow. As suggested in [7], (5) the max-pooling

operation is replaced by depthwise separable convolutions

with striding and the batch normalization and ReLU is ap-

plied after each 3 x 3 depthwise convolution of the Xception

module.

Figure 6. The number of parameters in the reference models and

proposed modes with accuracy comparison on the test of MSLD

dataset.

5. Experiments

5.1. Implementation

For experimental comparisons, we use the standard net-

works that are DeepLabv3+, PSPNet, DenseASPP as the ref-

erence networks. All models of networks were implemented

using the TensorFlow framework and trained on a single

NVIDIA GeForce GTX 1080 Ti GPUs, Intel(R) Core(TM)

i7-8700K CPU @ 3.20GHz. In the experiments, 374 im-

ages are used for training and 38 images are for testing.

We use the standard data augmentation techniques whose

participants are the random rotation, random zooming, and

random horizontal flipping during the training. The input

and ground-truth images of the dataset is resized to 730 x 960

and random cropping applied by 512 x 512 as the input of

the network during the training. We follow the same training

protocols as suggested in [7], [18]. In all experiments, the

softmax cross-entropy is applied for loss and the momentum

optimizer is used, whose base learning rate is set to 0.001



Figure 7. The visualization results of RehtNet + Rethinker-e: The real test images (a) are obtained from the fionaseah.com

with an agreement of the author. The candidate of the test images is suffered from basically, PIH (caused by acne) and papules

where the results images (b-d) show that the most of facial skin lesions are correctly predicted.

Models Rank Jaccard (%) Dice (%)

Ensemble [24] 1 0.483 0.651

Unet + ASPP +DenseNet169 [24] 2 0.464 0.629

Unet + ASPP + Resnetv2 [24] 3 0.455 0.616

Unet + ASPP +ResNet151 [24] 5 0.436 0.598

DeepLabv3Plus + Xception - 0.451 0.614

DeepLabv3Plus + Xception+SE - 0.469 0.627

DeepLabv3Plus + Xception+baseline-c - 0.456 0.616

RethNet + baseline-c - 0.441 0.592

RethNet + Rethinker-d - 0.473 0.639

RethNet + Rethinker-e - 0.475 0.644

Table 2. Experimental results on test samples of ISIC 2018 chal-

lenge in the task 2. The evaluation metrics in this task are average

Jaccard Index (mIoU) and Dice coefficient following by the pro-

posed metrics of the challenge. The rank represents positions on

the test leaderboard of the challenge [24]. Note that the Jaccard

index metric, also referred to as the Intersection over Union (IoU).

decreased by a factor of 10 every 50 epoch of total 200 epoch

with decay 0.9.

5.2. Results

Thanks to REthinker blocks, It shows significant improve-

ments in the facial skin lesion detection task of MSLD

dataset. As Table 1 summarized results, we made a fur-

ther improvement by DeepLabv3Plus + Xception+ SE and

DeepLabv3Plus + Xception+ baseline-c, which showed a

better result of 65.49 and 65.52 MIoU than all other refer-

ence models except the proposed models. Our proposed

network RethNet+ REthinker-e blocks achieved MIoU of

79.46% on the test, where it is the top in all experiments.

Computational cost: We compare proposed models with

the reference models in terms of the number of parame-

ters and accuracy (Figure 6). Even though our RethNet +

REthinker-e block is the top on the list with 112M parame-

ters, it reached high performance in the accuracy with a big

difference (e.g 15 % of mIoU greater than the best reference

model, 14% of mIoU higher than the baseline model). We

further report inference time of the RethNet + REthinker-e

block that whose running time for per image inference by the

512x512 of resolution is an average 2.7 sec on a single GPU

and 11 sec on CPU of those mentioned hardware sources.

5.3. ISIC challenge

As Table 2 represents, our RethNet + REthinker-e

block showed 47.5% of Mean-Jaccard on the test of ISIC

dataset, where it outperforms all competitive single models

except an ensemble model (”48.3% of Mean-Jaccard”).

Note that the top-ranked models on the test leaderboards

of the challenge use broadly preprocessing techniques

such as image enhancing, polluting dermoscopic images

with random hairs, and data augmentation. However, we

apply only common techniques of data augmentation

during training and test images are evaluated without any

preprocessing techniques.



Figure 8. The ground truth and inference results of proposed models and the best reference model in MSLD dataset . We keep the face

entity of the MSLD dataset.

5.4. Contribution Discussion

In fact, the fine-grained classification has been becoming

an open issue in the computer vision community so far. It is a

real challenge to differentiate classes that have similar visual

context. Especially the problem is more common in medical

imaging applications. We consider solving the problem

with a novel straightforward technique by our application

(”Detecting multi-type facial skin lesions”) where there is

not yet accurate and solid application or method to detect

correctly and differentiate multi-type facial skin lesions. The

proposed blocks are easy to use and possible to apply to

any standard CNNs with considering time complexity by

limiting the number of the blocks.

6. Conclusion

We propose successfully an efficient network architecture

to address detecting multi-type facial skin lesions by a novel

object-by-object learning technique. Experimental results

show that our proposed model outperformed state-of-the-art

segmentation networks by a high gap in the MSLD dataset.

Furthermore, our model takes promising results on the ISIC

2018 segmentation task. In the future, we consider the time

complexity of Rethinker blocks and try to design more light-

weight models.
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