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Abstract

We propose the Anchored Regression Network (ARN), a

nonlinear regression network which can be seamlessly in-

tegrated into various networks or can be used stand-alone

when the features have already been fixed. Our ARN is a

smoothed relaxation of a piecewise linear regressor through

the combination of multiple linear regressors over soft as-

signments to anchor points. When the anchor points are

fixed the optimal ARN regressors can be obtained with a

closed form global solution, otherwise ARN admits end-to-

end learning with standard gradient based methods. We

demonstrate the power of the ARN by applying it to two very

diverse and challenging tasks: age prediction from face im-

ages and image super-resolution. In both cases, ARNs yield

strong results.

1. Introduction

Image regression is relevant for many applications, such

as biometric prediction [9, 30], image super-resolution [43,

40], bounding box regression [10, 12], facial landmark lo-

calization [19], depth estimation [24, 34], and more. The

common denominator for these supervised learning tasks is

that the input is an image and the output is a single- or mul-

tidimensional vector.

In contrast to image classification, where multinomial

logistic regression is the dominant strategy for deep con-

volutional neural networks (CNNs) [21, 35, 37, 28], in

general still a wide array of regression methods are de-

ployed, without a clear winner. Some cast the task into

classification [30], employ linear regression at the last

layer [12, 35, 25], or apply an array of methods on top of

the features extracted from a classification network. Each

of these strategies has serious drawbacks: a standard lin-

ear regression layer often underfits the data [30]; casting

to classification requires manually defining the classes; and

working with extracted features (e.g. using SVR [1]) im-

pedes end-to-end learning.

Motivated by the above issues, we propose Anchored Re-
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Figure 1. Our proposed ARN architecture. When an input

point x is fed through the network, it is soft-assigned to the an-

chors c1, · · · , cm w.r.t. a similarity s. For each anchor ci, there

is a corresponding regressor (Wi, bi) which the input is also fed

to, which are then linearly combined over the soft assignments,

forming the output f̃s(x).

gression Networks (ARN), a novel regression architecture

suitable for various regression tasks. The network, depicted

in Figure 1, is easy to implement, can be seamlessly in-

tegrated into various deep or shallow networks or directly

used with fixed feature representations such as handcrafted

features or representations extracted from pretrained CNN

architectures.

The design of our ARN is based on the assumption that

the underlying features (such as raw data, handcrafted or

deep features) can linearize the regression problem within

local regions, such that a piecewise linear approximation

of the mapping is feasible. By ‘softly’ partitioning the input

space w.r.t. a set of anchor points, each having a correspond-

ing linear regressor, our ARN can learn such an approxima-

tion. We show that an ARN can be learned globally w.r.t.

fixed anchors via a closed form solution, and also end-to-

end learned by standard gradient based methods as a layer

in a shallow or deep architecture.

We validate the proposed ARN for single and multi-

value regression on two very different and challenging

tasks, namely age prediction from face images and single

image super-resolution. Our experiments show that the cor-

responding ARNs improve the baseline or state-of-the-art

methods and this with minimal modification.
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A+ ARN (ours)

assignments hard (nearest neighbors) soft

differentiability non-differentiable differentiable

learning decoupled – step-by-step end-to-end

features hand-crafted learned or hand-crafted

anchors K-SVD jointly learned with

regressors fixed anchored neighborhood regression minibatch SGD

Table 1. Differences between our ARN and A+ [39].

1.1. Related work

The assumption of the data having a piecewise linear

structure has often been explored. Späth et al. [36] study the

generic problem of learning linear regressors over partitions

of the input space, and propose a greedy algorithm to learn

the partitions and the regressors. DeSarbo et al. [5] study

the same problem with fuzzy assignment in a probabilistic

setting, and propose an expectation-maximization method

to learn the model. More recently, Timofte et al. [39] built

a piecewise linear model (the A+ method) for single-image

super-resolution, by constraining the partitioning to a near-

est neighbor assignment over a set of anchor points.

A related class of methods are based on local coordinate

codings [46, 41, 45, 22]. These methods assume the data

itself lies on a local manifold, which is represented with an-

chor points. In contrast to A+, here each anchor is associ-

ated with a function value instead of a regressor. A notable

exception is the LL-SVM of Ladicky et al. [22] for classi-

fication, which associates a linear SVM with each anchor

point, and combines them with a local coding.

In contrast to local coordinate codings [46], our ARN

does not assume that the input vector lies on a manifold

represented by the anchors (i.e. that it can be represented

as a weighted sum of the anchors), but instead follows the

direction of A+ [39] and use the anchors instead to partition

the space.

This said, there are clear differences between ARN and

A+, as summarized in Table 1. Since A+ is built on top

of a discrete partition of the input space, it is not differen-

tiable with respect to the anchors. Therefore, A+ does not

admit end-to-end learning and is instead trained via a hand-

defined procedure, such that it can only operate on pre-fixed

feature representations. Furthermore, as the number of par-

titions increase, the data points per partition reduce such

that robust regressors cannot be trained on each partition.

Thus A+ resorts to training regressors on (possibly overlap-

ping) fixed neighborhoods for each anchor.

Our ARN overcomes these limitations by formulating

the regression model as a soft combination of linear regres-

sors over anchor points. This enables us to get a fully differ-

entiable model and greatly simplify the training procedure

while achieving better performance than A+.

2. Proposed Method

Let {(x1,y1), ..., (xn,yn)} be a set of n training ex-

amples, where the features xi ∈ R
d can be fixed or are

the result of some layer in a neural network, and the label

yi ∈ R
d′

is real-valued and possibly multidimensional. We

are interested to learn a mapping f : Rd → R
d′

which ap-

proximates the relationship between xi and yi.

To this end, we will propose a function family that is

based on a network of linear regressors and anchor points.

We start by motivating the design decisions of the network,

and we will discuss applicable learning strategies in the fol-

lowing section.

Our basic assumption is that the relationship between

xi and yi can be well approximated with partition-specific

linear maps over a partition of the feature space. That is,

there exists a partition U1, · · · , Um ⊂ R
d,

⋃m
i=1 Ui = R

d

and Ui ∩ Uj = ∅ if i 6= j, and m linear regressors

(W1, b1), · · · , (Wm, bm) such that for xi ∈ Uj :

yi ≈ Wjxi + bj , (1)

with Wj ∈ R
d′
×d. The problem is to find a proper partition

and corresponding regressors for the best approximation.

This problem was first studied by Späth et al. [36], who

propose a greedy method to find such a partitioning.

Another approach, explored by Timofte et al. [39] in

their A+ method, is to partition the space around a set of m

anchor points C = {c1, · · · , cm} using a similarity mea-

sure s, such that:

Ui =
{

x ∈ R
d | ∀j 6= i : s(x, ci) > s(x, cj)

}

, (2)

and to train specialized regressors for each partition Ui.

However, this formulation has two limitations.

(i) First, since the method relies on hard nearest neigh-

bor assignments, it is not differentiable with respect to the

anchors C, preventing its use for end-to-end learning.

(ii) Second, to be able to robustly train a regressor for

each partition Ui, sufficient training data is needed. Since

|Ui| becomes small as the number of partitions m increases,

A+ resorts to instead train each regressor Wi on a fixed

neighborhood of size Nb around ci. The additional hy-

perparameter Nb then needs to be chosen to balance the

trade-off between overly generic regressors (when Nb is too

large) and properly covering the training data, since in total

m×Nb data points are used for training the regressors.

These limitations motivate our proposed method.

In order to obtain a differentiable formulation, we first

note that in the case of hard assignments we can write the

entire regression function as:

fs(x) = Wγs(x)x+ bγs(x), (3)

where γs(x) := argmaxj s(x, cj) denotes the ‘nearest’ an-

chor to x.
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To achieve differentiability w.r.t. the anchors C, instead

of assigning x to a single anchor γs(x), we perform a ‘soft

assignment’ to multiple anchors, by using the soft-max op-

erator:

αs(x) = σ(







s(x, c1)
...

s(x, cm)






) =

1
∑m

i=1 e
s(x,ci)







es(x,c1)

...

es(x,cm)






.

(4)

We then define our soft regression function as

f̃s(x) :=

m
∑

i=1

αs,i(x)(Wix+ bi), (5)

where αs,i(x) denotes the i-th coordinate of αs(x).

Now, if s is differentiable, f̃s is fully differen-

tiable w.r.t. all parameters: the input x, the regres-

sors {(W1, b1), · · · , (Wm, bm)} and the anchor points

{c1, · · · , cm}.

Note that we can control the ‘softness’ of αs(x) by

scaling the similarity s. That is, given a partitioning in

(1) induced by a similarity s, using a scaled s′(x,x′) =
Ks(x,x′), αs′(x) will converge to a one-hot encoding of

the nearest anchor w.r.t. s, as K → ∞:

lim
K→∞

αs′,i(x) =

{

1 if i = γs(x)

0 otherwise
, (6)

such that our soft formulation in (5) converges to the parti-

tion based formulation of (3):

lim
K→∞

f̃s′(x) =

m
∑

i=1

lim
K→∞

αs′,i(x)(Wix+ bi) (7)

= 1 · (Wγs(x)x+ bγs(x)) (8)

= fs(x). (9)

We refer to f̃s as an Anchored Regression Network

(ARN), since it combines multiple regressors through an-

chor points and, as shown in Section 3, both the anchors

and the regressors can be learned in an end-to-end architec-

ture.

3. Learning strategies

In order to learn the parameters of ARN over the train-

ing examples {(x1,y1), ..., (xn,yn)}, we need an objec-

tive, i.e. a loss.

We will consider first the common L2-norm loss with

L2-norm regularization:

L =

n
∑

i=1

‖f̃s(xi)− yi‖
2 + λ

m
∑

j=1

‖Wj‖
2. (10)

We note that f̃s couples each data point xi with all

W1, · · · ,Wm, such that we do not need fixed neighbor-

hoods as used in A+ [39] to obtain robust regressors. In-

stead, we can simply optimize (10) with stochastic gradient

descent (SGD).

However, it turns out that for an L2 loss, if the anchors

C and the similarity s are fixed, (e.g. obtained by cluster-

ing the training data), we have a closed form solution for

the regressors of ARN. We will next explore this interesting

case.

3.1. Global Solution

We will now show that we can obtain a closed form so-

lution for the optimal regressors W1, · · · ,Wm that mini-

mizes (10) when both the anchors C and the similarity s are

fixed, such that each point xi has a fixed soft assignment

αs(x).
To simplify the notation, we write the training examples

as X = [x1, · · · ,xn] ∈ R
d×n and Y = [y1, · · · ,yn] ∈

R
d′
×n. Furthermore, we assume the last dimension of x is

1, such that we can drop the bias terms bi.

We then denote:

α̃s(x) :=







αs,1(x)Id
...

αs,m(x)Id






∈ R

(md)×d, (11)

where Id is the d× d identity matrix, and

W̃ := [W1, · · · ,Wm] ∈ R
d′
×(md), (12)

such that we can write

f̃s(x) = (
∑

i

αs,i(x)Wi)x (13)

= (W̃α̃s(x))x. (14)

We can then rewrite (10) as:

L =

n
∑

i=1

‖W̃α̃s(xi)xi − yi‖
2 + λ

m
∑

j=1

‖Wj‖
2 (15)

= ‖W̃ [α̃s(x1)x1, · · · , α̃s(xn)xn]−Y‖2 + λ‖W̃‖2,
(16)

which is a standard ridge regression problem with X̃ =
[α̃s(x1)x1, · · · , α̃s(xn)xn] ∈ R

(md)×n and Y =
[y1, · · · ,yn] ∈ R

d′
×n as the observations, which has a

closed form minimum

W̃ = YX̃T (X̃X̃T + λImd)
−1. (17)

As for standard ridge regression, the matrices YX̃T

and X̃X̃T can be efficiently computed with a single

pass through the training data. Thus, we only need an

md×md matrix inversion to obtain the optimal regressors

[W1, · · · ,Wm] = W̃.
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3.2. Gradient Based Learning

The global solution in the previous section is especially

useful when the anchors C are fixed – e.g. obtained from

clustering the data {(x1,y1), · · · , (xn,yn)}.

However, in a more general setting, we would like to be

able to use our ARN as a layer in a neural network, such that

we can learn the anchors C jointly with the regressors W

and perform end-to-end learning down to the input space of

the network with gradient based learning (i.e. SGD).

Given a deep architecture with M layers,

G = g(M) ◦ g(M−1) ◦ · · · ◦ g(1), (18)

we want to use f̃s for the last layer g(M). Given a training

sample (x
(0)
i ,yi), we denote the output of the l-th layer g(l)

as x
(l)
i = g(l)(x

(l−1)
i ).

In this setting we assume that the training loss L takes a

more general form

L =

n
∑

i=1

l(f̃s(x
(M−1)
i ),yi) +R(G), (19)

where l(x,y) is the sample loss function and R is the regu-

larization term.

The model parameters of G can then be learned with

backpropagation. Denoting x(M−1) as x, to be able to per-

form backpropagation through f̃s = g(M), we need to com-

pute ∂f̃s
∂x

and ∂f̃s
∂ci

. To this end, using numerator layout for

the matrix derivatives, we compute:

∂f̃s

∂x
=

m
∑

j=1

(

αs,j(x)Wj +Wjx
∂αs,j

∂x

)

, (20)

∂f̃s

∂ci
=

∂f̃s

∂αs(x)

∂αs(x)

∂ci
, (21)

∂f̃s

∂αs(x)
= [W1x, . . . ,Wmx] . (22)

The gradient
∂αs,j

∂x
and the Jacobian

∂αs(x)
∂ci

are then com-

puted with standard backpropagation through the similarity

layer and the softmax layer (see Figure 1), thus enabling us

to backpropagate through the entire layer.

Our experiments (see Table 5) show that gradient based

learning enables us to improve the performance of ARN

compared to the global solution over fixed anchors, since

the anchors are jointly learned with the regressors.

4. Experiments

In this section we validate our proposed ARN for both

single- and multi-value regression. For this we deploy our

ARN on two challenging tasks: age prediction from face

images and single-image super-resolution (SR). Age predic-

tion corresponds to a single age value regression, while SR

Methods Pretraining Pretraining

DEX IMDB-WIKI VGG-16 ImageNet

VGG-16 Regression[30] 3.650 5.586

SVR on fc7[30] 3.670 12.083

SVR on finetuned fc7[30] 3.323 9.069

DEX (10 neurons)[30] 3.505 5.369

ARN (ours) (10 anchors) 3.237 4.516

DEX (101 neurons)[30] 3.252 5.965

ARN (ours) (101 anchors) 3.153 4.947

Table 2. Age prediction results in Mean Absolute Error (MAE) of

our ARN vs. DEX [30, 31] on LAP dataset. Both methods start

from the same pretrained model. When using 101 neurons/anchors

and DEX IMDB-WIKI pre-training, we initialize them with the

classifiers of the pre-trained model.

1 5 10 25 50 101
3

3.2

3.4

3.6

3.8

4

number of regressors / output neurons

M
A

E
(y

ea
rs

)

DEX

ARN (ours)

Regression

DEX best

ARN best (ours)

Figure 2. Age prediction results (MAE) vs. number of anchors /

regressors / neurons for our ARN and DEX [30] on LAP validation

split. Our ARN consistenly achieves a significantly lower MAE

given the same number of anchors/neurons. DEX and ARN ‘best’

denote the results with 101 anchors/neurons initialized with the

classifiers from the DEX IMDB-WIKI pre-trained model.

corresponds to multivalue regression as we map from low-

resolution (LR) patch images to high-resolution (HR) patch

images. In both cases, we derive our ARN variants within

the settings of competitive baselines: the DEX method for

age prediction [31, 30] and the A+ method for single im-

age super-resolution [39]. In order to isolate the effect of

ARN in our experiments from the underlying architecture,

we minimally modify the baseline methods, using the same

training material and pretrained models if available, and re-

port on the same validation/test splits.

We implemented our ARN in Theano [38] using

Lasagne [6].

4.1. Age Prediction / Single value regression

For our experiments on age prediction, i.e. single value

regression, we compare our ARN with the DEX method of

Rothe et al. [30]. DEX is a state-of-the-art method, win-

ner of the ChaLearn LAP 2015 challenge on apparent age

estimation at ICCV [9], and with publicly available codes
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Setting Train time Test time/image MAE

ARN, 101 anchors 7h 36m 0.136s 3.153

DEX[30], 101 neurons couple of hours[30] 0.135s 3.252

Table 3. Runtimes for ARN on the LAP dataset.

Method MORPH 2 (MAE)

Human workers [16] 6.30

DIF [16] 3.80*

AGES [11] 8.83

MTWGP [49] 6.28

CA-SVR [3] 5.88

SVR [13] 5.77

OHRank [2] 5.69

DLA [42] 4.77

[18] 4.25*

[14] 4.18*

[15] 3.92*

[44] 3.63*

[32] (CVPR2016) 3.45

OR-CNN[26] (CVPR2016) 3.27

DEX (101 neurons)[30] (IJCV2016) 3.25

ARN (ours) (101 anchors) 3.00
Table 4. Age prediction results (MAE) on the MORPH 2 dataset

(* denotes a different split was used).

and trained models. We stay close in that we adhere to the

default settings of DEX and report on the same benchmarks.

The processing pipeline of DEX is as follows. For each

input image a face detector is used to obtain a robustly

aligned frontal face. The detected and aligned face im-

age is then cropped with a 40% margin around the face,

and fed into a modified VGG-16 architecture. VGG-16 is

a CNN introduced by Simonyan and Zisserman [35] for the

task of image classification on the ImageNet challenge [33].

Since, the VGG-16 architecture has been adapted and ap-

plied to multiple vision applications. DEX adapts VGG-16

to age prediction by reformulating the age regression prob-

lem into a classification of age ranges and trains the net-

work as such. At test time, DEX then predicts the expected

age from the class probabilities of each age range. Note

that treating age regression as an age range classification is

not unique to DEX and is often encountered in the biomet-

rics literature[23, 11]. DEX has shown that the combina-

tion of the network output probabilities leads to a better age

prediction performance than the direct training of the same

architecture for regression. Part of DEX’s success is due

to the pre-training on the largest crawled public dataset to

date, containing face images with age labels (IMDB-WIKI

dataset [30]).

To validate our ARN, we build upon the same pipeline

as DEX and attach our ARN regression layer on top of the

fully connected layer 7 (fc7) of VGG-16. We fix the simi-

larity as s(x, c) = xT c, such that the only hyperparameter

ARN has is m, the number of anchor points / regressors.

4.1.1 Datasets

IMDB-WIKI [30] is the largest publicly available dataset

for real age and gender prediction, consisting of 523,051

labeled images of people in the wild, crawled from IMDB

and Wikipedia. It is noisy, as the labels come without a

guarantee.

MORPH 2 [29] is a large publicly available face database,

consisting of 55,134 mug shots, labeled with gender, age

and other attributes. For our experiments we adhere to the

setup from [2, 3, 13, 42, 32, 30], using a subset of 5,475

images with ages ranging from 16 to 77 years. For evalua-

tion, the dataset is split into 7 random folds, using 80% for

training and 20% for testing and the average performance is

reported. This is perhaps the most common Morph 2 setup

for validating age prediction methods. We use for ARN ex-

actly the same splits as DEX.

ChaLearn LAP dataset [9] consists of 4699 images labeled

for apparent age, the average opinion of at least 10 people

on how old the subjects look. The dataset is split into 2476

images for training, 1136 for validation and 1087 for test-

ing. Since the test split has not been released, we follow the

protocol from [9, 30, 25] and report the validation errors.

4.1.2 Experimental settings

The top results of the DEX method [30] are obtained by

first pretraining on the IMDB-WIKI dataset. We focus on

two settings for comparison: either starting directly from

a VGG-16 model pretrained on ImageNet [33], or starting

from a DEX model pretrained on IMDB-WIKI as released

by Rothe et al. [30]. In the latter case, ARN is at a slight

disadvantage, since ideally we would pretrain ARN from

scratch on IMDB-WIKI as well. Nonetheless, our experi-

mental results show that we reach a better performance than

DEX under all settings.

We selected the learning parameters of the fine-tuning

by monitoring the validation error on a random split of

the MORPH dataset, and used these for all other experi-

ments. The training was terminated after 3000 iterations,

with base learning rate 0.0001, regularization 0.0005, batch

size 50, learning rate multiplier 10 for layers above fc7, and

the learning rate reduced by a factor 0.9 every 2000 iter-

ations. When using 101 anchors and finetuning from the

DEX IMDB-WIKI model, we initialize the anchors and bi-

ases with the classifiers of the DEX model.

4.1.3 Results

Apparent age prediction / LAP. In Table 2 we report the

mean absolute errors (MAE) of ARN in comparison with

DEX for ChaLearn LAP. ARN outperforms DEX with and

without the IMDB-WIKI model. The differences are more

pronounced when starting from ImageNet, since ARN is at
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Input

Cropped Face

GT Apparent 20.00 76.00 18.00 27.00 21.00 42.00 65.00 17.00 30.00 34.00 8.00 32.00

DEX 20.83 78.20 18.00 29.58 22.06 41.22 67.28 19.89 32.83 39.50 16.80 38.66

ARN 20.15 76.55 18.86 28.25 22.61 44.07 67.57 20.23 33.82 38.81 14.20 41.71

Figure 3. Representative examples of apparent age predictions when using DEX and our ARN network on the Chalearn LAP dataset. The

examples are sorted from left to right, sampled according to the ARN error.

Input

Cropped Face

GT Real 40.00 38.00 18.00 51.00 24.00 20.00 30.00 48.00 27.00 45.00 37.00 36.00

DEX 39.08 38.80 19.45 52.75 21.84 18.19 32.49 44.75 23.18 39.21 33.15 44.48

ARN 39.83 37.47 18.88 52.24 22.43 18.03 32.38 45.19 23.71 40.93 31.78 43.51

Figure 4. Representative examples of biological age predictions when using DEX and our ARN network on the MORPH 2 dataset. The

examples are sorted from left to right, sampled according to the ARN error.

a disadvantage (relative to DEX) when starting from IMDB-

WIKI. Interestingly, both DEX and ARN perform better

using 10 anchors/neurons instead of the default 101 when

starting from VGG-16 pretrained on ImageNet. This indi-

cates that even better results could be obtained by pretrain-

ing such a model first on IMDB-WIKI for real age predic-

tion. In Fig. 3 we depict examples varying from very good

to very bad ARN predictions, with groundtruth and DEX

estimates for comparison.

Influence of the hyperparameter. In Fig. 2 we report the

performance of ARN vs. DEX, when we vary the number of

ranges/output neurons for DEX and of regressors for ARN,

respectively. For these experiments we started from DEX

pretrained on IMDB-WIKI with the replacement of the out-

put/classification layer either by a randomly initialized new

output layer with the desired number of outputs for DEX or

by our randomly initialized ARN layer. The DEX results

are taken from the original paper [30]. Note that this num-

ber of outputs/regressors is a critical hyperparameter given

its influence on the performance of both methods. If for

DEX there is a clear peak in performance for around 50

outputs and a dramatic drop below 10 outputs, for our ARN

method on the other hand, the performance is quite stable

regardless the number of regressors.

Runtimes. Table 3 shows the training and test times for

ARN and DEX [30], for the best setting of each method for

the ChaLearn LAP [9] dataset. The training time of DEX is

reported from [30] while the testing times for both DEX and

ARN were measured on the same GeForce GTX TITAN X

GPU with Lasagne [6] without any complex optimizations

(i.e. we do not copy data to the GPU memory, implement

buffering of input images in a specific thread, etc). We note

that the improved performance of ARN compared to DEX

comes at almost no additional test time complexity.

Real age prediction / MORPH 2. In Table 4 we report

comparison results for our ARN on the real age predic-

tion task of MORPH 2. We adopt the standard comparison,

where none of the methods are pre-trained on other face

datasets.

ARN sets a new state-of-the art, clearly improving over

DEX, the state-of-the-art age prediction method at the time

of writing. When benefiting from the external data of

the pretrained IMDB-WIKI model, ARN achieves an even

lower MAE of 2.63, compared to a MAE of 2.68 for DEX.

Figure 4 shows faces with very good to very bad ARN

predictions, as one moves to the right. As comparison the

GT and DEX predictions are added.

4.2. Super­Resolution / Multi­value regression

Having validated the ARN performance on single-value

regression for age prediction, we now focus on multi-valued

ARN regression for example-based single-image super-

resolution. We compare against the A+ (Adjusted Anchored

Neighborhood Regression) method of Timofte et al. [39]

and adhere to its default settings.

A+ formulates the task as a regression problem over

patches, by partitioning the LR patch space around an-

chor points learned with K-SVD[47] to then learn anchored

ridge regressors for each such partition from a fixed num-

ber of training LR and corresponding HR patches that are
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Training material

Std. 91 Train Images [43] Other Setups comment

Dataset Set5 Set14 B100 Set5 Set14 B100

Bicubic 30.39 27.55 27.21 30.39 27.55 27.21

SRCNN [7](ECCV2014) 32.39 29.00 28.30

SRCNN [8](PAMI2016) 32.75 29.30 28.41 395,909 ImageNet img.

PSyCo [27] (CVPR2016) 32.93 29.36 Std. 91 + manifold span reduction

IA [40](CVPR2016) 33.46 29.69 28.76 Std. 91 augmented = 728 img.

VDSR [20] (CVPR2016) 33.66 29.77 28.82 Std. 91+ BSD200 aug. = 2328 img.

JOR [4](Eurographics2015) 32.55 29.09 28.25 32 regressors, 5million anchor points

A+ [39] (ACCV2014) 32.59 29.13 28.29 1024 regressors

ARN (global solution) 32.69 29.20 28.32 1024 regressors

ARN 32.89 29.31 28.38 1024 regressors

Deep ARN 33.01 29.37 28.45 7× 16 regressors

Table 5. Single image super resolution average PSNR (dB) results on 3 datasets with upscaling factor ×3 for A+ and with ARN using the

default settings of A+. ARN significantly improves over A+ (same features and training data).

16 32 64 128 256 512 1024
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total number of regressors
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ARN (single layer)

Deep ARN (multiple layers of 16 regressors)

A+

Figure 5. Average PSNR [dB] on (Set14, ×3) vs. number of

regressors/anchor points for A+ [39] and ARN. ARN consistently

improves over A+.

the ‘closest’ to the anchor point. Some A+ variants were

proposed for joint learning of regressors and/or anchors.

Dai et al. [4] jointly optimize the regressors while using

all the training samples as anchors. Zhang et al. [48]

jointly learn anchors and their corresponding regressors

with an expectation-maximization formulation. However,

these works [4, 48] report results comparable with or infe-

rior to A+. In contrast to A+, deep SR methods, such as

Dong et al. [7, 8] and, the best to date, Kim et al. [20], use

convolutional layers to regress the entire HR image with an

(arguably more natural) image-to-image regression formu-

lation.

Since our ARN is designed for “standard regression”, i.e.

mapping a vector from R
d to R

d′

, the patch based formula-

tion of A+ provides a natural setting for such a multidimen-

sional regression. Extending ARN for convolutional layers

would however be an interesting direction for future works.

Experimental setup. For a fair comparison with A+ [39],

we adhere to the benchmark and settings from the paper

and use the publicly available code which gives us the same

numbers as reported by the authors. As was the case for

A+, we work only on the luminance Y channel from the

YCbCr color space and for color images we bicubically in-

terpolate the chroma channels before converting them back

to the RGB color space. This is motivated by the fact that

human vision is more sensitive to the intensity changes and

texture than to the color. Using the A+ codes in the ×3
upscaling mode, we extract the training material of the A+

method, which consists of about 5 million samples of 30-

dimensional LR patch features and corresponding HR patch

residuals. The LR image patch is 3 × 3 and is to be turned

into a 9 × 9 = 81 dimensional HR image patch. A+ learns

its anchors and regressors from these 5 million samples to at

test time upscale the LR image patch by patch over a dense

uniform grid and then average the overlapping restored HR

patch residuals, finally added to the bicubically upscaled LR

input image.

ARN learning. Our ARN model keeps the settings of A+.

It works with the same training samples and patch fea-

ture representations and treats the LR input and HR output

patches in the same way. We trained ARN for 90 epochs us-

ing stochastic gradient descent with momentum 0.9, learn-

ing rate 20, regularization 10−8, learning rate decay 0.5 ev-

ery 20 epochs, and batch size 1000. We simply randomly

initialized the anchor points and the regressors, and used

s(x, c) = |xT c|, such that the only hyperparameter is the

number of anchor points / regressors.

Deep ARN learning. With ARN we can go deeper and

apply it multiple times in a layered design / architecture.

Thus, ARN can also be used as a building block for new

architectures and not only as the last regression layer.

When regressing from R
d to R

d′

we compose L− 1 lay-

ers of ARN regressors mapping from R
d to R

d along with

shortcut connections [17], which are then composed with

the final ARN regressor which maps from R
d to R

d′

. In to-

tal we then use L×m regressors, where m is the number of

regressors in each layer. We denote this setting as L layers

of deep ARN or Deep ARN with L×m layered regressors.

Results. For evaluation we use the benchmark from [39]

and report average Peak Signal to Noise Ratio (PSNR) (dB)
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Set5 reference image Bicubic / 26.63 dB A+ / 28.98 dB ARN / 29.42 dB

Set14 reference image Bicubic / 28.56 dB A+ / 31.19 dB ARN / 31.45 dB

B100 reference image Bicubic / 32.73 dB A+ / 34.26 dB ARN / 34.46 dB

Figure 6. SR ×3 results for ‘zebra’ (Set5), ‘woman’ (Set14), and ‘106024’ (B100) images. Best zoom in.

results for the Set5, Set14, and B100 datasets, which con-

tain 5, 14, and 100 different images, resp. The results are

shown in Table 5 using the default setting of A+, namely

1024 anchor points/regressors. We significantly outperform

A+ on all datasets. Figure 5 compares the performance of

ARN vs. A+, as a function of the number of anchor points /

regressors. The ARN gains over A+ go from above 0.35dB

for 16 regressors to 0.18dB for 1024 regressors, which are

significant.

For visual assessment we show three results in Figure 6.

The ARN super-resolved images have usually fewer arti-

facts and sharper edges than with A+.

Deep ARN further improves over ARN using the same

training settings/data (see Table 5 and Fig. 2) but fewer re-

gressors, while the ARN with global solution performs as

expected in between A+ and ARN when departing from the

A+ features and under the same training conditions.

5. Conclusions

We proposed Anchored Regression Networks (ARN), a

novel regression architecture that can be used standalone

on fixed features or for end-to-end learning in a CNN, with

standard gradient based methods. Our ARN architecture

has a simple formulation motivated by basic and intuitive

principles, admits a closed form solution for the regressors

in the case of an L2-loss while being easy to implement for

end-to-end learning.

We have demonstrated the power of ARN for both single

and multi-value regression on two challenging tasks. For

age prediction from face images we set a new state-of-the

art while for single image super-resolution we significantly

outperform the baseline method, using the same training

settings. With the former task being a high-level vision task

requiring a deep understanding of the human face, and the

latter being a low-level vision task operating on patches on

the image, our experiments validate the generic applicabil-

ity of our ARN architecture.

Thus, our ARN shows a consistent potential to easily

integrate into various architectures, wherever nonlinear

regression is needed.
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