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Abstract

Recovering a person’s height from a single image is im-

portant for virtual garment fitting, autonomous driving and

surveillance. However, it is also very challenging without

absolute scale information. Here, we examine the rarely

addressed case, where camera parameters and scene ge-

ometry are all unknown. Under this circumstances, scale

is inherently ambiguous, and height can only be inferred

from those statistics that are intrinsic to human anatomy

and can be estimated from images directly, such as artic-

ulated pose, bone-length proportions, and facial features.

Our contribution is twofold. First, we create a new human-

height dataset that is three magnitudes larger than existing

ones, by mining explicit height labels and propagating them

to additional images through face recognition and assign-

ment consistency. Second, we test a wide range of machine

learning models (linear, shallow, and deep models) to cap-

ture the relation between image content and human height.

We also show that performance is predominantly limited by

dataset size. Our central finding is that height can only be

estimated with large uncertainty. The remaining high vari-

ance demonstrates that the geometrically motivated scale

ambiguity persists into the age of deep learning, which has

important implications for how to pose monocular recon-

struction, such as 3D human pose estimation, in a scale

invariant way.

1. Introduction

Estimating people’s height from a single image is needed

in areas such as subject identification for surveillance pur-

poses, pedestrian distance estimation for autonomous driv-

ing, and automated garment fitting in online stores. How-

ever, since people’s apparent height is affected by camera

distance and focal length, assessing someone’s real height

only from the image is difficult. Therefore, the current

3D human pose estimation methods output only normal-

ized pose, leaving the absolute scale of the person unde-

termined. [33, 34, 35, 36]. Scale can be recovered given a

prior knowledge of the scene, for instance, if the location

of the ground plane is given [1, 2, 3, 4] or where objects of

known height are visible [3, 5]. Often, however, the scene

content is unknown and can not be modified. In this paper,

we investigate whether correlations in human appearance,

shape and body proportions alone suffice for estimating ab-

solute height. Our approach is inspired by medical studies

that suggest correlations between body proportions and hu-

man height [6, 7, 8, 9, 10, 11, 12, 13, 14, 15], such as the

ratio of the tibia length to the whole body or the head to

shoulders ratio, but it remains unclear if these can be esti-

mated from images. Existing algorithms can only operate

under very specific conditions. For example, comparisons

to the average height have been used in [16] to infer peo-

ple’s sizes from group pictures. The method of [17] is the

only one we know of that can operate on single uncalibrated

RGB images and without prior knowledge. However, it re-

lies on manually supplied keypoints and does not generalize

well to real images.

Recent deep learning successes suggest that any well-

defined problem can be addressed given enough data. To

examine this, we build a large dataset and study how much

human pose and facial features can tell us about height.

We observe that the posterior height estimate improves on

the baselines, deeper networks outperform shallow archi-

tectures, accuracy increases with the database size and that

both face and pose are viable cues. Closer investigations

reveal that facial features provide the most important cues,

which hints at determining gender and ethnicity being dom-

inant factors.

Our contribution is empirical in nature with fundamen-

tal implications for the theoretical design of future height

and pose estimation approaches. First, we have confirmed

that, in this area as in many others, Deep Nets can be trained

end-to-end and exceed the state-of-the-art in accuracy [17].

However, this requires a training set several orders of mag-

nitude larger than those used in previous studies, which are

featuring only a handful of subjects [18, 19, 20]. We have

therefore introduced a novel and practical approach to min-

ing a large training dataset via label propagation and we will
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Figure 1. Examples from IMDB-100K. Profile images have been matched to additional images. Thereby, height labels on portrait images

are propagated to all the assigned images.

make the resulting database publicly available.

Second, and most importantly, we have demonstrated

that the geometric reasoning about the difficulty of the

monocular height estimation problem remains valid in the

age of deep learning. Despite the deep network with large

capacity, a big dataset, and well-defined input-label pairs

the estimates remain uncertain with a mean absolute error

of 5.56cm, which only slightly exceeds the predictive power

of the population mean, attaining 5.91cm.

2. Related Work

There are several algorithms that can infer age [21, 22,

23, 24] or emotional state [25, 26] from single images with

high reliability, often exceeding that of humans, in part be-

cause these are not affected noticeably by scale ambiguities.

By contrast, there are far fewer approaches to estimating hu-

man size and we review them briefly here.

Geometric height estimation. The height of standing

people can be estimated geometrically from a single image

under some fairly mild assumptions. This can be done by

finding head position and foot contact through triangulation

when the camera height and orientation in relation to the

ground plane is known [1, 2, 4], computing the vanishing

point of the ground plane and the height of a reference ob-

ject in the scene [3, 27], or accounting for the height of mul-

tiple nearby reference objects [3, 5]. However, the neces-

sary knowledge about camera pose, ground plane, and feet

contact points is often unavailable.

Height from camera geometry. Without external scale

information, object size is ambiguous according to the ba-

sic pinhole camera model. In practice, lenses have a lim-

ited depth of field, which shape-from-defocus techniques

exploit [28, 29] to estimate distance. It can be used to guess

depth orderings in a single image. However, a focal sweep

across multiple images or a specialized camera [30] is re-

quired for metric scale reconstruction.

Height from image features. In [16], face position

and size are used to measure relative heights in pixels first

in group pictures and then in image collections featuring

groups. Absolute height is estimated from the network of

relative heights by enforcing consistency with the average

human height, which is effective but only for group photos.

Closest to our approach are the data-driven ones of [17] and

[31]. The former uses a linear-regressor to predict height

from keypoint locations in the input image. The results of

an anthropometric survey [32] are used to train the regres-

sor. However, even though the keypoints are supplied man-

ually, the results on real images barely exceed what can be

done by predicting an average height for all subjects. By

contrast, our DeepNet regressor is non-linear, can learn a

much more complex mapping that accounts for the uncer-

tainty of image-feature extraction, does not require manual

annotation of keypoints, and yields better results. [31] use a

deep network similar to ours, but test facial features as input

only and train on a much smaller dataset, leaving open the

question whether deep nets can succeed given sufficiently

large datasets and facial as well as full-body information.

Our network architecture is inspired by deep networks

used for 3D human pose prediction [33, 34, 35, 36, 37, 38,

39, 40]. However, we will show that training on the existing

3D pose datasets with a handful of subjects is insufficient,

which was our incentive for creating a larger one.

Height from body measurements. Medical studies sug-

gest that the height of an individual can be approximated

given ratios of limb proportions [6], absolute tibia length

[15], foot length [7], and the ratio of head to shoulders

[8, 9]. Also human perception of height seems influenced

by head to shoulders ratio, which suggests a real link be-

tween head to shoulders ratio to actual height [10, 11, 12].

There is also a body of anthropological research about in-

ferring the living height of the individual from the length

of several bones in their skeletons, which indicates that

height can be approximated given the size of some body

parts [13, 14, 15].While these studies indicate that height es-

timation should be possible from facial and full-body mea-

surement, there is no easy way to obtain them from single

uncalibrated images and it is not known how naturally oc-

curring feature extraction error influences accuracy. In par-

ticular, the often mentioned absolute length measurements

cannot be inferred directly from 2D images.



Figure 2. Identity matching. Samples from the processed IMDB-100K dataset, with an overlay of the assigned subjects’ 2D pose, head

detection, identity and height annotation. In favor of reliable assignments opposed to false assignments, some persons remain unassigned.

3. Method

Our goal is to estimate human height, h ∈ R, from a sin-

gle RGB image, I ∈ R
3×n×m, without prior knowledge of

camera geometry, viewpoint position, or ground plane lo-

cation. This setting rules out any direct measurement and

requires statistical analysis of body proportions and appear-

ance from the images only. We therefore follow a data-

driven approach and infer the relationship between image

content and human height through machine learning.

To make the method independent of scene-specific con-

tent, we first localize people in the image and then learn

a mapping fθ(Ī) from image crops Ī that tightly contain

the target subject. To this end, we first introduce a diverse

dataset of cropped image-height pairs, D = {(Īi, hi)}
N
i ,

with N examples (Sec. 3.1). Then, we explore different

image features and neural network architectures to infer pa-

rameters θ of fθ(I) that robustly predict height h given a

new input Ī (Sec. 3.2).

3.1. Dataset Mining

Although existing 3D pose datasets contain human

height information, they are limited to a handful of sub-

jects [18, 19, 20] (Human3.6Million, HumanEva and MPII-

INF-3DHP). On the other hand, datasets build from web

content and comprising anonymous individuals [41, 42, 43]

(MPII-2D, BBC-Pose, COCO) do not include height infor-

mation. We therefore create the first large scale human

height dataset containing more than a handful of subjects.

Our dataset includes 12.104 subjects in the final version

with known height. We started from a medium-sized one

containing people of known height, which we then enlarged

using face-based re-identification and pruned by enforcing

label consistency and filtering on 2D pose estimates. Fig. 1

depicts the result.

Initialization. We used the IMDB website as our start-

ing point. As of February 2018, it covers 8.7 million show-

business personalities.1 To find heights of people and cor-

responding images, we crawled the most popular 100.000

1https://www.imdb.com/pressroom/stats/

actors.2 We found 12,104 individuals with both height in-

formation and a profile image involving a single face.

Augmentation. IMDB also has more than a million im-

ages taken at award ceremonies and stills from movies, in-

cluding full-body images of our 12,104 individuals. Al-

though there are associated labels specifying the actors

present in the image, these labels do not specify location

of the person in the image, which makes the association of

height labels to a single person in image potentially ambigu-

ous, especially if there are several people present.

Formally, let I be an image that should be labeled and

SI be the subject labels given by IMDB. We φ run a face

detection algorithm [44], which returns a set KI of detected

individuals and for each k ∈ KI the head location in terms

of a bounding box and a feature vector vk that describes

the appearance compactly. When there is only one person

in the image, we can directly attribute the associated height

information to the detected subject. This has enabled us to

create a first annotated dataset of 23,024 examples, which

we will refer to as IMDB-23K.

The same strategy was used to create the IMDB-WIKI

dataset to learn age from facial crops [21]. However, we

also need the rest of the body and want to create a richer

database by also using images with several people and

multiple detections. To associate labels and detections in

such cases, we compute from the profile image of each

subject j ∈ SI a facial descriptor vs.l and store its eu-

clidean distance from comparable descriptors for all detec-

tions {vk}k∈KI
in image I . This yields a distance matrix

D ∈ R
nK×nS between all the vk and vs.j descriptors. To

match one vk to a specific vs.j , we make sure that D[k, j]
is smaller than all other distances in row k and column j,

that is vk is the closest match to all vs. in the list of sub-

jects and, similarly, vs.j is the closest match to all v in the

list of detections. In practice, we apply an additional ra-

tio test to ensure the assignment is reliable: We assign vs.j
to the best matching feature vector k∗ = argmink D[k, j],

but only if the quotient q = D[k∗,j]
mink �=k∗ D[k,j] is smaller than

2http://www.imdb.com/search/name?gender=male,

female
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Figure 3. Qualitative evaluation. Results on test set of IMDB-test shown as prediction/ground-truth in centimeters.

τ = 0.9. That means best match must be significantly better

than the second-best match to be accepted. This produces a

much larger set of 274,964 image-person pairs with known

height, which we will refer to as IMDB-275K. We show a

few examples in Fig. 2.

To estimate the accuracy of our assignments in IMDB-

275K we randomly select 120 images which include multi-

ple faces, where assigning and identity to faces is non-trivial

and possibly erroneous. Out of the 331 IMDB labels in 120

images, we assigned 237 labels to faces inside the images,

where only 5 of the assignments were wrong. We also re-

peated the same experiment for IMDB-23K, where assign-

ment is much easier. We again selected 120 random images

and check the accuracy of the assignments. We observed

only a single mismatch. Overall this corresponds to an esti-

mated label precision of 98.0% and recall of 70.1%.

Filtering and preprocessing. As discussed in the Re-

lated Work section, previous studies suggest that full-body

pose and bone-length relations contain scale information.

Therefore, we run a multi-person 2D pose estimation algo-

rithm [45] on each dataset image I and assign the detected

joints to the subject whose estimated head location as pre-

dicted by the face detector [44] is closest to the one esti-

mated by the 2D pose extraction algorithm. The 2D joints

are then used to compute image crops Ī that tightly enclose

the body and head. The face is similarly cropped to Ĩ , as

shown in the left side of Fig. 4.

Finally, we automatically exclude from IMDB-275K im-

ages missing upper body joints or whose crop is less than

32 pixels tall. This leaves us with 101,664 examples, which

we will refer to as the IMDB-100K dataset. We also applied

this process to IMDB-23K. In both cases, we store for each

person the annotated height h, a face crop Ĩ , a facial feature

vector v, a pose crop Ī , a set of 2D joint locations p, and

the gender if available.

Splitting the dataset. We split IMDB-100K into three

sets, roughly in size 80k, 15k and 5k images for training,

testing and validation, respectively.

3.2. Height Regression

Since there is little prior work on estimating human

height directly from image features, it is unclear which fea-

tures are the most effective. We therefore tested a wide

range of them. To the face and body crops, Ĩ and Ī , dis-

cussed in Section 3.1, which we padded to be 256 × 256,

we added the corresponding 2D body poses, in the form

of 2D locations of keypoints centered around their mean

and whitened, along with 4096-dimensional facial features

computed from the last hidden layer of the VGG-16-based

face recognition network of [46].

Given all these features, we tested the three different ap-

proaches to regression depicted by Fig. 4. A baseline that

resembles the state-of-the art:

• Linear. Linear regression from the pre-computed 2D

pose and facial features vectors, as in [17].

As well as two, more complex, neural network architec-

tures:

• ShallowNet. Regression using a 4-layer fully con-

nected network as used in [35]. ShallowNet operates

on the same features as Linear.

• DeepNet. Regression using a deeper and more com-

plex network to combine fine-grained facial features

with large-scale information about overall body pose

and shape. It uses two separate channels to compute

face and full body features directly from the body and

face crops, respectively, and uses two fully connected

layers to fuse the results, as depicted in Fig. 4. By con-

trast to ShallowNet, we train this network end-to-end

and thereby optimize the facial and full-body feature

extraction networks for the task of human height es-

timation using MSE Loss. To allow for a fair com-

parison, we use the same VGG architecture in the

face stream[46]. For the full body one, we utilize a

ResNet [47].

4. Evaluation

We now quantify the accuracy brought about by our es-

timation and try to tease out the influence of its individual



Face and 2D pose detections

Full-body crop

Face-crop

Cropping ResNet 50

VGG

Fully-connected layers

+

Fully-

connected

layers

Human

height

Human

height

DeepNet ShallowNetCoarse stream

Fine stream

Preprocessing

Linear

Linear layer

Human

height

+

2D pose & face

feature vectors

+

2D pose & face

feature vectors
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with DeepNet, a two-scale deep convolutional network that is trained end-to-end, and a simple ShallowNet, that operates on generic image

features, and with Linear, which is a simple Linear Regression.

components, dataset mining, and network design. We also

show some example results on Fig. 3 for the most popular

actors from the test split of IMDB-100K.

Metrics. We report height estimation accuracy in terms

of the mean absolute error (MAE) compared to the anno-

tated height in cm. We also supply cumulative error his-

tograms.

Independent test set. To demonstrate that our training

dataset is generic and that our models generalize well, we

created Lab-test, an in-house dataset containing photos of

various subjects whose height is known precisely. Since

it was acquired completely independently from IMDB, we

can be sure that our results are not contaminated by over-

fitting to specific poses, appearance, illumination, or angle

consistency. Lab-test depicts 14 different individuals with

10 photos each. Each one contains a full body shot in dif-

ferent settings, sometimes with small occlusions to reflect

the complexities of the real world. The subjects are walk-

ing in different directions, standing, or sitting. Individuals

span diverse ethnicities from several European and Asian

countries, and heights ranging from 1.57 to 1.93 in meters.

Baselines. We compare DeepNet against the following

baselines in order of increasing sophistication:

• ConstantMean. The simplest we can do, which is

to directly predict the average height of IMDB-100K,

which is 170.1 centimeters.

• GenderMean. Since men are taller than women on

average, gender is a predictor of height. We use the

ground-truth annotation as an oracle and the gender-

specific mean height as the prediction, which are 166

cm for woman and 180 cm for man.

• GenderPred. Instead of using a gender oracle, we train

a network whose architecture is similar to DeepNet

to predict gender instead of height and again use the

gender-specific mean height as the prediction.

• Linear and ShallowNet as introduced in Sec. 3.2.

• PoseNet. We re-implemented the method of [20] that

predicts 3D human pose in absolute metric coordi-

nates after training on the Human3.6M dataset [18].

Height information is extracted from the predicted

bone lengths from head to ankle. To accommodate for

the distance from ankle to the ground, we find the op-

timal constant offset between the predicted height and

the ground truth height on IMDB-100K, in the least

squares sense.

4.1. Comparative Results

We report our mean accuracies on IMDB-100K and Lab-

test along with those of the baselines at the top Tab. 1(a).

DeepNet, which is our complete approach, outperforms

them on both, with GenderPred being a close second. This

shows that knowing the gender is indeed a strong height

predictor, but it is not the only one. To confirm this, we re-

train DeepNet for men and women separately and compared

IMDB-100K Lab-test

Method all women men all

ConstantMean 8.25 7.46 9.22 11.0

GenderPred 6.61 6.28 7.12 9.26

PoseNet [20] - - - 10.65

DeepNet (ours) 6.14 5.88 6.40 9.13

GenderMean 5.91 5.63 6.23 8.66

DeepNet (gender-specific) 5.56 5.23 6.03 8.53

(a)

Regression type

Input features Linear ShallowNet DeepNet

Body crop only 7.56 / 11.10 7.10 / 10.40 6.40 / 9.43

Face crop only 6.49 / 10.25 6.31 / 9.99 6.25 / 8.87

Body and Face 6.40 / 10.2 6.29 / 9.92 6.14 / 9.13

(b)

Table 1. Mean Absolute Error (MAE) in cm on IMDB-100K

and Lab-test. (a) Comparison against our baselines. (b) Ablation

study, accuracies are given in IMDB-100K / Lab-test format.
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Figure 5. Cumulative error analysis. DeepNet improves significantly and consistently across all error segments on GenderPred and other

baselines (first plot). Compared to GenderMean, the improvement is small but consistent, except for the 4cm mark (second plot). The

gender specific analysis reveals that improvements on GenderMean are more pronounced for women (third plot compared to the second

plot). The rightmost (fourth) plot gives an indirect comparison to Benabdelkader et al. [17], who evaluated on a different private dataset

but used the same metric and baseline.

its accuracy to that of GenderMean, shown at the bottom of

the table. Our full approach improves upon gender specific

means, somewhat unexpectedly, more for women than for

men.

The accumulated error histograms in Fig. 5 show that

these findings are consistent. DeepNet improves signifi-

cantly on GenderPred (first plot), consistently on Gender-

Mean across different error ranges (second plot, 4cm mark

is the only exception), and that the performance on women

is systematically better. Furthermore, the rightmost plot of

Fig. 5 allows an indirect comparison to [17]. The authors of

[17] evaluate on a different private test set. However, none

of their variants exceeds the GenderMean baseline consis-

tently, while ours does, particularly for women.

The second baseline we discuss is PoseNet, which does

not do particularly well, presumably because it has not

learned the vast variety of possible body shapes because

it has been trained on many images but all from only five

subjects. We demonstrate in a subsequent experiment that

orders of magnitudes more subjects are needed.

In Table 1(b), we report the results of an ablation study in

which we ran the three versions of our algorithm—Linear,

ShallowNet, and DeepNet introduced in Section 3.2—on the

full dataset, on the faces only, or on the body only. In all

cases, DeepNet does better than the others, which further

indicates that it also outperforms the state-of-the-art algo-

rithm [17], which Linear emulates.

Most conclusions drawn from experiments on IMDB-

100K are confirmed on Lab-test. Surprisingly, using both

body and faces helps on IMDB-100K, but not on Lab-test

where using the faces only is best. We suspect that the poses

in Lab-test are more varied than in IMDB-100K and, there-

fore, face features generalize better. Furthermore, there is

also a wider spread of heights in Lab-test and other biases

due to its smaller size, which might contribute to this be-

havior. When either pose or facial features are used, facial

features are superior on both datasets, which further suggest

that facial features provide the most important cues. This

hints at determining gender and ethnicity being dominant

factors, but also head-size could play a role.

Overall, the seemingly strong predictive power of gen-

der and relatively small improvements brought by full-body

and facial features demonstrates that monocular scale esti-

mation remains a largely ill-posed problem.

4.2. Dataset Size and Quality

In Fig. 6, we plot the accuracy of our model as a func-

tion of the size of the training set. It clearly takes more

than 10,000 to 20,000 images to outperform GenderMean.

Interestingly, it seems to take more images for men than

women, possibly due to the larger variance in men height.

This indicates the results we report here for men might not

be optimal yet and would benefit from using an even larger

training set.

The method of [31] has been trained on a much smaller

set 1400), and reports a much larger error (7.7 cm MAE).

Albeit errors are reported on a different test set, this con-

firms the finding that much larger datasets are needed to

train deep nets on the height estimation problem.

To estimate the accuracy of our assignments in IMDB-

275K we randomly select 120 images which include mul-

tiple faces, where assigning identity to faces is non-trivial

and possibly erroneous. Out of the 331 IMDB labels in 120

images, we assigned 237 labels to faces inside the images,

where only 5 of the assignments were wrong. We also re-

peated the same experiment for IMDB-23K, where assign-

ment is much easier. We again selected 120 random images

and check the accuracy of the assignments. We observed

only a single mismatch. Overall this corresponds to an esti-

mated label precision of 98.0% and recall of 70.1%.

5. Discussion and Limitations

We have made the best possible effort of creating a large

enough dataset, validated that the proposed label assign-

ment is effective introducing negligible label noise (dot vs.
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Figure 6. Accuracy as a function of the training dataset size.

We plot separate curves for men and women.

line in Fig. 6), and ensured that all available information

(face, full-body, and articulated pose) is accessible to the

network. In spite of using a deep network with large capac-

ity and a big dataset of well-defined input-label pairs to train

it, there remain substantial uncertainty in our size estimates.

This also reflects the fact that scale ambiguity remains a dif-

ficult computer vision—and even human vision—problem

and that additional context cues remain needed. One fu-

ture direction of research will be making sure the dataset is

consistent, possibly by validating the annotations in group

pictures [16]. Furthermore, if some annotations can be iden-

tified as unreliable, this could be modeled by incorporating

a confidence value during training and prediction.

6. Conclusion

With 274,964 images and 12,104 actors, the dataset we

created is the largest one to date for height estimation. The

label association it provides can be used not only for height

estimation but also to explore other properties of human ap-

pearance and shape. We experimented with different net-

work architectures that improve on current height estima-

tion algorithms. However, some scale ambiguity remains

and is unlikely to be solved by machine learning alone.

Our findings have several implications for future work in

the area of height prediction. As there remains a substan-

tial amount of height uncertainty, human 3D pose estima-

tion algorithms should not be evaluated in metric space, as

is often done, but after scale normalization; the inevitable

inaccuracies in height estimation should be evaluated sep-

arately. Furthermore, if absolute height is desired, a large

dataset must be used for training purposes to cover the large

variations in human shape, pose and appearance. Finally, it

is important to use facial features on top of full-body infor-

mation for height regression.
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