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Abstract

In this paper, we propose a novel motion-guided atten-

tion module to implant the spatial and time consistency in

the correlation map of the current frame with the histori-

cal frames. Unlike other mask propagation based methods,

our method regards the previous mask as a strong prior in-

stead of concatenating it to the current frame or feature

for propagation. Additionally, to reduce the gap between

training and testing phase, we propose an improved opti-

mization strategy, named sequence learning, which feeds a

video in chronological order into the end-to-end network

instead of several random-sampling frames when training.

Sequence learning helps our model be better aware of the

concept of tracking and recognition of object. We evaluated

the proposed algorithm on the second YouTube-VOS test-

challenge set and achieved a J&F mean score of 81.7%,

ranked the second place on the VOS track. In the challenge,

our method only uses ResNet-50 as the backbone and our

score is very slightly worse than the first place score, i.e.,

0.1%, which implies that our VOS framework is the state-

of-the-art one.

1. Introduction

Semi-supervised Video Object Segmentation (VOS) is a

fundamental task in computer vision for years and widely

applied in video editing, autonomous driving, etc. Given

a video and the first frame’s annotation of single or multi-

ple object(s), the algorithm has to provide the instance seg-

mentation maps of the specified object(s) in the following

frames. Challenges like large appearance changes, simi-

lar instance distractors, occlusion, fast motions etc. are fre-

quently appeared in this task.

Recently embedding matching based methods make

great advances in VOS. PML [1] assigns each pixel in cur-

rent frame to foreground or background by measuring the
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distances between the pixel with all pixels in the reference

pool. FEELVOS [9] extends it with global and local em-

bedding matching, and implements in an end-to-end man-

ner. STM [6] further brings the embedding matching with

historical frames into the non-local operation, boosting the

performance a lot. However, such embedding-based meth-

ods usually emphasize on the appearance matching. In other

words, the predicted masks of historical frames are only

used as a reference, but the temporal consistency is not fully

utilized. As we known, the previous predicted mask is a

strong spatial prior for VOS, but it is not fully used. More-

over, these methods are usually trained only with several

cropped random-sampling frames for each iteration, e.g. all

the mentioned methods (PML, FEELVOS, STM) sample

three cropped frames when training, but the testing videos

mostly contain dozens of frames. The difference between

training and testing will bring a definite gap for algorithms.

To alleviate the problems above, we propose a novel

motion-guided attention module, unifying the spatial prior

and appearance matching concisely. This module takes the

previous predicted mask and the current frame’s feature to

learn a one-channel spatial probability map, then does mul-

tiply operation with the correlation map of the current frame

and the selected historical frames. This spatial probabil-

ity map provides a coarse prior when predicting the current

frame, so that it is able to suppress unrelated but similar

pixels (False Positive) far from the interested objects in the

current frame. Another contribution we made is sequence

learning. For each iteration, we feed the network a full res-

olution video in chronological order. In this way, our model

could be trained on dozens of continuous frames, which

helps the network be aware of tracking concept instead of

pure appearance matching.

2. Method

Our method is derived from the STM [6] framework,

which classifies each pixel in the current frame a foreground

or background by applying non-local matching with pre-

dicted historical frames. To be specific, we implant spa-



F1 ⊕ M1

···

F
n−t

⊕ M̂
n−t

···

F
n−1 ⊕ M̂

n−1 F
n

Encoder M Encoder M Encoder M Encoder Q

k1 v1 k
n−t

v
n−t

k
n−1 v

n−1 k
n v

n

Concat.

 … k1 k
n−1TxHxWxCk

Motion Guided Attention Op.

KeyProb. Map

Concat.

 … v1 v
n−1TxHxWxCv

Matrix Mul.

Corr. Feat.

Decoder Q

M̂
n−1

: features

: operations

Figure 1. Overview of the proposed method. Given a certain video and the first frame’s annotation (F1 and M1), we encode the concatenated

input (F1 ⊕ M1) to get the key and value embeddings (k1 and v1). Similarly we can obtain key and value embeddings for frames

t, ..., n− t, n− 1 before predicting frame n. For the current frame, we use another encoder to get embeddings. Then we use the previous

M̂n−1 as the spatial prior, applying non-local operation between the current and all historical embeddings. The correlation feature with the

current frame can be extracted from the historical value embeddings by matrix multiplication. The main differences between our method

and STM are the motion-guided attention operation and optimization strategy.

tial prior into the non-local matching operator, which is de-

scribed in Sec. 2.1. In Sec. 2.2, we propose an improved

optimization strategy named sequence learning. The frame-

work is shown in Fig 1.

2.1. Motion-Guided Attention Module

Our proposed motion-guided attention module aims to

introduce spatial prior in the standard non-local operation

when predicting the current frame, and the pipeline is de-

picted in Fig 2. It takes all saved historical key embed-

dings, current frame’s key embedding and previous pre-

dicted mask as inputs, denoted as {k1, ..., kn−1}, kn and

M̂n−1 respectively.

Firstly we follow the non-local operation (Space-Time

Memory Reader) proposed in STM in left part of Fig 2. The

key embedding of the current frame is flatten into a vector

in spatial dimension (from H×W ×Ck to HW ×Ck), also

for the memorized key embeddings (from T ×H×W ×Ck

to THW × Ck, T means the number of frames). Then the

correlation probability map with shape of THW × HW

can be obtained by matrix multiplication and SoftMax op-

eration. As the temporal consistency in video, the previous

frame is always high correlated with the current frame in
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Figure 2. Motion-guided attention module diagram.

the diagonal direction. Secondly on the right half is our

proposed motion-guided part. The previous predicted result

M̂n−1 is a 0-1 mask with shape of H × W × 1. Specif-

ically, we encode M̂n−1 with a two-dimensional Gaussian
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Figure 3. Typical visualization comparison with the two proposed modules. The left half figure shows our motion-guided module suppresses

the similar pixels and is better at recognizing a complete object. The right half shows sequence learning improves the completion of

interested objects.

heatmap similar to [11]. If the mask is empty, i.e. the value

of each pixel is 0, we simply reverse the value to 1. Then we

concatenate the current key embedding kn and the encoded

mask Gauss.(M̂n−1) to learn W and b, which are param-

eters to control the weight of spatial prior. The shapes of

W and b are both H × W × 1. After a linear combina-

tion W ∗ Gauss.(M̂n−1) + b and multiplication with the

mentioned correlation map, we can suppress the spatial un-

related but appearance high relevant pixels effectively. We

show some typical examples in Fig 3.

2.2. Sequence Learning

In the training phase, most embedding based methods

sample several cropped random-sampling frames from a

video, to learn the tracking concept. However, the testing

videos contain mostly dozens of frames. To eliminate the

training and testing gap, for each iteration we feed the net-

work a full-resolution video in chronological order. To be

specific, given the first full-resolution frame F1 and its an-

notation M1, the network outputs all frames’ predictions

frame by frame, e.g. M̂2, M̂3, .... In some state we give one

frame e.g. Fm to the network, and the network outputs the

prediction M̂m. In the next, Fm+1 is given to the network

which outputs M̂m+1. The process is repeated till the end

of the video. Because of the GPU RAM limitation, we back

propagate the gradients only on each predicted frame indi-

vidually. The negative impacts are that this strategy is GPU

memory and computation unfriendly. In practice we use

eight NVIDIA V100 GPUs with 16 GB GPU memory.

3. Experiments

We follow the training settings in STM, which uses EC-

SSD [8], MSRA10k [2], VOC0712 [3], COCO [5] as pre-

training data, and YouTube-VOS [10] as main training data.

The encoders use ResNet-50 [4] as backbone. The valida-

tion and test-challenge set (2019 version) contain 507 and

541 videos respectively. The evaluation metrics are the re-

gion similarity J and contour accuracy F proposed in [7].

3.1. Results

As shown in Table 1, our proposed method achieves

overall score of 81.7% on the second YouTube-VOS test-

challenge set (Semi-supervised VOS Track) and ranks the

second place. Our method has a better generalization abil-

ity than the first entry, both in J and F , but is weaker in

fitting the seen categories.

3.2. Ablation Study

To study the contribution of the two proposed compo-

nents, we show some quantitative results in Table 2. The

baseline is our re-implementation of STM, without any

challenge tricks like online learning, multi-scale testing or

hard mining.



Table 1. Ranking results in the YouTube-VOS 2019 test-challenge. In parentheses we place the ranking for each measure category. “seen”

and “unseen” indicate whether the categories of tracking instances appeared in training set or not. We mark our results in blue.

Team Overall Jseen Junseen Fseen Funseen

zszhou 81.8 (1) 80.7 (1) 77.3 (2) 84.7 (1) 84.7 (2)

Ours 81.7 (2) 80.0 (2) 77.9 (1) 83.3 (2) 85.5 (1)

zxyang1996 80.4 (3) 79.4 (3) 75.9 (4) 83.3 (3) 83.1 (4)

swoh 80.2 (4) 78.8 (4) 75.9 (3) 82.5 (4) 83.5 (3)

youtube test 79.1 (5) 77.9 (5) 74.7 (5) 81.5 (5) 82.2 (5)

Jono 71.4 (6) 70.3 (9) 68.0 (6) 73.6 (9) 74.0 (7)

andr345 71.0 (7) 69.9 (10) 66.7 (7) 73.2 (10) 74.0 (6)

hthieu 68.8 (8) 70.7 (7) 61.9 (8) 74.2 (8) 68.5 (8)

JLU thunder 68.7 (9) 71.3 (6) 61.0 (9) 75.0 (6) 67.3 (9)

NotRaining 67.6 (10) 70.4 (8) 59.7 (10) 74.2 (7) 66.2 (10)

Table 2. Ablation study of the proposed components on YouTube-VOS 2019 validation set.

Baseline and components Overall ∆
Baseline (Our STM re-implementation) 70.7 -

+ Motion-Guided Attention Module 72.5 +1.8

+ Sequence Learning 72.2 +1.5

+ Motion-Guided. & Sequence Learning 73.8 +3.1

4. Conclusion

In this paper, we propose a motion-guided attention

module and sequence learning for VOS. However, some

hard cases are not exhaustively solved. Hybrid methods e.g.

introducing proposals like PTSNet [12] in the embedding-

based methods maybe an effective direction.
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