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Abstract

What is the future of fashion? Tackling this question from

a data-driven vision perspective, we propose to forecast vi-

sual style trends before they occur. We introduce the first

approach to predict the future popularity of styles discov-

ered from fashion images in an unsupervised manner. Us-

ing these styles as a basis, we train a forecasting model to

represent their trends over time. The resulting model can

hypothesize new mixtures of styles that will become popu-

lar in the future, discover style dynamics (trendy vs. clas-

sic), and name the key visual attributes that will dominate

tomorrow’s fashion. We demonstrate our idea applied to

three datasets encapsulating 80,000 fashion products sold

across six years on Amazon. Results indicate that fashion

forecasting benefits greatly from visual analysis, much more

than textual or meta-data cues surrounding products.

1. Introduction

“The customer is the final filter. What survives the whole

process is what people wear.” – Marc Jacobs

Fashion is a fascinating domain for computer vision.

Not only does it offer a challenging testbed for fundamen-

tal vision problems—human body parsing [42, 43], cross-

domain image matching [28, 20, 18, 11], and recogni-

tion [5, 29, 9, 21]—but it also inspires new problems that

can drive a research agenda, such as modeling visual com-

patibility [19, 38], interactive fine-grained retrieval [24, 44],

or reading social cues from what people choose to wear [26,

35, 10, 33]. At the same time, the space has potential for

high impact: the global market for apparel is estimated at

$3 Trillion USD [1]. It is increasingly entwined with online

shopping, social media, and mobile computing—all arenas

where automated visual analysis should be synergetic.

In this work, we consider the problem of visual fashion

forecasting. The goal is to predict the future popularity of

fine-grained fashion styles. For example, having observed

the purchase statistics for all women’s dresses sold on Ama-

* Work done while first author was a visiting researcher at UT Austin.
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Figure 1: We propose to predict the future of fashion based on

visual styles.

zon over the last N years, can we predict what salient vi-

sual properties the best selling dresses will have 12 months

from now? Given a list of trending garments, can we predict

which will remain stylish into the future? Which old trends

are primed to resurface, independent of seasonality?

Computational models able to make such forecasts

would be critically valuable to the fashion industry, in terms

of portraying large-scale trends of what people will be buy-

ing months or years from now. They would also benefit

individuals who strive to stay ahead of the curve in their

public persona, e.g., stylists to the stars. However, fash-

ion forecasting is interesting even to those of us unexcited

by haute couture, money, and glamour. This is because

wrapped up in everyday fashion trends are the effects of

shifting cultural attitudes, economic factors, social sharing,

and even the political climate. For example, the hard-edged

flapper style during the prosperous 1920’s in the U.S. gave

way to the conservative, softer shapes of 1930’s women’s

wear, paralleling current events such as women’s right to

vote (secured in 1920) and the stock market crash 9 years

later that prompted more conservative attitudes [12]. Thus,

beyond the fashion world itself, quantitative models of style

evolution would be valuable in the social sciences.

While structured data from vendors (i.e., recording pur-

chase rates for clothing items accompanied by meta-data

labels) is relevant to fashion forecasting, we hypothesize

that it is not enough. Fashion is visual, and comprehensive

fashion forecasting demands actually looking at the prod-
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ucts. Thus, a key technical challenge in forecasting fashion

is how to represent visual style. Unlike articles of cloth-

ing and their attributes (e.g., sweater, vest, striped), which

are well-defined categories handled readily by today’s so-

phisticated visual recognition pipelines [5, 9, 29, 34], styles

are more difficult to pin down and even subjective in their

definition. In particular, two garments that superficially are

visually different may nonetheless share a style.

Furthermore, as we define the problem, fashion forecast-

ing goes beyond simply predicting the future purchase rate

of an individual item seen in the past. So, it is not simply a

regression problem from images to dates. Rather, the fore-

caster must be able to hypothesize styles that will become

popular in the future—i.e., to generate yet-unseen compo-

sitions of styles. The ability to predict the future of styles

rather than merely items is appealing for applications that

demand interpretable models expressing where trends as a

whole are headed, as well as those that need to capture the

life cycle of collective styles, not individual garments. De-

spite some recent steps to qualitatively analyze past fashion

trends in hindsight [41, 33, 10, 39, 15], to our knowledge

no existing work attempts visual fashion forecasting.

We introduce an approach that forecasts the popularity

of visual styles discovered in unlabeled images. Given a

large collection of unlabeled fashion images, we first predict

clothing attributes using a supervised deep convolutional

model. Then, we discover a “vocabulary” of latent styles

using non-negative matrix factorization. The discovered

styles account for the attribute combinations observed in the

individual garments or outfits. They have a mid-level granu-

larity: they are more general than individual attributes (pas-

tel, black boots), but more specific than typical style classes

defined in the literature (preppy, Goth, etc.) [21, 38, 34]. We

further show how to augment the visual elements with text

data, when available, to discover fashion styles. We then

train a forecasting model to represent trends in the latent

styles over time and to predict their popularity in the future.

Building on this, we show how to extract style dynamics

(trendy vs. classic vs. outdated), and forecast the key visual

attributes that will play a role in tomorrow’s fashion—all

based on learned visual models.

We apply our method to three datasets covering six years

of fashion sales data from Amazon for about 80,000 unique

products. We validate the forecasted styles against a held-

out future year of purchase data. Our experiments analyze

the tradeoffs of various forecasting models and represen-

tations, the latter of which reveals the advantage of unsu-

pervised style discovery based on visual semantic attributes

compared to off-the-shelf CNN representations, including

those fine-tuned for garment classification. Overall, an im-

portant finding is that visual content is crucial for securing

the most reliable fashion forecast. Purchase meta-data, tags,

etc., are useful, but can be insufficient when taken alone.

2. Related work

Retrieval and recommendation There is strong practical

interest in matching clothing seen on the street to an online

catalog, prompting methods to overcome the street-to-shop

domain shift [28, 20, 18]. Beyond exact matching, recom-

mendation systems require learning when items “go well”

together [19, 38, 33] and capturing personal taste [7] and

occasion relevance [27]. Our task is very different. Rather

than recognize or recommend garments, our goal is to fore-

cast the future popularity of styles based on visual trends.

Attributes in fashion Descriptive visual attributes are

naturally amenable to fashion tasks, since garments are of-

ten described by their materials, fit, and patterns (denim,

polka-dotted, tight). Attributes are used to recognize arti-

cles of clothing [5, 29], retrieve products [18, 13], and de-

scribe clothing [9, 11]. Relative attributes [32] are explored

for interactive image search with applications to shoe shop-

ping [24, 44]. While often an attribute vocabulary is defined

manually, useful clothing attributes are discoverable from

noisy meta-data on shopping websites [4] or neural activa-

tions in a deep network [40]. Unlike prior work, we use in-

ferred visual attributes as a conduit to discover fine-grained

fashion styles from unlabeled images.

Learning styles Limited work explores representations of

visual style. Different from recognizing an article of cloth-

ing (sweater, dress) or its attributes (blue, floral), styles

entail the higher-level concept of how clothing comes to-

gether to signal a trend. Early methods explore supervised

learning to classify people into style categories, e.g., biker,

preppy, Goth [21, 38]. Since identity is linked to how a

person chooses to dress, clothing can be predictive of oc-

cupation [35] or one’s social “urban tribe” [26, 31]. Other

work uses weak supervision from meta-data or co-purchase

data to learn a latent space imbued with style cues [34, 38].

In contrast to prior work, we pursue an unsupervised ap-

proach for discovering visual styles from data, which has

the advantages of i) facilitating large-scale style analysis, ii)

avoiding manual definition of style categories, iii) allowing

the representation of finer-grained styles , and iv) allowing

a single outfit to exhibit multiple styles. Unlike concurrent

work [16] that learns styles of outfits, we discover styles

for individual garments and, more importantly, predict their

popularity in the future.

Discovering trends Beyond categorizing styles, a few

initial studies analyze fashion trends. A preliminary exper-

iment plots frequency of attributes (floral, pastel, neon) ob-

served over time [41]. Similarly, a visualization shows the

frequency of garment meta-data over time in two cities [33].

The system in [39] predicts when an object was made.The

collaborative filtering recommendation system of [15] is en-

hanced by accounting for the temporal dynamics of fashion,

with qualitative evidence it can capture popularity changes

of items in the past (i.e., Hawaiian shirts gained popularity
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after 2009). A study in [10] looks for correlation between

attributes popular in New York fashion shows versus what

is seen later on the street. Whereas all of the above center

around analyzing past (observed) trend data, we propose to

forecast the future (unobserved) styles that will emerge. To

our knowledge, our work is the first to tackle the problem

of visual style forecasting, and we offer objective evaluation

on large-scale datasets.

Text as side information Text surrounding fashion im-

ages can offer valuable side information. Tag and gar-

ment type data can serve as weak supervision for style

classifiers [34, 33]. Purely textual features (no visual

cues) are used to discover the alignment between words for

clothing elements and styles on the fashion social website

Polyvore [37]. Similarly, extensive tags from experts can

help learn a representation to predict customer-item match

likelihood for recommendation [7]. Our method can aug-

ment its visual model with text, when available. While

adding text improves our forecasting, we find that text alone

is inadequate; the visual content is essential.

3. Learning and forecasting fashion style

We propose an approach to predict the future of fashion

styles based on images and consumers’ purchase data. Our

approach 1) learns a representation of fashion images that

captures the garments’ visual attributes; then 2) discovers

a set of fine-grained styles that are shared across images

in an unsupervised manner; finally, 3) based on statistics

of past consumer purchases, constructs the styles’ temporal

trajectories and predicts their future trends.

3.1. Elements of fashion

In some fashion-related tasks, one might rely solely on

meta information provided by product vendors, e.g., to an-

alyze customer preferences. Meta data such as tags and

textual descriptions are often easy to obtain and interpret.

However, they are usually noisy and incomplete. For exam-

ple, some vendors may provide inaccurate tags or descrip-

tions in order to improve the retrieval rank of their products,

and even extensive textual descriptions fall short of commu-

nicating all visual aspects of a product.

On the other hand, images are a key factor in a product’s

representation. It is unlikely that a customer will buy a gar-

ment without an image no matter how expressive the tex-

tual description is. Nonetheless, low level visual features

are hard to interpret. Usually, the individual dimensions

are not correlated with a semantic property. This limits the

ability to analyze and reason about the final outcome and

its relation to observable elements in the image. Moreover,

these features often reside in a certain level of granularity.

This renders them ill-suited to capture the fashion elements

which usually span the granularity space from the most fine

and local (e.g. collar) to the coarse and global (e.g. cozy).

Semantic attributes serve as an elegant representation

that is both interpretable and detectable in images. Addi-

tionally, they express visual properties at various levels of

granularity. Specifically, we are interested in attributes that

capture the diverse visual elements of fashion, like: Colors

(e.g. blue, pink); Fabric (e.g. leather, tweed); Shape (e.g.

midi, beaded); Texture (e.g. floral, stripe); etc. These at-

tributes constitute a natural vocabulary to describe styles in

clothing and apparel. As discussed above, some prior work

considers fashion attribute classification [29, 18], though

none for capturing higher-level visual styles.

To that end, we train a deep convolutional model for

attribute prediction using the DeepFashion dataset [29].

The dataset contains more than 200,000 images labeled

with 1,000 semantic attributes collected from online fash-

ion websites. Our deep attribute model has an AlexNet-like

structure [25]. It consists of 5 convolutional layers and three

fully connected layers. The last attribute prediction layer is

followed by a sigmoid activation function. We use the cross

entropy loss to train the network for binary attribute predic-

tion. The network is trained using Adam [22] for stochas-

tic optimization with an initial learning rate of 0.001 and a

weight decay of 5e-4. (see Supp. for details).

With this model we can predict the presence of M =
1, 000 attributes in new images:

ai = fa(xi|θ), (1)

such that θ is the model parameters, and ai ∈ R
M where the

mth element in ai is the probability of attribute am in image

xi, i.e., ami = p(am|xi). fa(·) provides us with a detailed

visual description of a garment that, as results will show,

goes beyond meta-data typically available from a vendor.

3.2. Fashion style discovery

For each genre of garments (e.g., Dresses or T-Shirts),

we aim to discover the set of fine-grained styles that emerge.

That is, given a set of images X = {xi}
N
i=1 we want to

discover the set of K latent styles S = {sk}
K
k=1 that are

distributed across the items in various combinations.

We pose our style discovery problem in a nonnega-

tive matrix factorization (NMF) framework that maintains

the interpretability of the discovered styles and scales effi-

ciently to large datasets. First we infer the visual attributes

present in each image using the classification network de-

scribed above. This yields an M × N matrix A ∈ R
M×N

indicating the probability that each of the N images con-

tains each of the M visual attributes. Given A, we infer the

matrices W and H with nonnegative entries such that:

A ≈ WH where W ∈ R
M×K , H ∈ R

K×N . (2)

We consider a low rank factorization of A, such that A is

estimated by a weighted sum of K rank-1 matrices:

A ≈

K∑

k=1

λk.wk ⊗ hk, (3)
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where ⊗ is the outer product of the two vectors and λk is

the weight of the kth factor [23].

By placing a Dirichlet prior on wk and hk, we insure

the nonnegativity of the factorization. Moreover, since

||wk||1 = 1, the result can be viewed as a topic model with

the styles learned by Eq. 2 as topics over the attributes. That

is, the vectors wk denote common combinations of selected

attributes that emerge as the latent style “topics”, such that

wm
k = p(am|sk). Each image is a mixture of those styles,

and the combination weights in hk, when H is column-wise

normalized, reflect the strength of each style for that gar-

ment, i.e., hi
k = p(sk|xi).

Note that our style model is unsupervised which makes

it suitable for style discovery from large scale data. Further-

more, we employ an efficient estimation for Eq. 3 for large

scale data using an online MCMC based approach [17]. At

the same time, by representing each latent style sk as a mix-

ture of attributes [a1k, a
2
k, . . . , a

M
k ], we have the ability to

provide a semantic linguistic description of the discovered

styles in addition to image examples. Figure 3 shows exam-

ples of styles discovered for two datasets (genres of prod-

ucts) studied in our experiments.

Finally, our model can easily integrate multiple repre-

sentations of fashion when it is available by adjusting the

matrix A. That is, given an additional view (e.g., based on

textual description) of the images U ∈ R
L×N , we augment

the attributes with the new modality to construct the new

data representation Á = [A;U] ∈ R
(M+L)×N . Then Á is

factorized as in Eq. 2 to discover the latent styles.

3.3. Forecasting visual style

We focus on forecasting the future of fashion over a 1-

2 year time course. In this horizon, we expect consumer

purchase behavior to be the foremost indicator of fashion

trends. In longer horizons, e.g., 5-10 years, we expect more

factors to play a role in shifting general tastes, from the

social, political, or demographic changes to technological

and scientific advances. Our proposed approach could po-

tentially serve as a quantitative tool towards understanding

trends in such broader contexts, but modeling those factors

is currently out of the scope of our work.

The temporal trajectory of a style In order to predict

the future trend of a visual style, first we need to recover the

temporal dynamics which the style went through up to the

present time. We consider a set of customer transactions Q

(e.g., purchases) such that each transaction qi ∈ Q involves

one fashion item with image xqi ∈ X . Let Qt denote the

subset of transactions at time t, e.g., within a period of one

month. Then for a style sk ∈ S, we compute its temporal

trajectory yk by measuring the relative frequency of that

style at each time step:

ykt =
1

|Qt|

∑

qi∈Qt

p(sk|xqi), (4)

for t = 1, . . . , T . Here p(sk|xqi) is the probability for style

sk given image xqi of the item in transaction qi.

Forecasting the future of a style Given the style tempo-

ral trajectory up to time n, we predict the popularity of the

style in the next time step in the future ŷn+1 using an expo-

nential smoothing model [8]:

ŷn+1|n = ln

ln = αyn + (1− α)ln−1

ŷn+1|n =
n∑

t=1

α(1− α)n−tyt + (1− α)nl0

(5)

where α ∈ [0, 1] is the smoothing factor, ln is the smoothing

value at time n, and l0 = y0. In other words, our forecast

ŷn+1 is an estimated mean for the future popularity of the

style given its previous temporal dynamics.

The exponential smoothing model (EXP), with its ex-

ponential weighting decay, nicely captures the intuitive no-

tion that the most recent observed trends and popularities of

styles have higher impact on the future forecast than older

observations. Furthermore, our selection of EXP combined

with K independent style trajectories is partly motivated by

practical matters, namely the public availability of product

image data accompanied by sales rates. EXP is defined with

only one parameter (α) which can be efficiently estimated

from relatively short time series. In practice, as we will

see in results, it outperforms several other standard time se-

ries forecasting algorithms, specialized neural network so-

lutions, and a variant that models all K styles jointly (see

Sec. 4.2). While some styles’ trajectories exhibit seasonal

variations (e.g. T-Shirts are sold in the summer more than

in the winter), such changes are insufficient with regard of

the general trend of the style. As we show later, the EXP

model outperforms models that incorporate seasonal varia-

tions or styles’ correlations for our datasets.

4. Evaluation

Our experiments evaluate our model’s ability to forecast

fashion. We quantify its performance against an array of al-

ternative models, both in terms of forecasters and alternative

representations. We also demonstrate its potential power for

providing interpretable forecasts, analyzing style dynamics,

and forecasting individual fashion elements.

Datasets We evaluate our approach on three datasets col-

lected from Amazon by [30]. The datasets represent three

garment categories for women (Dresses and Tops&Tees)

and men (Shirts). An item in these sets is represented with

a picture, a short textual description, and a set of tags (see

Fig. 2). Additionally, it contains the dates each time the

item was purchased.

These datasets are a good testbed for our model since

they capture real-world customers’ preferences in fashion
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Dataset #Items #Transaction

Dresses 19,582 55,956

Tops & Tees 26,848 67,338

Shirts 31,594 94,251

Table 1: Statistics of the three datasets from Amazon.

Text
Amanda Uprichard Women's 
Kiana Dress, Royal, Small

Tags
- Women 
- Clothing 
- Dresses 
- Night Out & Cocktail 
- Women's Luxury Brands

Text
Women's Stripe Scoop Tunic 
Tank, Coral, Large

Tags
- Women 
- Clothing 
- Tops & Tees 
- Tanks & Camis

Text
The Big Bang Theory DC 
Comics Slim-Fit T-Shirt 

Tags
- Men
- Clothing
- T-Shirts

Figure 2: The fashion items are represented with an image, a tex-

tual description, and a set of tags.

and they span a fairly long period of time. For all experi-

ments, we consider the data in the time range from January

2008 to December 2013. We use the data from the years

2008 to 2011 for training, 2012 for validation, and 2013 for

testing. Table 1 summarizes the dataset sizes.

4.1. Style discovery

We use our deep model trained on DeepFashion [29]

(cf. Sec. 3.1) to infer the semantic attributes for all items in

the three datasets, and then learn K = 30 styles from each.

We found that learning around 30 styles within each cat-

egory is sufficient to discover interesting visual styles that

are not too generic with large within-style variance nor too

specific, i.e., describing only few items in our data. Our

attribute predictions average 83% AUC on a held-out Deep-

Fashion validation set; attribute ground truth is unavailable

for the Amazon datasets themselves.

Fig. 3 shows 15 of the discovered styles in 2 of the

datasets along with the 3 top ranked items based on the like-

lihood of that style in the items p(sk|xi), and the most likely

attributes per style (p(am|sk)). As anticipated, our model

automatically finds the fine-grained styles within each genre

of clothing. While some styles vary across certain dimen-

sions, there is a certain set of attributes that identify the

style signature. For example, color is not a significant fac-

tor in the 1st and 3rd styles (indexed from left to right) of

Dresses. It is the mixture of shape, design, and structure

that defines these styles (sheath, sleeveless and bodycon in

1st, and chiffon, maxi and pleated in 3rd). On the other

hand, the clothing material might dominate certain styles,

like leather and denim in the 11th and 15th style of Dresses.

Having a Dirichlet prior for the style distribution over the

attributes induces sparsity. Hence, our model focuses on

the most distinctive attributes for each style. A naive ap-

proach (e.g., clustering) could be distracted by the many

visual factors and become biased towards certain properties

like color, e.g., by grouping all black clothes in one style

while ignoring subtle differences in shape and material.

4.2. Style forecasting

Having discovered the latent styles in our datasets, we

construct their temporal trajectories as in Sec. 3.3 using a

temporal resolution of months. We compare our approach

to several well-established forecasting baselines, which we

group in three main categories:

Naı̈ve These methods rely on the general properties of the

trajectory: 1) mean: it forecasts the future values to be equal

to the mean of the observed series; 2) last: it assumes the

forecast to be equal to the last observed value; 3) drift: it

considers the general trend of the series.

Autoregression These are linear regressors based on the

last few observed values’ “lags”. We consider several vari-

ations [6]: 1) The linear autoregression model (AR); 2) the

AR model that accounts for seasonality (AR+S); 3) the vec-

tor autoregression (VAR) that considers the correlations be-

tween the different styles’ trajectories; 4) and the autore-

gressive integrated moving average model (ARIMA).

Neural Networks Similar to autoregression, the neural

models rely on the previous lags to predict the future;

however these models incorporate nonlinearity which make

them more suitable to model complex time series. We con-

sider two architectures with sigmoid non-linearity: 1) The

feed forward neural network (FFNN); 2) and the time

lagged neural network (TLNN) [14].

For models that require stationarity (e.g. AR), we con-

sider the differencing order as a hyperparamtere for each

style. All hyperparameters (α for ours, number of lags for

the autoregression, and hidden neurons for neural networks)

are estimated over the validation split of the dataset. We

compare the models based on two metrics: The mean ab-

solute error MAE = 1
n

∑n

t=1 |et|, and the mean absolute

percentage error MAPE = 1
n

∑n

t=1 |
et
yt

| × 100. Where

et = ŷt − yt is the error in predicting yt with ŷt.

Forecasting results Table 2 shows the forecasting per-

formance of all models on the test data. Here, all mod-

els use the identical visual style representation, namely our

attribute-based NMF approach. Our exponential smoothing

model outperforms all baselines across the three datasets.

Interestingly, the more involved models like ARIMA, and

the neural networks do not perform better. This may be

due to their larger number of parameters and the relatively

short style trajectories. Additionally, no strong correlations

among the styles were detected and VAR showed inferior

performance. We expect there would be higher influence

between styles from different garment categories rather than

between styles within a category. Furthermore, modeling

seasonality (AR+S) does not improve the performance of

the linear autoregression model. We notice that the Dresses

dataset is more challenging than the other two. The styles
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(a) Dresses

(b) Tops & Tees

Figure 3: The discovered visual styles on (a) Dresses and (b) Tops & Tees datasets (see Supp for Shirts). Our model captures the fine-

grained differences among the styles within each genre and provides a semantic description of the style signature based on visual attributes.

there exhibit more temporal variations compared to the ones

in Tops&Tees and Shirts, which may explain the larger fore-

cast error in general. Nonetheless, our model generates a

reliable forecast of the popularity of the styles for a year

ahead across all data sets. The forecasted style trajectory by

our approach is within a close range to the actual one (only

3 to 6 percentage error based on MAPE). Furthermore, we

notice that our model is not very sensitive to the number of

styles. When varying K between 15 and 85, the relative per-

formance of the forecast approaches is similar to Table 2,

with EXP performing the best.

Fig. 4 visualizes our model’s predictions on four styles

from the Tops&Tees dataset. For trajectories in Fig. 4a and

Fig. 4b, our approach successfully captures the popularity

of styles in year 2013. Styles in Fig. 4c and Fig. 4d are

much more challenging. Both of them experience a reflec-

tion point at year 2012, from a declining popularity to an

increase and vice versa. Still, the predictions made by our

 

(a) (b)

(c) (d)

Figure 4: The forecasted popularity estimated by our model for

4 styles from the Tops & Tees dataset. Our model successfully

predicts the popularity of styles in the future and performs well

even with challenging trajectories that experience a sudden change

in direction like in (c) and (d).

model forecast this change in direction correctly and the er-

ror in the estimated popularity is minor.
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Model
Dresses Tops & Tees Shirts

MAE MAPE MAE MAPE MAE MAPE

Naı̈ve

mean 0.0345 25.50 0.0513 17.61 0.0155 6.14

last 0.0192 8.38 0.0237 8.66 0.0160 5.50

drift 0.0201 9.17 0.0158 5.70 0.0177 6.50

Autoregression

AR 0.0174 9.65 0.0148 5.20 0.0120 4.45

AR+S 0.0210 12.78 0.0177 6.41 0.0122 4.51

VAR 0.0290 20.36 0.0422 14.61 0.0150 5.92

ARIMA 0.0186 13.04 0.0154 5.45 0.0092 3.41

Neural Network

TLNN 0.0833 35.45 0.0247 8.49 0.0124 4.24

FFNN 0.0973 41.18 0.0294 10.26 0.0109 3.97

Ours 0.0146 6.54 0.0145 5.36 0.0088 3.16

Table 2: The forecast error of our approach compared to several

baselines on three datasets.

4.3. Fashion representation

Thus far we have shown the styles discovered by our ap-

proach as well as our ability to forecast the popularity of

visual styles in the future. Next we examine the impact of

our representation compared to both textual meta-data and

CNN-based alternatives.

Meta Information Fashion items are often accompa-

nied by information other than the images. We consider

two types of meta information supplied with the Amazon

datasets (Fig. 2): 1) Tags: which identify the categories, the

age range, the trademark, the event, etc.; 2) Text: which pro-

vides a description of the item in natural language. For both,

we learn a unique vocabulary of tags and words across the

dataset and represent each item using a bag of words rep-

resentation. From thereafter, we can employ our NMF and

forecasting models just as we do with our visual attribute-

based vocabulary. In results, we consider a text-only base-

line as well as a multi-modal approach that augments our

attribute model with textual cues.

Visual Attributes are attractive in this problem setting for

their interpretability, but how fully do they capture the vi-

sual content? To analyze this, we implement an alterna-

tive representation based on deep features extracted from a

pre-trained convolutional neural network (CNN). In partic-

ular, we train a CNN with an AlexNet-like architecture on

the DeepFashion dataset to perform clothing classification

(see Supp. for details). Since fashion elements can be lo-

cal properties (e.g., v-neck) or global (e.g., a-line), we use

the CNN to extract two representations at different abstrac-

tion levels: 1) FC7: features extracted from the last hidden

layer; 2) M3: features extracted from the third max pooling

layer after the last convolutional layer. We refer to these as

ClothingNet-FC7 and ClothingNet-M3 in the following.

Forecasting results The textual and visual cues inher-

ently rely on distinct vocabularies, and the metrics ap-

plied for Table 2 are not comparable across representations.

Model
Dresses Tops & Tees Shirts

KL IMP(%) KL IMP(%) KL IMP(%)

Meta Information

Tags 0.0261 0 0.0161 0 0.0093 0

Text 0.0185 29.1 0.0075 53.4 0.0055 40.9

Visual

ClothingNet-FC7 0.0752 -188.1 0.25 -1452.8 0.1077 -1058.1

ClothingNet-M3 0.0625 -139.5 0.0518 -221.7 0.0177 -90.3

Attributes 0.0105 59.8 0.0049 69.6 0.0035 62.4

Multi-Modal

Attributes+Tags 0.0336 -28.7 0.0099 38.5 0.0068 26.9

Attributes+Text 0.0051 80.5 0.0053 67.1 0.0014 84.9

Attr+Tags+Text 0.0041 84.3 0.0052 67.7 0.0014 84.9

Table 3: Forecast performance for various fashion representations

in terms of KL divergence (lower is better) and the relative im-

provement (IMP) over the Tags baseline (higher is better). Our

attribute-based visual styles lead to much more reliable forecasts

compared to meta data or other visual representations.

Nonetheless, we can gauge their relative success in forecast-

ing by measuring the distribution difference between their

predictions and the ground truth styles, in their respective

feature spaces. In particular, we apply the experimental

setup of Sec. 4.2, then record the Kullback-Leibler diver-

gences (KL) between the forecasted distribution and the ac-

tual test set distribution. For all models, we apply our best

performing forecaster from Table 2 (EXP).

Table 3 shows the effect of each representation on fore-

casting across all three datasets. Among all single modality

methods, ours is the best. Compared to the ClothingNet

CNN baselines, our attribute styles are much more reliable.

Upon visual inspection of the learned styles from the CNNs,

we find out that they are sensitive to the pose and spatial

configuration of the item and the person in the image. This

reduces the quality of the discovered styles and introduces

more noise in their trajectories. Compared to the tags alone,

the textual description is better, likely because it captures

more details about the appearance of the item. However,

compared to any baseline based only on meta data, our ap-

proach is best. This is an important finding: predicted visual

attributes yield more reliable fashion forecasting than strong

real-world meta-data cues. To see the future of fashion, it

pays off to really look at the images themselves.

The bottom of Table 3 shows the results when using vari-

ous combinations of text and tags along with attributes. We

see that our model is even stronger, arguing for including

meta-data with visual data whenever it is available.

4.4. Style dynamics

Having established the ability to forecast visual fash-

ions, we now turn to demonstrating some suggestive appli-

cations. Fashion is a very active domain with styles and de-

signs going in and out of popularity at varying speeds and

stages. The life cycle of fashion goes through four main

stages [36]: 1) introduction; 2) growth; 3) maturity; and fi-

nally 4) decline. Knowing which style is at which level of
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(a) (b) (c)

(d) (e)

(f)

Figure 5: Our approach offers the unique opportunity to examine

the life cycle of visual styles in fashion. Some interesting temporal

dynamics of the styles discovered by our model can be grouped

into: (a) out of fashion; (b) classic; (c) in fashion or (d) trending;

(e) unpopular; and (f) re-emerging styles.

its lifespan is of extreme importance for the fashion indus-

try. Understanding the style dynamics helps companies to

adapt their strategies and respond in time to accommodate

the customers’ needs. Our model offers the opportunity to

inspect visual style trends and lifespans. In Fig. 5, we visu-

alize the temporal trajectories computed by our model for

6 styles from Dresses. The trends reveal several categories

of styles: 1) Out of fashion: styles that are losing popular-

ity at a rapid rate (Fig. 5a); 2) Classic: styles that are rela-

tively popular and show little variations through the years

(Fig. 5b); 3) Trending: styles that are trending and gain-

ing popularity at a high rate (Fig. 5c and d); 4) Unpopular:

styles that are currently at a low popularity rate with no sign

of improvement (Fig. 5e); 5) Re-emerging: styles that were

popular in the past, declined, and then resurface again and

start trending (Fig. 5f).

Our model is in a unique position to offer this view point

on fashion. For example, using item popularity and trajec-

tories is not informative about the life cycle of the visual

style. An item lifespan is influenced by many other factors

such as pricing, marketing strategy, and advertising among

many others. By learning the latent visual styles in fashion,

our model is able to capture the collective styles shared by

many articles and, hence, depicts a more realistic popular-

ity trajectory that is less influenced by irregularities experi-

enced by the individual items.

4.5. Forecasting elements of fashion

While so far we focused on visual style forecasting, our

model is capable of inferring the popularity of the individ-

ual attributes as well. Thus it can answer questions like:

what kind of fabric, texture, or color will be popular next

year? These questions are of significant interest in the fash-

ion industry (e.g., see the “fashion oracle” World Global

GT

(a) Texture

GT

(b) Shape

Figure 6: Our model can predict the popularity of individual fash-

ion attributes using the forecasted styles as a proxy. The forecasted

attributes are shown in color while the ground truth is in black. The

attribute size is relative to its popularity rank.

Style Network [3, 2], which thousands of designers rely on

for trend prediction on silhouettes, palettes, etc.).

We get the attribute popularity p(am|t) at a certain time t

in the future through the forecasted popularity of the styles:

p(am|t) =
∑

sk∈S

p(am|sk)p(sk|t) (6)

where p(am|sk) is the probability of attribute am given

style sk based on our style discovery model, and p(sk|t)
is the forecated probability of style sk at time t.

For the 1000 attributes in our visual vocabulary, our

model achieves an intersection with ground truth popular-

ity rank at 90%, 84% and 88% for the Top 10, 25 and 50 at-

tributes respectively. Fig. 6 shows the forecasted texture and

shape attributes for the Dresses test set. Our model success-

fully captures the most dominant attributes in both groups

of attributes, correctly giving the gist of future styles.

5. Conclusion

In the fashion industry, predicting trends, due to its

complexity, is frequently compared to weather forecasting:

sometimes you get it right and sometimes you get it wrong.

In this work, we show that using our vision-based fashion

forecasting model we get it right more often than not. We

propose a model that discovers fine-grained visual styles

from large scale fashion data in an unsupervised manner.

Our model identifies unique style signatures and provides

a semantic description for each based on key visual at-

tributes. Furthermore, based on user consumption behavior,

our model predicts the future popularity of the styles, and

reveals their life cycle and status (e.g. in- or out of fashion).

We show that vision is essential for reliable forecasts, out-

performing textual-based representations. Finally, fashion

is not restricted to apparel; it is present in accessories, au-

tomobiles, and even house furniture. Our model is generic

enough to be employed in different domains where a notion

of visual style is present.
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