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Abstract

Semantic contour detection is a challenging problem that

is often met in medical imaging, of which placental im-

age analysis is a particular example. In this paper, we

investigate utero-placental interface (UPI) detection in 2D

placental ultrasound images by formulating it as a seman-

tic contour detection problem. As opposed to natural im-

ages, placental ultrasound images contain specific anatom-

ical structures thus have unique geometry. We argue it

would be beneficial for UPI detectors to incorporate global

context modelling in order to reduce unwanted false posi-

tive UPI predictions. Our approach, namely UPI-Net, aims

to capture long-range dependencies in placenta geometry

through lightweight global context modelling and effective

multi-scale feature aggregation. We perform a subject-level

10-fold nested cross-validation on a placental ultrasound

database (4,871 images with labelled UPI from 49 scans).

Experimental results demonstrate that, without introducing

considerable computational overhead, UPI-Net yields the

highest performance in terms of standard contour detection

metrics, compared to other competitive benchmarks.

1. Introduction

Placenta accreta spectrum (PAS) disorders denote a vari-

ety of adverse pregnancy conditions that involve abnormally

adherent or invasive placentas towards the underlying uter-

ine wall. Without risk assessment, any attempt to remove

the embedded organ may cause catastrophic maternal haem-

orrhage [19]. Reduction of maternal mortality and morbid-

ity of PAS disorders relies on both recognition of women at

risk and more importantly, on accurate prenatal diagnosis.

However, recent population studies have shown unsatisfac-

tory results: PAS disorders remain undiagnosed before de-

livery in one-third to two-thirds of cases [18]. Over the last

40 years, a 10-fold increase in the incidence of PAS disor-

ders has been reported in most medium- and high-income

Figure 1. Semantic contour detection in natural images (sample

from SBD) and placental ultrasound images. Best viewed in color.

countries with the rising of cesarean delivery rates [18].

Ultrasonography is widely used to assist diagnosis of

PAS disorders prenatally. Recently, the International Fed-

eration of Gynecology and Obstetrics released consensus

guidelines on PAS disorders in terms of prenatal diagno-

sis and screening [18], among which identifying structural

and vascular abnormalities near the utero-placental inter-

face (UPI) is of key importance. UPI is the anatomical inter-

face that separates the placenta from the uterus. In non-PAS

cases, the UPI is observed as the placental boundary that

touches the myometrium. However, in PAS cases, the de-

gree of placental invasion can vary along the UPI, resulting

in an irregular shape and length with low contrast. Manual

localization remains challenging and time-consuming even

for experienced sonographers, as shown in Fig. 1 and Fig. 2.

In order to recognize edge pixels of specific semantic

categories, convolution neural networks are often designed

to have large receptive fields by repeatedly stacking down-



Figure 2. Utero-placental interfaces (UPI) are annotated as red curves in placental ultrasound image samples. In PAS cases, myometrium

tends to disappear due to placental invasion, causing weaker contrast around the UPI. Strong placental invasion would cause bulge-like UPI

as shown in (a). In placenta previa case, UPI usually takes a ‘U-shape’ over cervix, as shown in (b). A non-PAS case where UPI separates

the placenta from the myometrium is shown in (c), somewhat contaminated by signal dropout.

sampling and (dilated) convolution layers [14, 15, 40, 41],

which is reported to be computationally inefficient and dif-

ficult to optimize in general [35, 4]. To address this is-

sue, a self-attention mechanism, originally born in natural

language processing studies [34], can be introduced to ex-

plicitly model element-wise correlation [44, 35] and has

achieved success in video classification, object detection

and segmentation [16, 43].

Fig. 1 displays two sample images from the Semantic

Boundaries Dataset (SBD) and our PAS database respec-

tively. In natural images, objects of interest may appear

with various scales at different locations within a scene.

More often than not, the network receptive field is large

enough to capture relevant semantics for semantic contour

detection. On the contrary, placental ultrasound images

contain specific anatomical structures thus have unique ge-

ometry. From a low-level perspective, there is a consid-

erable amount of UPI-like edges (false positives, e.g. in

Fig. 1). We need to suppress irrelevant edges that are not

UPI (i.e. do not separate the placenta from the uterus) by

modelling high-level semantics, which requires the network

to also identify specific semantic entities related to placenta

geometry [22, 32]. Moreover, we observe false negatives

in some low-contrast regions. We expect to alleviate these

errors by incorporating long-range contextual cues [35, 4].

To this end, we argue that it would be beneficial for UPI

detectors to model global context of each spatial position in

order to suppress false predictions thus improve detection

performance.

In this paper, we propose UPI-Net, a deep network de-

signed for UPI detection in placental ultrasound images,

as a critical step in an image-based PAS prenatal diagno-

sis pipeline. UPI-Net captures the long-range dependen-

cies in placenta geometry using lightweight global context

modelling units and effective multi-scale feature aggrega-

tion. The contributions are twofold. First, we propose a

novel architecture to enforce contextual feature learning in

earlier stages and enhance learning of UPI-related semantic

entities / geometry in later stages. Second, we demonstrate

the effectiveness of UPI-Net by comparing against several

competitive benchmarks on a placental ultrasound database.

Performances of UPI detectors are evaluated using standard

edge/contour detection metrics [1, 13]. According to exper-

iments, UPI-Net yields the best performance without intro-

ducing considerable computational overhead.

2. Related Work

Semantic contour detection. Edge detection is one of the

fundamental tasks in computer vision and has been exten-

sively studied in the past. However, assigning semantics to

edges is a relatively new task that has not received much

attention in both natural image and medical image analysis

[27, 13, 2]. Early work uses class-specific edges for track-

ing [33, 10], object detection and segmentation [30]. Hari-

haran et al. presented the large-scale Semantic Boundaries

Dataset (SBD) and proposed to use generic object detectors

along with bottom-up contours for semantic contour detec-

tion [13]. Bertasius et al. introduced a CNN-based two-

stage process that first identified all edge candidates and

then classified them using segmentation networks [3, 26, 7].

Yu et al. proposed CASENet to detect semantic edges in an

end-to-end fashion. They optimized the holistically-nested

edge detection network (HED) [39] by removing deep su-

pervisions on the early-stage side outputs and instead us-

ing them as shared features for the final fusion [42]. The

proposed UPI-Net adopts a nested architecture as CASENet

does but extends it by adding global context modelling units

that are well-suited for UPI prediction.

Global context modelling. Attention-based global con-

text modelling has been successfully applied in various vi-

sual recognition applications such as semantic segmenta-

tion [43], panoptic segmentation [23], video classification

[35], generative adversarial networks [44], and representa-

tion learning [4, 17, 17, 22, 29, 37, 11]. It is recently re-

ported that the non-local pixel-wise attention can be simpli-



Figure 3. Three multi-scale feature aggregation architectures: (a) HED [39]; (b) CASENet [42]; (c) DS-FPN [31].

fied as a more memory-efficient query-independent atten-

tion without sacrificing performance [35, 4]. Following this

work, UPI-Net models the global context of placental ultra-

sound images via lightweight non-local heads and semantic

enhancement heads without introducing a large amount of

network parameters or computational overhead.

3. Methods

3.1. Problem Formulation

Training process. Our training set is denoted as D =
{(Xn,Yn), n = 1, · · · , |D|}, where a sample Xn =
{xp

n, p = 1, · · · , |Xn|} denotes a placental ultrasound im-

age and Yn = {ypn, p = 1, · · · , |Xn|} denotes the corre-

sponding reference UPI map for Xn. Yn takes the form of

a binary mask with ypn ∈ {0, 1}, i.e. pixels on the UPI take

the value 1. For notation simplicity, we drop the subscript

n from now on. Our goal is to train a network with param-

eters W to predict the probability Pr(yp = 1|X ;W) at

each pixel position p in X . Following [39, 42], we intro-

duce a class-balancing weight ω to alleviate the extremely

low foreground-background class ratio encountered during

training. This is based on the idea of prior scaling [20],

with the purpose to equalize the expected model weight up-

date for both classes. Specifically, we define the following

cross-entropy loss function on the network output O given

a training pair (X ,Y):

L(O;W) = −
ω

|Y+|+ |Y−|

∑

p∈|Y+|

logPr(yp = 1|X ;W)

−
1

|Y+|+ |Y−|

∑

p∈|Y
−
|

log(1− Pr(yp = 1|X ;W))

We set ω = |Y
−
|

|Y+| , where |Y+| and |Y−| denote the num-

ber of positives and negatives. The network output O at

pixel position p is activated by a sigmoid function to obtain

Pr(yp = 1|X ;W):

Pr(yp = 1|X ;W) =
1

1 + exp(−Op)

UPI-Net has two outputs, a side output Os and a fused out-

put Of . The details will be discussed in Sec. 3.2. Each

output corresponds to an individual prediction. The over-

all loss function is simply the sum of losses on individual

outputs:

Lall(W) = L(Os;W) + L(Of ;W)

Testing process. During testing, we obtain two outputs

from UPI-Net given an unseen placental ultrasound image

X . The final prediction is simply the sigmoid of the fused

output, i.e. 1
1+exp(−Of )

.

3.2. Network Architecture

Rich hierarchical representations of deep neural net-

works lead to success in edge detection [39, 42]. This is

particularly important for UPI detection, which requires ef-

fective aggregation of multi-scale features to localize edge

pixels on the UPI and get rid of false positives using global

context of placenta geometry. In this sub-section, we first

present three alternative multi-scale feature aggregation ar-

chitectures that have been successfully used in edge detec-

tion and key-point localization [31, 42, 39, 24]. Then we

discuss their suitability for UPI detection and propose UPI-

Net in an effort to resolve some of these issues.

Multi-scale feature aggregation. As shown in Fig. 3,

we present three architectures that aggregate multi-scale

features: HED [39], CASENet [42], and DS-FPN [31].

They are all built upon the classic VGG-16 network to be

structurally consistent. HED inherits the idea of deeply-

supervised nets [21] to produce five individual side outputs



Figure 4. (a) Proposed UPI detector layout, where an ImageNet-pretrained VGG-16 is the backbone; (b) A global context (GC) block; (c)

A convolutional group-wise enhancement (CGE) block.

at different scales and another fused output via multi-scale

feature concatenation. CASENet adopts a similar nested

architecture but disables early-stage deep supervisions thus

only produces one side output and one fused output. DS-

FPN extends the idea of feature pyramid networks [24] by

connecting multi-scale features via 1 × 1 convolutions and

element-wise additions, producing five side outputs and one

fused output.

UPI detection depends both on low-level features associ-

ated with edges, which are well preserved in the shallower

stages of the network, and on high-level semantic entities

associated with placenta geometry, which are learnt in the

deeper stages of the networks. One common issue related

to the three architectures above is the sub-optimal use of

low-level features. Previous work tends to use them for

feature augmentation without careful refinement. We be-

lieve it is beneficial for UPI detectors to incorporate global

context modelling in features of different scales (esp. those

in the shallower stages). Moreover, large receptive fields

are only available in the deepest stages of the networks via

stacked convolutional operations, which might not even be

large enough to model important long-distance dependen-

cies in placental ultrasound images, as discussed in Sec. 1.

GC blocks. Our proposed UPI-Net (Fig. 4) aims to ad-

dress these potential issues by adding two types of feature

refinement blocks in a nested deep architecture: (i) global

context (GC) blocks [4]; (ii) convolutional group-wise en-

hancement (CGE) blocks. A GC block modulates low-level

features via simplified non-local operations and channel re-

calibration operations. As shown in Fig. 4(b), it first per-

forms global attention pooling on the input feature maps via

a 1× 1 convolution and a spatial softmax layer. The output

is then multiplied with the original input to obtain a channel

attention weight. After a channel recalibration transform

(via 1× 1 convolutions, r = 16 [17]), the calibrated weight

is aggregated back to the original input via a broadcasting

addition. As reported in [4], a GC block is a lightweight

alternative to the non-local block [35] in modelling global

context of the input feature map. In UPI-Net, we attach GC

blocks to conv-1, conv-2 and conv-3 to refine features from

the earlier stages of the network.

CGE blocks. Inspired by [22], we introduce a con-

volutional group-wise enhancement (CGE) block to pro-

mote learning of high-level semantic entities related to

UPI detection via group-wise operations. As shown in

Fig. 4(c), a CGE block contains a group convolution layer

(num group= NG), a group-norm layer [38], and a sigmoid

function. The group convolution layer essentially splits the

input feature maps B×C×H×W into G groups along the

channel dimension. Each group contains a feature map of

size B×1×H×W . The subsequent group-norm layer nor-

malizes each map over the space respectively. The learnable

scale and shift parameters in group-norm layers are initial-

ized to ones and zeros following [38]. The sigmoid function

serves as a gating mechanism to produce a group of im-

portance maps, which are used to scale the original inputs

via the broadcasting multiplication. We expect the group-

wise operations in CGE to produce unique semantic entities

across groups. The group-norm layer and sigmoid func-

tion can help enhance UPI-related semantics by suppress-

ing irrelevant noise. Our proposed CGE block is a modified

version of the spatial group-wise enhance (SGE) block in



Figure 5. Hyper-parameter searching for UPI-Net, where an iterative strategy is applied for better efficiency.

[22]. We replace the global attention pooling with a simple

1×1 group convolution as we believe learnable weights are

more expressive than weights from global average pooling

in capturing high-level semantics. Our experiments on the

validation set empirically support this design choice. CGE

blocks are attached to conv-4 and conv-5 respectively, where

high-level semantics are learnt.

UPI-Net. All refined features are linearly transformed

(num channel= NC) and aggregated via channel-wise con-

catenation to produce the fused output. Additionally, we

produce a side output using conv-5 features, which encodes

strong high-level semantics. As displayed in Fig. 4, channel

mismatches are resolved by 1 × 1 convolution and resolu-

tion mismatches by bilinear upsampling. Furthermore, we

add a Coord-Conv layer [25] in the beginning of the UPI-

Net, which simply requires concatenation of two layers of

coordinates in (x, y) Cartesian space respectively. Coordi-

nates are re-scaled to fall in the range of [−1, 1]. We expect

that the Coord-Conv layer would enable the implicit learn-

ing of placenta geometry, which by the way does not add

computational cost to the network. Experimental results on

hyper-parameter tuning are presented in Sec. 4.4.

4. Experiments

4.1. Dataset

We had available 49 three-dimensional placental ultra-

sound scans from 49 subjects (31 PAS and 18 non-PAS) as

part of a large obstetrics research project [9]. Written con-

sents for obtaining the data was approved by the appropri-

ate local research ethics committee. Static transabdominal

3D ultrasound volumes of the placental bed were obtained

according to the predefined protocol with subjects in semi-

recumbent position and a full bladder using a 3D curved

array abdominal transducer. Each 3D volume was sliced

along the sagittal plane into 2D images and annotated by X

(a computer scientist) under the guidance of Y (an obstet-

ric specialist). Unlike semantic contours in natural images,

a UPI is characterized by low contrast, variable shape and

signal attenuation. For manual annotation, human experts

tend to rely on global context to first identify the UPI neigh-

bourhood and then delineate it according to local cues. Due

to the muscular nature of the uterus, the UPI would nor-

mally appear to be a smooth curve in placental ultrasound

images, except when placental invasion penetrates muscle

layers in the case of PAS disorders. The database contains

4,871 2D images in total, from 28 to 136 slices per volume

with a median of 104 slices per volume.

4.2. Evaluation protocol

For a medical image analysis application with a rela-

tively small dataset, a non-nested k-fold cross-validation

is often used to compensate for the lack of test data (e.g.

[36, 12, 8, 28]). However, this can lead to over-fitting

in model selection and subsequent selection bias in per-

formance evaluation [5], causing overly-optimistic perfor-

mance score for all the evaluated models. To avoid this

problem, we carry out model selection and performance

evaluation under a nested 10-fold cross-validation. Specifi-

cally, we run a 10-fold subject-level split on the database. In

each fold, test data consisting of 2D image slices from 4 - 5

volumes are held out, while images from the remaining 44-

45 volumes are further split into train/validation sets. In the

inner loop (i.e. within each fold), we fit models to the train-

ing set and tune hyper-paramters over the splitted validation

set. In the outer loop (i.e. across folds), generalization error

is estimated on the held-out test set. We report evaluation

scores on the test set splits to avoid potential information

leak.

4.3. Evaluation metrics

Intuitively, UPI detection can be evaluated with standard

edge detection metrics. We report two measures widely

used in this field [1], namely the best F-measure on the

dataset for a fixed prediction threshold (ODS), and the ag-

gregate F-measure on the dataset for the best threshold in

each image (OIS). Following [39, 42, 1], we choose the

ODS F-measure as the primary metric since it balances the

use of precision and recall at a fixed threshold.



Figure 6. Fold-wise performance comparison among UPI detectors.

Table 1. The performance of different UPI detects on the test sets in a nested 10-fold cross validation. All results are in the format of

median [first, third quartile]. ↓0 indicates a lower value is more appreciated, with 0 being the best in theory. ↑1 indicates a higher value is

more appreciated, with 1 being the best in theory. ODS is the primary metric.

Model Params (M) FLOPs (G) ODS ↑1 OIS ↑1

HED [39] 14.7 52.3 0.427 [0.409, 0.442] 0.469 [0.445, 0.487]

CASENet [42] 14.7 52.3 0.418 [0.399, 0.449] 0.460 [0.442, 0.488]

DS-FPN [31] 15.1 56.2 0.426 [0.398, 0.435] 0.465 [0.442, 0.480]

DCAN [6] 8.6 12.1 0.388 [0.355, 0.422] 0.439 [0.407, 0.473]

UPI-Net (ours) 14.7 53.5 0.458 [0.430, 0.479] 0.493 [0.474, 0.518]

4.4. Hyperparameter tuning

GC / CGE configuration. In UPI-Net, we attach GC

blocks to the first three convolution units (i.e. conv-1, conv-

2 and conv-3) and CGE blocks to the last two. This config-

uration is chosen in the hyper-parameter tuning. Intuitively,

GC blocks enforce non-local dependency across low-level

features while CGE blocks promote learning of high-level

semantics. An optimal configuration that balances low-level

and high-level representation learning is desired. To this

end, we vary the number of GC and CGE blocks to obtain

different network variants, using mG-nC to represent first m

convolution units equipped with GC blocks and last n con-

volution units with CGE blocks. For example, the proposed

UPI-Net is denoted as 3G-2C. Fig. 5(a) displays the vali-

dation losses for different GC / CGE configurations, where

3G-2C is selected.

Group and aggregated feature channel number. There

are two more hyper-parameters introduced in Sec. 3.2,

namely the number of groups (NG) in CGE’s group con-

volution layer and the number of channels (NC) in the last

feature aggregation layer. Similar to tuning the GC / CGE

configuration, we vary NG and NC and test on the valida-

tion sets. Results are displayed in Fig. 5(b)-(c). Note that

for simplicity, we fix the GC / CGE configuration as 3G-

2C when searching for the optimial NG and then fix NG at

the optimal value when searching for the optimal NC . Such

an iterative strategy efficiently reduces the hyper-parameter

searching space. As a result, NG = 16 and NC = 32 are

selected. It is noted that setting both hyper-parameters at

larger values (e.g. NG = 32 and NC = 64) does not neces-

sarily reach a better performance for UPI detection.

4.5. Implementation details

Following the implementation details from the orig-

inal papers, we used parameters from an ImageNet-

pretrained VGG16 to initialize corresponding layers in

HED, CASENet, DS-FPN and the proposed UPI-Net. Ad-

ditionally, we implemented a DCAN model following the

original design choice in [6] without pretraining. The rest

convolutional layers in UPI-Net were initialized by sam-

pling from a zero-mean Gaussian distribution, following the

method in [14]. During training, we randomly cropped a

patch of 320 × 480 px from the input images. For testing,

we take the central crop of the same size. All inputs were

normalized to have zero mean and unit variance. We used



Figure 7. Predictions from the proposed UPI-Net model and other benchmarks. UPI-Net suppresses a number of UPI-like false positives

compared with other methods.

a mini-batch size of 8 to reduce memory footprint. With

Adam optimizer, the initial learning rate was set to 0.0003.

A weight-decay of 0.0002 was used. This hyper-paramater

configuration was shared by all baseline models and UPI-

Net variants. All the models were implemented with Py-

Torch and trained for 40 epochs with early stopping on an

NVIDIA DGX-1 with P100 GPUs.

4.6. Results

Fold-wise performance comparison among UPI detec-

tors are illustrated in Fig. 6. As shown in Table 1, the

median, first and third quartile of the 10-fold test results

are also presented. The proposed UPI-Net outperforms four

competitive benchmarks in terms of ODS and OIS, without

introducing a considerable amount of computational over-

head in terms of model sizes and floating point operations.

Test samples are displayed in Fig. 7. It is shown that predic-

tions from UPI-Net are enhanced from a global perspective

by suppressing unwanted UPI-like false positives and main-

taining spatial smoothness of the curve (fewer false nega-

tives).

Ablation study. We further test how the Coord-Conv layer



Figure 8. Semantic entities learnt by UPI-Net.

Table 2. Ablation studies on Coord-Conv layers and the side-

output supervision using conv-5 features.

Model Coord-Conv Side-output ODS↑1

Baseline-1 ✗ ✓ 0.438 [0.416, 0.463]

Baseline-2 ✓ ✗ 0.444 [0.422, 0.454]

UPI-Net ✓ ✓ 0.458 [0.430, 0.479]

and the additional side-output supervision influence the per-

formance of UPI detection. According to Table 2, UPI-

Net benefits from both of them. Importantly, it costs no

additional computational resources to add the Coord-Conv

layer to the network. Although not used during testing, the

side-output from conv-5 modulates the training process to

achieve better UPI detection.

Learning semantic entities. It is expected that introducing

CGE modules would enable the network to learn high-level

semantic entities related to placental geometry more effec-

tively thus contributes to UPI detection. As displayed in

Fig. 8, activation maps from the bottom CGE block after

conv-4 reveal some of the semantic entities learnt by UPI-

Net. Particularly, the 453rd kernel appears to capture the

placenta itself. Note that no supervision signal associated

with the placenta location is available during training. This

can be useful in clinical settings to assist operators in better

interpreting the scene by visualizing regions of interest.

5. Conclusion

We have presented a novel architecture for semantic

contour detection for placental imaging. It can produce

more plausible UPI predictions in terms of spatial continu-

ity and detection performance via lightweight global con-

textual modelling, compared to competitive benchmarks.

In addition to use in prenatal PAS assessment, we believe

the proposed approaches could be adapted for other clini-

cal scenarios that involves edge/contour detection in breast,

liver, heart and brain imaging.
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