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Abstract

The labels in medical diagnosis task are usually discrete

and successively distributed. For example, the Diabetic

Retinopathy Diagnosis (DR) involves five health risk lev-

els: no DR (0), mild DR (1), moderate DR (2), severe DR

(3) and proliferative DR (4). This labeling system is com-

mon for medical disease. Previous methods usually con-

struct a multi-binary-classification task or propose some re-

parameter schemes in the output unit. In this paper, we tar-

get on this task from the perspective of loss function. More

specifically, the Wasserstein distance is utilized as an alter-

native, explicitly incorporating the inter-class correlations

by pre-defining its ground metric. Then, the ground met-

ric which serves as a linear, convex or concave increasing

function w.r.t. the Euclidean distance in a line is explored

from an optimization perspective.

Meanwhile, this paper also proposes of constructing the

smoothed target labels that model the inlier and outlier

noises by using a unimodal-uniform mixture distribution.

Different from the one-hot setting, the smoothed label en-

dues the computation of Wasserstein distance with more

challenging features. With either one-hot or smoothed tar-

get label, this paper systematically concludes the practical

closed-form solution. We evaluate our method on several

medical diagnosis tasks (e.g., Diabetic Retinopathy and Ul-

trasound Breast dataset) and achieve state-of-the-art per-

formance.

1. Introduction

In the realm of medical diagnosis, there are numerous

prediction tasks in which the output labels demonstrate high

discrete and successive features. The problem of the health

risk level could be a very example. Although it can be

a continuous variable, it is often discretized i.e., at sev-

eral intervals in practices. In parallel with previous state-

ments, the Diabetic Retinopathy Diagnosis (DR) labels the

disease level into five rankings: no DR (0), mild DR (1),

Figure 1. The limitation of CE loss for health risk level estimation.

The ground truth direction of the car is tj∗. Two possible softmax

predictions (green bar) of the health risk level estimator have the

same probability at tj∗ position. Therefore, both predicted dis-

tributions have the same CE loss. However, the top prediction is

preferable to the bottom, since we desire the predicted probability

distribution to be larger and closer to the ground truth class.

moderate DR (2), severe DR (3) and proliferative DR (4)

[35, 22]. This kind of labeling system has been widely

accepted by The Breast Imaging-Reporting and Data Sys-

tem (BIRADS), liver (LIRADS), gynecology (GIRADS),

colonography (CRADS), etc.

Due to the successively nature of risk level, the error that

misclassifying a proliferative DR (4) image to mild DR (1)

is considerably severe than the counterpart that misclassi-

fying to severe DR (3). According to earlier literature, this

kind of medical diagnosis task often casts as a multi-class

classification problem or a metric regression problem.

The multi-class classification formulation using the

cross-entropy (CE) loss, the class labels are assumed to be

independent of each other [33]. Therefore, the inter-class



similarity is not properly exploited. For instance, in Fig. 1,

the histogram prediction is most well-liked to be focused

close to the truth category, whereas the Cross entropy loss

doesn’t encourage that.

On the opposite hand, regression treats the discrete risk

as continuous value. As discussed in [33, 40, 38, 15], train-

ing the regression model with discrete labels can result in

over-fitting and has similar or lower accuracy than classifi-

cation. Therefore, it’s necessary to contemplate the sequen-

tial and discrete nature of the ordinal medical diagnosis.

Recent works generally use the N − 1 binary classifica-

tion sub-tasks using sigmoid output with MSE loss or soft-

max output with cross entropy loss, where N is the num-

ber of levels. Unfortunately, the cumulative probabilities

p(y > 1|x), ..., p(y > N − 1|x) are calculated by sev-

eral independent branches, failing to guarantee the that they

are monotonically decreasing. This result in p(y = i|x)
don’t seem to be ensured to be strictly positive, additionally

the poor learning potency within the early stage of training.

Moreover, N − 1 weights need to be manually fine-tuned

to balance the CE loss of each branch. [35, 22] proposes to

use a stick-breaking process to re-parametrize the outputs

of N − 1 units that is associated with the Bayesian non-

parametric Dirichlet process. Embarking on this, the cumu-

lative probabilities can achieve the expected monotonical

decrease, but it couldn’t be unheeded that it’s considerably

more sophisticate than standard CE-loss.

Furthermore, [13] propose to use one output unit to cal-

culate the parameter of a unimodal distribution, and define

the p(y = i|x) follows a Poisson or Binomial distribution,

which suffers from lacking the ability to control the vari-

ance. Since the peak (also the mean and variance) of a Pois-

son distribution is equal to a designated λ, the peak cannot

be assigned to the first or last class, and its variance is in-

tended to be rather high when the peak is needed in the very

later classes.

In this paper, we employ the Wasserstein loss as an al-

ternative for empirical risk minimization. The 1st Wasser-

stein distance is defined as the cost of optimal transport for

moving the mass in one distribution to match the target dis-

tribution [5, 46, 47]. Specifically, the Wasserstein distance,

between softmax prediction and its target label that are sep-

arately normalized as histograms, is measured. By defin-

ing the ground metric as class similarity, prediction perfor-

mance earns the measure room in a sensitive way to corre-

lations between the classes.

The ground metric can be predefined when the similar-

ity structure is known as a priori to incorporate the inter-

class correlation, e.g., the Euclidean distance in a line. We

further extend the Euclidean distance to its increasing func-

tion from an optimization perspective [31, 26]. The exact

Wasserstein distance in a one-hot target label setting can be

formulated as a soft-attention scheme of all prediction prob-

abilities and be rapidly computed.

Another challenge of health risk level estimation stems

from the label quality. For instance, the agreement rate of

the radiologists for malignancy is usually less than 80%,

resulting in a noisy labeled dataset [39, 48]. Despite the

often-uncleared distinction between adjacent labels, it is

more possible that a well-trained annotator will mislabel a

Severe DR (3) sample to Moderate DR (2) rather than No

DR (0). This requires modeling the noise for robust training

[19, 10].

The mis-labeled data can misleading the training [49, 3,

4, 42]. In here, two kinds of the label noise are investi-

gated. The outlier noise refer to a sample is different from

all of the others which is caused by the random error. It

can be sculpturesque by a uniform distribution [49]. How-

ever, it can be more common that the ordinal case is a lot of

probably to possess the inlier noise, in which the labels are

wrong annotated as the near one. We propose to to model it

with a unimodal distribution. We give a solution that use a

smoothed target histogram by smoothing the one-hot label

with an uniform-unimodal mixture model.

In contrst to the one-hot setting, the smoothed label

makes the calculation of Wasserstein loss more sophisti-

cated. This is due to the various attainable transporta-

tion plans. The O(N3) computational complexity for N

classes has long been difficulty in using Wasserstein dis-

tance for large-scale applications. Rather than approximate

its Wasserstein distance with a O(N2) complexity algo-

rithm [12, 16], we propose to systematically conclude the

fast closed-form computation of Wasserstein distance in the

setting of smoothed label, when the ground metric is a lin-

ear, convex, or concave increasing function w.r.t. the Eu-

clidean distance. We show that the linear and convex cases

can be solved with a linear complexity of O(N). In com-

parison to its approximate counterpart, the exact solutions

that this paper proposes are more effective.

The main contributions of this paper are summarized as

follows:

• The health risk level estimation casts as a Wasserstein

training problem. The inter-class relationship of health risk

level data is explicitly incorporated as prior information in

the gained ground metric which can be pre-defined (e.g., a

function w.r.t. Euclidean distance in a line).

• The inlier and outlier error of health risk level is mod-

eled with a discrete unimodal-uniform mixture distribution,

and regularizes the target confidence by transforming one-

hot label to the smoothed target label.

• For either one-hot or smoothed target label, this pa-

per systematically concludes the possible fast closed-form

solution when a non-negative linear, convex or concave in-

creasing mapping function is applied in ground metric.

We validate the the proposed method on several med-

ical diagnosis datasets. Our method acheieves the state-



of-the-art performance over the current methods, especially

choosing the convex mapping function for ground metric,

smoothed target, and closed-form solution.

2. Related Works

2.1. Health risk level estimation

The traditional ordinal level estimation methods can be

classified to 3 categories, i.e., naive, binary decomposition

and threshold methods [17, 37, 52]. Moreover, the health

risk isn’t the sole area that has the successive and discrete

label. The age prediction and atheistic rating also tightly re-

lated to this task. Following the development of deep learn-

ing, several works have been proposed to target the suc-

cessive data. [35, 44] put forward the multi-task learning

framework. However, the percentages of each class are not

guaranteed to be positive, which may hurt the training, es-

pecially that in the early stage. Besides, there are N − 1
weights to balance the branches, which is a hard task for

manually tuning. [35, 22] proposes a sophisticated stick-

breaking process to reparameterise the N − 1 outputs to

alleviate this issue. [36] incorporate the metric learning for

data relationship analysis. Different from these methods,

we propose to use the Wasserstein distance as the optimiza-

tion objective to inherit the label similarity.

2.2. Wasserstein distance

Wasserstein distance is a distance function defined be-

tween probability distributions on a given metric space [33].

In these few years, it attracts a lot attention in adversarial

generative models etc [1, 30, 34, 27, 28]. It also been used

for multi-class multi-label task with a linear model [16].

Since the significant amount of computation costrequired

to solve its exact solution, these methods usually choose

the approximate solution, of which the complexity is still

in O(N2) [12]. The fast computing of discrete Wasserstein

distance is also closely related to SIFT [41, 9] descriptor,

hue in HSV or LCH space [8, 14]. Based on these works,

we further adapt this idea to the heath risk level estimation,

and encode the correlation of label classes using the ground

matrix [33]. We show that the fast algorithms exist in our

health risk label structurewith the one-hot or smoothed tar-

get label. Moreover, the ground metric used in here does

not limited to the Euclidean distance.

2.3. Robust training with noise data

Robust training with noise data has been studied for a

long time in general classification area [19, 3]. The possi-

ble solution can be smoothing the one-hot label [49] with a

uniform distribution or regularizing the entropy of softmax

output [42]. However, for the discrete successive label, the

studies speak little voice.

Figure 2. The ground matrix using Euclidean distance as ground

metric.

2.4. Unimodality of Discrete and Successive Data

[13] propose to predict a Poisson distribution. In their

parametric version, the output of the neural network is a sin-

gle sigmoid unit, which predict the parameter λ in a Poisson

distribution. However, requiring the output strictly follows

a specific distribution could be a very strong assumption.

Besides, it is difficult to control the variance of the resulting

Poisson distribution. [2] introduces an additional tempera-

ture parameter to control the variance, but results in more

complicate hyper-parameter tuning. Here, we propose to

use an exponential function following the softmax to flex-

ibly adjust the shape of target label distribution. Noticing

this modification works on the target label instead of the

output distribution as [2].

3. Methodology

In this paper, we consider the task of learning a health

risk level estimator hθ, parameterized by θ, with N -

dimensional softmax output unit. It maps a medical image x

to a vector s ∈ R
N . We perform learning over a hypothesis

space H of hθ. With the input x and its target ground truth

one-hot label t, typically, learning is performed via empiri-

cal risk minimization to solve min

hθ∈H L(hθ(x), t), with a loss

L(·, ·) acting as a surrogate of performance measure.

However, cross entropy-based loss treat the output di-

mensions independently [16]. Therefore, it ignores the sim-

ilarity structure on label space.

s = {si}
N−1

i=0
is the output of hθ(x), i.e., softmax pre-

diction with N classes (health risk levels). t = {tj}
N−1

j=0
is

the target label distribution, where i, j ∈ {0, · · · , N − 1}
be the index of dimension (class). Assume that the class

label possesses a ground metric Di,j , which measures the

similarity of i-th and j-th dimensions of the output. There

are N2 possible Di,j in a N class dataset and form a ground

distance matrix D ∈ R
N×N . When s and t are both his-



Figure 3. The only possible transport plan in one-hot target case.

tograms, the discrete measure of exact Wasserstein loss is

defined as

LDi,j
(s, t) = inf

W

N−1
∑

j=0

N−1
∑

i=0

Di,jWi,j (1)

where W is the transportation matrix with Wi,j indicating

the mass moved from the ith point in source distribution

to the jth target position. A valid transportation matrix W

satisfies: Wi,j ≥ 0;
∑N−1

j=0
Wi,j ≤ si;

∑N−1

i=0
Wi,j ≤ tj ;

∑N−1

j=0

∑N−1

i=0
Wi,j = min(

∑N−1

i=0
si,

∑N−1

j=0
tj).

The entries of D in Wasserstein distance are usually un-

known, but they have clear meanings in our task. The i, j-

th entry Di,j indicates the geometrical distance between the

i-th and j-th points in a line. A possible choice is using

the Euclidean distance di,j of a line (i.e., ℓ1 distance be-

tween the i-th and j-th points in a line) as the ground metric

Di,j = di,j .

di,j = |i− j| (2)

The Wasserstein distance can be the Earth mover’s dis-

tance when the two distributions have the same total masses

(i.e.,
∑N−1

i=0
si =

∑N−1

j=0
tj) and using the symmetric dis-

tance di,j as Di,j . The ground matrix using Euclidean dis-

tance is shown in Fig.2.

The previous efficient algorithms to solve Wasserstein

distance usually holds only for Di,j = di,j [9, 41, 46, 6,

51] and do not consider the neural network optimization.

Regarding this, this paper proposes extending the ground

metric in Di,j as f(di,j), where f is a positive increasing

function w.r.t. di,j .

3.1. Wasserstein training with one-hot target

In the multi-class single-label dataset, the one-hot en-

coding is typically used. The distribution of a target label

probability is t = δj,j∗ , where j∗ is the ground truth class,

δj,j∗ is a Dirac delta, which equals to 1 for j = j∗1, and 0

1We use i, j interlaced for s and t, since they index the same group of

positions in a line.

Figure 4. The distribution of normalized exponential function

e
−|i−l| for a dataset with 5 classes.

otherwise.

Theorem 1. Assume that
∑N−1

j=0
tj =

∑N−1

i=0
si, and t is

a one-hot distribution with tj∗ = 1(or
∑N−1

i=0
si)

2, there is

only one feasible optimal transport plan.

In order to satisfy the criteria of W, all masses should

be transferred to the cluster of the ground truth label j∗, as

shown in Fig. 3. Then, the Wasserstein distance between

softmax prediction s and one-hot target t can be simplified

to

L
D

f
i,j
(s, t) =

N−1
∑

i=0

sif(di,j∗) (3)

where D
f
i,j = f(di,j). f is an increasing function proper,

e.g., pth power of di,j and Huber function. The exact so-

lution of Eq. (3) can be computed with a complexity of

O(N). The ground metric term f(di,j∗) works as the

weights w.r.t. si, which takes all classes into account fol-

lowing a soft attention scheme [29, 24, 25]. It explicitly

encourages the probabilities distributing on the neighboring

classes of j∗. Since each si is a function of the network

parameters, differentiating L
D

f
i,j
w.r.t. network parameters

yields
∑N−1

i=0
s′if(di,j∗).

In contrast, the cross-entropy loss in one-hot setting can

be formulated as −1logsj∗ , which only considers a single

class prediction as hard attention [29, 24]. Similarly, the

regression loss using softmax prediction could be f(di∗,j∗),
where i∗ is the class with maximum prediction probability.

3.2. Unimodal-uniform label smoothing

The outlier noise exists commonly in data-driven tasks,

and can be modeled by a uniform distribution [49, 32, 23].

However, ordinal labels are more possible to be mislabeled

as a close class of the true class. It is more reasonable to

form a unimodal distribution to depict the inlier noise in

2We note that softmax cannot strictly guarantee the sum of its outputs

to be 1 considering the rounding operation. However, the difference of

setting tj∗ to 1 or
∑N−1

i=0
si) is not significant in our experiments using

the typical format of softmax output which is accurate to 8 decimal places.



Figure 5. The unimodal-uniform smoothed target label distribution

when the ground-of-truth class is 2.

health risk level estimation, which has a peak at class j∗

while decreasing its value for farther classes. This paper

has sampled a continuous unimodal distribution and follow

by normalization.

In here, we propose to sample on an exponential function

e
−|i−l|

τ and processed by a softmax normalization. Discrete

distributions with five classes are illustrated in Fig. 4.

The normalized unimodal value is denoted as pj . The

unimodal-uniform smoothed target distribution t is con-

structed by replacing tj in t with (1− ξ− η)tj + ξpj + η 1

N
,

which can be regarded as the weighted sum of the original

label distribution t and a unimodal-uniform mixture distri-

bution. In the context that the uniform distribution target is

utilized for the CE loss, it is equivalent to label smoothing

[49], a typical mechanism for outlier noisy label training,

which encourages the model to accommodate less-confident

labels. The smoothed distribution is shown in Fig. 5

Noticing that the smoothed target label can also be

adapted into CE loss which is formulated as

L =

N−1
∑

i

ti[-log(p(y = i|x))] (4)

By enforcing s to form a unimodal-uniform mixture dis-

tribution, we also implicitly encourage the probabilities to

distribute on the neighbor classes of j∗.

Since ti is monotonically decreasing w.r.t. the farther

distance from the true class l, we can regard it as a weight

of -log(p(y = i|x)). Since the target label regularization

can be processed in advance, the training time does not in-

crease by adding the unimodal-uniform mixture distribution

regularization.

3.3. Wasserstein training with smoothed target

When using the unimodal-uniform smoothed label, the

fast solution in Eq. (3) does not apply. The possible solution

is to regard it as a general case and solve its exact solution

in the complexity higher than O(N3) or approximate its

exact solution with a complexity in O(N2). In this section,

a series of analytic formulation when the ground metric is

a nonnegative increasing linear/convex/concave function

w.r.t. Euclidean distance with reasonable complexity.

3.3.1 Linear and Convex function w.r.t. di,j as the

ground metric.

Choosing the ground metric as di,j or extend it as an

nonnegative increasing and convex function of di,j , the an-

alytic formulation of our loss function Ldi,j
(s, t) can be for-

mulated as

Ldi,j
(s, t) =

N−1
∑

j=0

|

j
∑

i=0

(si − ti)| (5)

Eq. (5) was developed in [51], where it is proved for sets

of points with unitary masses on a line. A similar conclu-

sion for the Kantorovich-Rubinstein problem was derived

in [6, 7], which is known to be identical to the Wasserstein

distance problem when Di,j is a distance. We note that this

is true for Ldi,j
(but not hold for LDρ(s, t) with ρ > 1).

An equivalent calculation is proposed from the cumulative

distribution perspective [43]. All of these works notice that

computing Eq. (5) can be solved in linear time (O(N)). See

[50] for a comprehensive review).

Noticing that the partial derivative of Eq. (5) w.r.t. sn is
∑N−1

j=0
sgn(ϕj)

∑j
i=0

(δi,n − si), where ϕj =
∑j

i=0
(si −

ti), and δi,n = 1 when i = n.

Here, we give some measures 3 using the typical convex

ground metric function.

Using dρ as ground metric, i.e., D
ρ
i,j = d

ρ
i,j . The loss

function is written as LD
ρ
i,j
(s, t), with ρ = 2, 3, · · · . When

set ρ = 2, the Wasserstein distance is equivalent to the

Cramér distance [45]. Note that the Cramér distance is not

a distance metric proper. However, its square root is.

We can also use Huber cost function with a parameter τ

and denote it as LDHτ
i,j

(s, t).

DHτ
i,j =

{

d2i,j if di,j ≤ τ

τ(2di,j − τ) otherwise.
(6)

3.3.3 Concave function w.r.t. di,j as the ground metric

In practice, it may be useful to define the ground met-

ric as a nonnegative, concave and increasing function w.r.t.

di,j . Although the general computation speed of the con-

cave function is not satisfactory, the step function f(t) =
✶t �=0 (one every where except at 0) can be a special case,

which has significantly less complexity [50]. Assuming that

the f(t) = ✶t �=0, the Wasserstein metric between two nor-

malized discrete histograms on N bins can be simplified to

3We refer to “measure”, since a ρth-root normalization is required to

get a distance [50], which satisfies positive definiteness, symmetry and

triangle inequality.



Figure 6. Some samples with different retinopathy level in the DR dataset. The top row is the left retinopathy image while the

bottom row is the right retinopathy image. The sampls show a large inner-class variation and small inter-class variation.

the ℓ1 distance.

L✶di,j �=0(s, t) =
1

2

N−1
∑

i=0

|si − ti| =
1

2
||s − t||1 (7)

where || · ||1 is the discrete ℓ1 norm.

However, its fast computation is at the cost of losing the

ability to discriminate the difference of probability in a dif-

ferent position of bins.

4. Experiments

To evaluate the effectiveness of our Wasserstein loss, we

show implementation details and experimental results on

the two widely used health risk level diagnosis datasets, i.e.,

Diabetic Retinopathy and Ultrasound BIRADS datasets. To

manifest the effectiveness of each setting choice and their

combinations, we give a serial of elaborate ablation studies

along with the standard measures. For the fair comparison,

we choose the same neural network backbones as in previ-

ous works. All of networks in our training use the L2 norm

of 10−4, ADAM optimizer [20] with 128 training batch-size

and initial learning rate of 10−3. The learning rate will be

divided by ten when either the validation loss or the valid

set QWK plateaus. There is no significant difference in the

training time of Wasserstein loss and CE-loss based multi-

class classification, and the smoothed unimodal target label

is constructed before the training stage. All the experiments

are implemented in deep learning platform Pytorch 4.

We use the prefix ≈ denote the approximate computa-

tion of Wasserstein distance [12, 16]. (s, t) and (s, t) re-

fer to using one-hot or smoothed target label. For instance,

Ldi,j
(s, t) means choosing Wasserstein loss with Euclidean

distance in a line as ground metric and using one-hot target

label.

4.1. Evaluations

Since the health risk level has a discrete label, the per-

formance of a system can be simply measured by the aver-

4https://pytorch.org/

age classification accuracy as the conventional classification

problem. [44] further utilized the Mean True Negative Rate

(TNR) at True Positive Rate (TPR) of 0.95. The relatively

high TPR used here is fitted for strict TPR requirements of

medical applications to avoid misdiagnosing diseased cases

as healthy. However, they do not consider the severity of

different misclassification.

Considering the inherent ordered label relationship, the

Mean Absolute Error (MAE) metric, i.e., L1 loss, can also

be used as an evaluation metric in related risk evaluation

datasets [40], which is computed using the average of the

absolute errors between the ground truth and the estimated

result. Here, we also propose its use in evaluating the pro-

posed method on two medical health risk evaluation bench-

marks.

Moreover, as defined in previous Kaggle DR competi-

tion, we also evaluate the quadratic weighted kappa (QWK)
5. It can punish the misclassification proportional to the dis-

tance between the predicted label of the network and the

ground-of-truth label [11]. The QWK is formulated as:

k = 1−

∑

i,j Wi,jOi,j
∑

i,j Wi,jEi,j

(8)

We evaluate on Diabetic Retinopathy (DR) and Ultra-

sound BIRADS datasets which are suitable for deep learn-

ing implementations in the medical area.

4.2. Diabetic Retinopathy (DR)

The Diabetic Retinopathy (DR) dataset 6 contains a large

amount of high-resolution fundus (i.e., interior surface at

the back of the eye) images which have been labeled as five

levels of DR. The level 0 to 4 representing the No DR, Mild

DR, Moderate DR, Severe DR, and Proliferative DR, re-

spectively. The left and right fundus images from 17563 pa-

5https://www.kaggle.com/c/

diabetic-retinopathy-detection/overview/

evaluation
6https://www.kaggle.com/c/

diabetic-retinopathy-detection



Table 1. Performance on the DR dataset.

Evaluations
Mean TNR@TPR=0.95

Valid Acc Valid QWK MAE
0 vs 1-4 0-1 vs 2-4 0-2 vs 3-4

MC 41.5% 30.9% 31.1% 82.4% 0.724 0.37

RG 40.3% 30.6% 30.8 % 76.2% 0.705 0.38

Poisson [2] 38.8% 30.0% 29.6 % 77.1% 0.713 0.38

MT [44] 42.7% 31.7% 31.3% 82.8% 0.726 0.36

SB[35] 44.0% 33.1% 32.6% 84.2% 0.743 0.32

Ldi,j
(s, t) 46.9% 37.1% 34.4% 87.3% 0.768 0.29

LD2

i,j
(s, t) 47.2% 37.3% 34.6% 87.4% 0.769 0.28

LDHτ
i,j

(s, t) 47.2% 37.4% 34.5% 87.6% 0.769 0.28

MC(s, t) 42.4% 31.2% 31.8% 82.7% 0.728 0.35

≈ Ldi,j
(s, t) 45.8% 36.4% 33.8% 86.6% 0.759 0.29

≈ LD2

i,j
(s, t) 45.8% 36.5% 33.9% 86.5% 0.760 0.29

≈ LDHτ
i,j

(s, t) 45.9% 36.6% 34.0% 86.6% 0.760 0.28

Ldi,j
(s, t) 47.3% 37.5% 34.8% 87.8% 0.771 0.27

LD2

i,j
(s, t) 47.6% 37.7% 34.9% 87.8% 0.772 0.26

LDHτ
i,j

(s, t) 47.5% 37.7% 34.8% 88.0% 0.773 0.26

tients are publicly available. The ResNet [18] style model

with 11 ResBlocks as in [2, 35] has been adopted for DR

dataset. We use five neurons with softmax normalization as

our output to represent the probability of each level.

In our experiments, we follow the setting of [2, 35]. The

subject-independent 10-fold cross-validation is adopted,

i.e., the validation set consisting of 10% of the patients is set

aside. The images belonging to a subject will only appear

in a single fold. By doing this, we can avoid contamination.

The images are also preprocessed as in [2, 35, 22] and sub-

sequently resized as 256×256 size images. Some examples

can be found in Fig. 6.

We show the results in the DR dataset in Table 1. The

evaluation metrics discussed earlier is utilized. Several

baseline methods are chosen for comparisons. For example,

the CE-loss based multi-class classification (MC), MSE-

loss based metric regression (MSE), Poisson distribution

output with CE-loss (Poisson), multi-task network using a

series of binary CE loss (MT), and the stick-breaking with

CE-loss (SB).

The MC usually outperforms MSE in most of the met-

ric. However, MSE usually appears to be competitive w.r.t.

MAE, since MSE optimizes a similar metric as MAE in its

training phase. The Poisson does not manage to achieve

performance improvements in most of the evaluations due

to its uncontrollable variance. The MT is more promising

than MC as it considers the successive relationship, despite

it has a lot to be tuned hyper-parameters. By addressing

some limitation in MT, the SB has a better performance than

MT.

Our Wasserstein training outperforms all of the previ-

ous methods, especially the LD2

i,j
and LDHτ

i,j
which use the

convex function of the Euclidean distance in a line as the

ground metric.

Moreover, the unimodal-uniform smoothed target label

can efficiently improve the performance without additional

training costs. The smoothing process is benefiting to both

conventional CE loss and Wasserstein loss. Besides, the

exact solution can outperform its approximate counterpart

consistently.

We set our hyper-parameters ξ = 0.15, η = 0.05 and

τ = 1. QWK is not sensitive to the τ ∈ {0.8, 0.9, 1, 1.1}
when we fix the ξ = 0.15. Similarly, the QWK keep at the

same level when we adjust ξ from 0.12 to 0.18.

4.3. Ultrasound BIRADS

The second medical dataset is the Ultrasound BIRADS

(US-BIRADS) [44]. It consists of 4904 breast images with

the BIRADS system label. Considering the relatively lim-

ited number of samples in level 4, we usually regard the 3-4

as a single level [44]. That results in 2700 healthy (0) im-

ages, 1113 benign (1) images, 359 probably benign (2) im-

ages, and 732 may contain/contain malignant (3-4) images.

We divide this dataset into 5 subsets for subject-independent

five-fold cross-validation. We show some samples at differ-

ent levels in Fig. 7.

AlexNet style architecture [21] with six convolution lay-

ers and following two dense layers is used for US-BIRADS

image dataset as in [44]. We set ξ = 0.15, η = 0.05, and



Figure 7. Some samples with different malignant risk in the US-BIRADS.

Table 2. Performance on the US-BIRADS dataset.*Our implementations have slightly higher TNR using MC baseline than the results

reported in [44]

.

Evaluations
Mean TNR@TPR=0.95

Valid Acc Valid QWK MAE
0 vs 1-4 0-1 vs 2-4 0-2 vs 3-4

MC 33.2%* 28.7%* 29.8%* 73.3% 0.678 0.42

RG 31.6% 28.5% 29.5% 73.0% 0.677 0.44

Poisson [2] 29.6% 27.2% 29.5% 72.2% 0.665 0.45

MT [44] 38.5% 29.2% 31.3% 76.5% 0.685 0.41

SB[35] 39.1% 30.2% 32.0% 78.3% 0.694 0.39

Ldi,j
(s, t) 42.5% 33.6% 35.7% 80.1% 0.712 0.36

LD2

i,j
(s, t) 42.6% 33.8% 35.9% 80.2% 0.714 0.35

LDHτ
i,j

(s, t) 42.6% 33.7% 35.9% 80.3% 0.715 0.35

MC(s, t) 33.4% 29.0% 30.4% 73.6% 0.682 0.40

Ldi,j
(s, t) 42.9% 34.0% 36.2% 80.5% 0.715 0.34

LD2

i,j
(s, t) 43.0% 34.2% 36.3% 80.5% 0.716 0.34

LDHτ
i,j

(s, t) 43.0% 34.1% 36.3% 80.6% 0.716 0.33

τ = 1 for the unimodal distribution.

The leading performance of our method is also observed

in the US-BIRADS dataset (Table 2). Since its labels

are noisier (more severe annotator-dependent problem), the

unimodal-uniform smoothing usually offers a more appeal-

ing contribution to the results. The Wasserstein training

with convex ground metric function and smoothed target la-

bel achieves state-of-the-art performance consistently.

5. Conclusions

Based on the Wasserstein distances, we proposed an ef-

ficient loss function as an alternative to the CE loss for

health risk level estimation. The ground metric inherits the

inter-class correlation and can be predefined by with an in-

creasing function w.r.t. the Euclidean distance of a line.

The intlier and outlier noise in health risk data can be in-

corporated in a unimodal-uniform mixture distribution to

form the smoothed target. We systematically discusses the

fast closed-form solutions in one-hot and conservative label

cases. The results show that the best performance can be

achieved by choosing convex function, unimodal-uniform

distribution for smoothing and solving its exact solution.

Although it was originally developed for health risk level

estimation, it is essentially applicable to other problems

with discrete and ordinal labels. In the future, we intend

to develop an adaptive ground metric learning scheme, and

adjust the shape of conservative target distribution automat-

ically.
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