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Abstract

Video instance segmentation (VIS) is a composite task

that requires the joint detection, tracking, and segmentation

of objects in a video. In this work, we introduce a com-

plete framework for VIS, which integrates the strengths of

instance segmentation and general object tracking in ad-

dressing the unique challenges of VIS. In developing the

framework, we investigate effective ways of coordinating

the two components for maximum benefits while thoroughly

investigate their separate contributions. Our approach im-

proves over the official baseline by an absolute 14.4% in

mAP and achieves the second place in the 2019 YouTube-

VIS challenge.

1. Introduction

In this work we consider the recently proposed task of

video instance segmentation [24], which aims at the simul-

taneous detection, tracking, and segmentation of objects

present in a video. Given a video that records a set of mov-

ing objects, an algorithm must predict the category of each

object while precisely delineate the object at each frame.

Under such formulation, the sequence of instances of the

same object across a video’s frames is considered as a video

instance, a counterpart of the notion of instance from the

image domain. Therefore when tackling video instance seg-

mentation, it is sensible to exploit the existing results in im-

age instance segmentation, or, object detection. The crucial

challenge remains of designing a system that can effectively

establish consistent object tracks using image-level detec-

tions and resolve any classification inconsistencies that arise

along the track of an object.

Thus in designing our solution, first and foremost we aim

to obtain strong object detection results, which we achieve

by employing state-of-the-art object detection models and

data augmentation techniques. In order to associate indi-

vidual detections from each frame into consistent object

tracks, we draw inspirations from a common methodol-

ogy in multiple-object tracking, tracking-by-detection, and

adopt a Siamese object tracker for establishing object corre-

spondences across frames. Due to challenges such as defor-

mation and occlusion, object detection may fail to classify

an object consistently during the course of its track, causing

ambiguity when predicting its category. To address this is-

sue, we develop a re-classification method for object tracks

by leveraging an image classifier, which significantly im-

proves the performance of our overall model.

2. Related Work

Video instance segmentation [24] overlaps with many

existing tasks in the areas of detection, tracking, and seg-

mentation of objects in videos. In this section, we provide a

brief overview on each of the related tasks.

Visual object tracking [14] aims to localize an object

captured in a video through its sequence of frames, with

object’s initial location given in the first frame. Recent ad-

vances in this area include the Siamese networks [3] and

correlation filter-based methods [10, 22]. In this work,

we exploit the efficiency of the light and robust Siamese

tracker, SiamMask [23], for fast tracking and accurate seg-

mentation of objects in videos.

Multiple-object tracking [15] aims to localize an arbi-

trary number of objects throughout a video. As no initial-

ization of object locations is given at inference time, most

methods employ object detection algorithms for target ob-

ject proposals. The top-performing class of tracking-by-

detection methods [21, 28] link individual detections from

each frame into object tracks via association.

Video object segmentation [19] seeks to delineate the

objects present in a video and falls under one of supervised,

semi-supervised, and unsupervised settings depending on

the amount of ground-truth annotations available at infer-

ence time. Many recent advances have been made in this

challenging area (e.g., [1, 5, 17, 18, 25, 26]).

Object detection [12] algorithms locate and classify ob-

jects in images, and often form the basis of state-of-the-art

solutions in the aforementioned tasks. In our work, we take

advantage of the newest developments by employing the

state-of-the-art multi-stage object detector, HTC [8], which



Figure 1: The proposed framework for video instance segmentation.

advances Mask R-CNN [13] and Cascade R-CNN [7] with

a novel cascade structure of top-layer heads, and applying

the recently proposed data augmentation technique, Insta-

Boost [11], to further improve our detection results.

3. Method

Our method draws inspirations from the paradigm of

tracking-by-detection [28] for multiple-object tracking [15]

and is an improvement over the recent proposal of video

segmentation-by-detection [25] for unsupervised video ob-

ject segmentation [6]. Figure 1 schematically illustrates

our proposal. Given a new frame with detection masks

from an object detector, an association module computes

similarity scores between existing tracklets (maintained by

SiamMask [23]) and these newly detected objects. By re-

peating this step at each frame, we obtain a set of object

tracks. When classifying each object track (hence the ob-

ject), we develop a special re-classification algorithm for

improving the classification accuracy. Finally, our algo-

rithm outputs the set of object tracks in masks, with a cor-

responding class label for each object.

3.1. Proposal generation

It is shown that improving detection accuracy signifi-

cantly improves the performance of a multiple-object track-

ing algorithm [27]. As we also use detection results as tar-

get proposals, we employ a set of strategies to improve the

quality of detections, including several off-the-shelf tricks,

which are discussed below.

Better Detector. Instead of using Mask R-CNN for pro-

posal generation, as is done in the offical baseline [24], we

adopt HTC [8], with a ResNeXt101-DCN [9] backbone. As

shown in Table 1, the quality of the detector contributes

greatly to the final performance.

Auxiliary training data. While YouTube-VIS contains a

total of 131,000 object masks, the number of unique ob-

jects is 4,883, averaging 122 objects for each category. In

order to increase data diversity, we expand our training data

to include a subset of COCO [16] and OpenImage [2] data

sets.

Data augmentation. In addition to conventional data aug-

mentation strategies (e.g., random scaling and cropping),

we adopt InstaBoost [11] to further improve data efficiency.

Mirrored input. Rotating, mirroring, and multi-scaling of

the input are some standard practices applied at test time for

object detection. We find that only mirrored input improves

the detection performance on YouTube-VIS, which may be

attributed to the generally larger size of its objects.

3.2. Mask propagation

After proposal generation, we must associate the propos-

als of the same object across different frames into an object

track. While many good choices of visual object trackers

and video object segmentation models are available for es-

tablishing object correspondences across frames, we choose

SiamMask for its efficiency and robustness agaist noisy ini-

tializations. In addition, compared to trackers based on mo-

tion models such as the Kalman filter [4], SiamMask pro-

vides more accurate state estimations, with a tracking score

that can indicate when a target goes out of view and a seg-

mentation mask that can substitute for a missing detection.

Our modified version of SiamMask is illustrated in Fig-

ure 2, which is composed of two original SiamMask mod-

els stacked in a cascade manner, which we refer to as stages

one and two. In the first stage, the box branch of SiamMask

generates an initial proposal of the object’s location, which

is used in the second stage for predicting a refined mask of

the object. This tracking mask is used to find the object

proposal that should be associated with the current object

track. Specifically, we compute the IoU between this track-

ing mask and each new detection mask, and threshold at 0.7

when the predicted categories of the two are the same and

0.4 otherwise.



127*127*3

255*255*3

box

score
127*127*3

box

score

mask

Figure 2: A modified two-stage variant of SiamMask, in which we stack two original SiamMask models in a cascade manner

to provide more accurate localization and segmentation.

3.3. Re-classification of object tracks

After obtaining the set of object tracks, we still need to

assign a class label to each of them, which represents the

category of the object. A straightforward approach is to av-

erage the class probabilities from detections along the track

and assign the label of the highest probability. Adopting this

approach, however, we find that around 10% of the objects

from the validation set are misclassified. And if an object is

misclassified, even a perfect segmentation track still counts

zero in the evaluation metric. In our case, we find that the

classification accuracy of object tracks becomes the bottle-

neck in the whole pipeline.

Therefore, we introduce an offline post-processing step

to predict the final class label of an object track. Specif-

ically, we employ a state-of-the-art image classifer, HR-

Net [20], and feed it cropped image patches of the object

along the track, to obtain a new track of classification prob-

abilities for this object. We then average the probabilities

across the track and assign the object the label of the high-

est probability. This step is only performed when the object

is larger than a size threshold (set as 100 pixels) and the

predictions along the track have been inconsistent.

4. Experiments

The YouTube-VIS data set comprises 2,883 high-

resolution videos with annotated objects in 40 categories

and a total of 131,000 masks. The evaluation metrics are

average precision (AP) and average recall (AR). We refer

readers to [24] for details.

To analyze quantitatively the importance of each of the

components in our framework, we provide evaluation re-

sults after components ablation in Table 1. We can see that

object detection and our re-classification strategy both play

a vital role in achieving good performance, as we lose 9.4

and 4.4 absolute points in mAP without each. The contri-

bution from auxiliary training data is significant as perfor-

Model mAP △mAP R10 △R10

MaskRCNN-R50-FPN 0.272 0.0 0.304 0.0

HTC-X101-DCN 0.310 +0.038 0.381 +0.077

+ COCO & OpenImage 0.353 +0.043 0.426 +0.045

+ Mirror + InstaBoost 0.366 +0.013 0.423 -0.003

+ two stage SiamMask 0.381 +0.015 0.439 +0.016

+ Re-classification 0.425 +0.044 0.478 +0.039

Table 1: Ablation studies on the validation set of YouTube-

VIS. △mAP and △AR10 denote, respectively, absolute im-

provements in mAP and AR@10.

Team mAP AP50 AP75 R1 R10

Jono 0.467 0.697 0.509 0.462 0.537

foolwood 0.457 0.674 0.490 0.435 0.507

bellejuillet 0.450 0.636 0.502 0.447 0.503

linhj 0.449 0.665 0.486 0.453 0.538

mingmingdiii 0.444 0.684 0.487 0.436 0.508

baseline [24] 0.313 0.503 0.338 0.335 0.369

Table 2: Performance comparison of different methods on

the test set of YouTube-VIS. Our results are in bold.

mance decreases by 4.3% without it. In addition, mirrored

input, InstaBoost, and the improved structure of the tracker

each contributes reasonbly to the final performance.

Table 2 shows comparison with the state of the art with

final results on the test set. In Figure 3, we further demon-

strate visualizations of segmentation results on some chal-

lenging videos, which cover objects in different scales and

undergoing large deformation or in fast motion.

5. Conclusion

In this paper, we present an integrated framework for

video instance segmentation. With detailed analyses, we

show how, existing research efforts for object detection and

visual object tracking can be effectively utilized in this new
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Figure 3: Qualitative results of our method on videos in Youtube-VIS.

task, and highlight contributions from a set of very practi-

cal techniques. Our overall system achieves state-of-the-art

performance on the challenging data set of YouTube-VIS.
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