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Abstract

While recovery of hyperspectral signals from natural

RGB images has been a recent subject of exploration, lit-

tle to no consideration has been given to the camera re-

sponse profiles used in the recovery process. In this paper

we demonstrate that optimal selection of camera response

filters may improve hyperspectral estimation accuracy by

over 33%, emphasizing the importance of considering and

selecting these response profiles wisely. Additionally, we

present an evolutionary optimization methodology for opti-

mal filter set selection from very large filter spaces, an ap-

proach that facilitates practical selection from families of

customizable filters or filter optimization for multispectral

cameras with more than 3 channels.

1. Introduction

In recent years, recovery of Hyperspectral (HS) images

from consumer or low cost equipment has become a field of

growing interest. Several works have demonstrated the re-

covery of whole-scene HS information via hybrid HS-RGB

systems [16, 15, 5, 8], RGB cameras endowed with con-

trolled illumination [10, 23, 24, 6], multiple RGB cameras

[21], and software-only reconstruction from single RGB

images [4, 20].

Although high accuracy HS estimation has indeed been

demonstrated using only consumer-grade RGB cameras

[4, 20, 20], not all RGB cameras are created equal as their

spectral response functions may vary significantly from

each other [13, 11]. In fact, camera response functions

vary not only across manufacturers or camera classes, but

often even between generations of similar camera models

(i.e. iPhone 6 vs. iPhone 7, Canon 70D vs. Canon 80D).

It has previously been shown that the effective dimension

of camera spectral response profiles is at least 8 per chan-

nel [21], Fig. 1 illustrates this variability for one set of re-

sponse functions. In this paper, we explore the effects of

camera response functions on HS estimation performance

and present a methodology for efficient filter selection in

Figure 1: Normalized response function for the red channel

of 28 different consumer cameras, as measured by Jiang et

al. [13]. Note that while most responses are qualitatively

similar, there is a high degree of variability among them.

RGB/Multi-Spectral systems aimed at HS-reconstruction.

2. Hyperspectral Estimation from RGB

Hyperspectral images depict entire scenes at a high spec-

tral resolution. This additional spectral information pro-

vides advantages over the three bands acquired by RGB

cameras, but does not come without cost. Traditional HS

imaging systems employ either spatial scanning (known as

“push-broom” scanners) or temporal scanning (filter wheel

systems). “Push-broom” systems are well-suited for air-

borne acquisition, where scene scanning may be achieved

by relative motion between it and the imaging platform.

Conversely, filter wheel systems are well suited for labo-

ratory settings where imaging targets can be held in a sta-

tionary position for the duration of acquisition.

Unfortunately, neither “push-broom” nor filter wheel

systems are well suited for imaging in contexts where most

consumer cameras are used today. If any in-scene mo-

tion occurs during acquisition, the former will produce spa-
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tial distortions in the image, while the latter will produce

spectral distortions. In order to overcome these limita-

tions, various approaches have been attempted. For exam-

ple: computed tomography systems [7, 22, 14] offer high

accuracy “single shot” HS images, at the cost of signifi-

cantly reduced resolution relative to sensor size. Alterna-

tively “Hyperscptral fovea” systems [9, 26] produce high-

resolution RGB images augmented with hyperspectral in-

formation from a small, central area of the scene. Re-

searchers have also begun using low-resolution HS infor-

mation, coupled with high-resolution RGB information in

order to extrapolate high-resolution HS information from

the entire scene [16, 15, 5, 8].

More recently, it has been demonstrated that a single

RGB image may suffice to produce accurate estimates of

HS information over an entire image [4, 20]. Such single

shot, RGB/consumer camera-based hyperspectral acquisi-

tion systems provide significant advantages over previous

approaches. Clearly, rapid acquisition allows imaging of

moving targets as well as hyperspectral video at full sen-

sor resolution while the use of consumer/RGB sensors sig-

nificantly reduces system costs. Furthermore, as they lack

the complex optics necessary for hybrid acquisition sys-

tems, HS-from-RGB systems allow for easy integration in

existing form factors such as cellular-phone cameras, SLR

cameras, drones etc. Owing to these advantages, this pa-

per focuses on such single-shot HS-from-RGB estimation

methods that do not rely on controlled illumination and/or

true HS input. Our goal is to explore the dependency of

these HS-from-RGB/Multi-Spectral reconstruction systems

on their spectral filters and to suggest methods for filter se-

lection to optimize their performance.

3. Filter Selection

When designing a camera system, several optical filters

can be selected in order to shape its response to specific

wavelengths. We call this set of optical filters the filter set of

the camera system . RGB cameras, for example, have filter

sets of size 3, whose filters loosely approximate the CIE-

1931 color matching functions [19, 13]. Filter sets of size n

may be selected from some filter space - a finite (or infinite)

space describing all possible combinations of n filters from

a finite (or infinite) given set of filters.

The choice of a specific filter set from a given filter space

clearly affects the camera systems sensor response. But as

demonstrated later in Sec. 5, filter selection can profoundly

impact the HS estimation performance of a camera system

as well. In the case of ”off-the-shelf” or consumer equip-

ment, a reasonable strategy for selecting an optimal cam-

era response profile may be exhaustive search. Evaluating

the expected performance of hundreds or even thousands of

candidate cameras may be laborious but as long as their re-

sponse functions are known - it is a straightforward process

which can be completed in a relatively short time.

Despite the diversity of response functions among con-

sumer camera (cf. Fig 1) there may be much to gain by

exploring additional classes of filter sets, including those

that differ significantly from the CIE-1931 color matching

functions. Filter set optimization the has been studied par-

tially as part of “optimal band selection” in the field of re-

mote sensing but remains an open problem [12, 27, 18, 17].

Moreover, even if theoretically ideal filter sets could be eas-

ily computed - they may prove too complex to implement

as optical coatings or in a Bayer filter mosaic. Hence in or-

der to enjoy the advantages of an improved filter set within

a low-cost system, filters must be selected from the do-

main of commercially available, or inexpensively manufac-

turable filters. Unfortunately, this constraint hardly reduces

the complexity of the problem, as thousands of such filters

are available through various optics vendors (the OMEGA

Optical company catalog[2] alone contains over 1000 fil-

ters). Additionally, many manufacturers are able to produce

customized filters within specific sets of parameters at a rel-

atively low cost 1.

Even while considering only filter sets of size 3 selected

from 1000 “off-the-shelf” filters, the size of the filter space

quickly balloons to
(

1000

3

)

= O(108), making exhaustive

search unreasonable. The number of possible combinations

increases by several more orders of magnitude when con-

sidering families of customizable filters and/or filter sets of

size ≥ 4. Hence, an alternative to exhaustive search must

be formulated to cope with the general case, a goal set forth

in this paper.

To pursue this goal, the following sections first overview

the two main existing HS-from-RGB reconstruction meth-

ods and demonstrate the impact of filter selection on their

performance. We then describe strategies for reducing the

amount of computations necessary to estimate expected per-

formance of a filter set, as well as a methodology for quickly

selecting a close-to-optimal filter set from a very large fil-

ter space. Results are shown on several commercial filter

spaces.

4. Reconstruction methodology

Our focus is on filter selection for the reconstruction of

HS signals from RGB or multispectral cameras, and as we

clarify below, this process can be applied to any reconstruc-

tion method. Two such methods have been recently sug-

gested by both Nguyen et al. [20] as well as Arad and Ben-

Shahar [4]. The former proposed a neural network-based

approach which produced estimates for both reflectance and

scene illumination, while the latter proposed reconstruction

1Several manufacturers, for example OMEGA Optical[2], can make

bandpass filters with a width from 0.2nm and up to several hundred

nanometers in the spectral region between 350nm and 2500nm.
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via sparse dictionary representations and reconstruct spec-

tral radiance values. In both methods, evaluating the HS

reconstruction performance of a filter set requires a training

phase and a testing phase. During the training phase, each

system is calibrated to reconstruct HS images from RGB

images obtained under the target filter set by processing a

set of HS training images. Once calibrated, the performance

of each system may then be evaluated in three steps. First

a set of test images is produced by simulating the spectral

projection of fresh HS source images through the candidate

filter set. Second, these test images are fed into the recon-

struction algorithm to obtain reconstructed HS images. And

finally, the reconstructed HS images are compared to their

corresponding ground truth HS source images.

In the following sections we elaborate the steps involved

in each of the two reconstruction methods and our evalu-

ation methodology. Reported computation times were ob-

tained on a an Intel Core i5-2400 CPU desktop equipped

with 24GB of RAM.

4.1. Nguyen et al. [20] Method

The approach proposed by Nguyen et al. [20] includes

components for recovery of both object reflectance and

scene illumination. In this paper, we will limit our discus-

sion to their reflectance recovery methodology which can

be summarized as follows:

Training

1. Project each training image to RGB via the selected

filter set.

2. Perform illumination correction (“white balance”) on

projected images.

3. Use corrected-RGB and HS pixels pairs to train a ra-

dial basis function (RBF) network.

Testing

1. Perform illumination correction (“white balance”) on

the test RGB image.

2. Use the RGB network produced by the training phase

in order to estimate HS reflectance values for each

pixel.

When implemented on our benchmark platform, the train-

ing process took ≈ 4 minutes per filter set when performed

over the 16, 400 training pixels included by the authors

alongside their sample code. Once trained, the system re-

quired ≈ 2 minutes to reconstruct 2.5 · 106 HS pixels over

31 channels.

The most computationally intensive step in the training

process is step 3, i.e., training of the RBF network. As this

step relies on HS images projected through the selected fil-

ter set as input, it must be repeated for each evaluated filter

set. Hence the time required for each filter set evaluation

was ≈ 6 minutes.

4.2. Arad and BenShahar [4] Method

The system proposed by Arad and Ben-Shahar [4]

reconstructs HS radiance signatures from RGB pixels and

can be summarized as follows:

Training

1. Generate a sparse overcomplete HS dictionary from

training images via the K-SVD algorithm[3].

2. Project the HS dictionary from step 1 via the se-

lected filter set and obtain a corresponding overcom-

plete RGB dictionary.

Testing

1. Use the dictionary produced in step 2 of the training

process in order to represent each pixel in the test im-

age via Orthogonal Match Pursuit (OMP)[25].

2. Apply dictionary weights computed in step 1, to the

dictionary produced in step 1 of the training process in

order to estimate HS radiance values for each pixel.

When implemented on our benchmark platform, the train-

ing process took ≈ 5 minutes when performed over 106

training pixels. Once trained, the system required ≈ 32 sec

to reconstruct 2.5 · 106 HS pixels over 31 channels.

The most computationally intensive step in the training

process is step 1, i.e., the generation of a HS dictionary

(while step 2 is negligible in time). As opposed to Nguyen

et al. [20], however, this step is completely independent of

the evaluated filter set and does not have to be repeated for

each evaluated filter set. Hence the time required for each

filter set evaluation was ≈ 32 seconds.

4.3. Evaluation Methodology

As mentioned above, we evaluated filter sets by compar-

ing reconstructed HS images to their corresponding ground

truth HS source images. In all experiments, reconstruc-

tion accuracy is reported as relative root mean square error

(RRMSE) [4]:

E =

∑

i,c

√

(Pgtic
−Precic

)
2

Pgtic

|Pgt|
(1)

where Pgtic
and Precic

denote the c spectral channel value

of the i-th pixel in the ground truth and reconstructed im-

ages respectively, and |Pgt| is the size of the ground truth
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image (total pixels × channels). We emphasize that mea-

suring relative errors (as in [4]), rather than absolute errors

(as in [20]) is a much more conservative approach that en-

sures that errors in low luminance pixels and spectral chan-

nels are given equal weight to those in high luminance pix-

els/channels (even though they are typically much smaller

in absolute values).

Experiments utilizing the Nguyen et al. [20] method

were based on code provided by the authors which was used

without modification. Experiments utilizing the Arad and

Ben-Shahar [4] method were based on our own implemen-

tation, as no sample code has been released by the authors

to date. In this implementation, images projected to the

camera-domain were truncated to 3 significant digits before

further processing in order to simulate the limited dynamic

range of camera sensors.

We emphasize again that it was not our intention to com-

pare between the two reconstruction methods or argue that

one is superior to the other. This would have been diffi-

cult to do, if nothing else then for the different type of out-

put they generate (reflectance + illumination vs. radiance).

Instead, our goal is to show that filter selection has a sig-

nificant impact on reconstruction performance even when

estimation methods and target scenes differ.

Finally, we note that although processing speed may not

be a primary concern for practical HS-from-RGB systems

that act upon a single image at a time, one of the goals of

this paper is to devise filter optimization for very large filter

spaces. Hence while Sec. 5 shows that both methodologies

are significantly impacted by filter selection, our larger scale

experiments employ only the Arad and Ben-Shahar [4] re-

construction method, whose processing time per filter set is

an order of magnitude smaller.

5. Filter Set Impact on Hyperspectral Estima-

tion

While Oh et al. [21] demonstrated that individual camera

responses vary enough to allow extrapolations of HS infor-

mation from a scene imaged by multiple RGB cameras, it

does not immediately follow that some of these relatively

similar response functions may offer significant gains in the

task of single-shot HS recovery from RGB. In order to eval-

uate the effect of small changes in response functions, we

have conducted an experiment evaluating HS reconstruction

performance over 28 simulated cameras whose responses

were measured by Jiang et al. [13].

5.1. Nguyen et al. [20] Method

In order to evaluate the impact of filter selection on the

Nguyen et al. [20] method, RBF networks were trained for

each of the 28 camera response functions using unmodified

code provided by the authors. The training image set com-

prised of 16, 400 HS pixels while the test image set com-

prised of 25 full test images containing a total of 5.6 · 107

HS pixels. Both sets were provided by the authors along-

side their code. Fig. 2 depicts sorted RRMSE values of

ground truth vs. estimated reflectance across all cameras.

While differences in performance between individual cam-

eras may be small, a clear gap and 18.7% improvement are

easily observed between the worst (RRMSE=0.293) and the

best (RRMSE=0.238) preforming cameras.

Figure 2: Relative root mean square error (RRMSE) of HS

reconstruction per camera response function over all test

files using the Nguyen et al. [20] method. Note the perfor-

mance gap between the best and worst performing cameras.

5.2. Arad and BenShahar [4] Method

A similar evaluation process was performed for the Arad

and Ben-Shahar [4] method. As most of the training pro-

cess in this method is independent of the evaluated filter set,

the training set comprised of 106 pixels randomly selected

from 51 BGU HS database[4] training images (20, 000 pix-

els per image). A second set of 51 images from the same

database was used for the test phase. Fig. 3 describes

the reconstruction performance and again, a clear gap and

20.6% improvement are easily observed between the worst

(RRMSE=0.160) and the best (RRMSE=0.127) preforming

cameras.

In order to allow rapid filter selection from much larger

filter spaces, a second experiment was performed over just

2.5·106 pixels randomly sampled from the 51 image test set.

As Fig. 3 shows, this sampling approach provides virtually

identical results. Indeed, the random pixel sample behaves

as a very strong predictor for performance over the entire

test set (maximum relative difference < 0.09%), thereby

facilitating similar evaluation and filter selection over the

much larger filter sets to come (Sec. 7).

6. Evolutionary optimization of filter sets

In the previous section we found that HS reconstruction

performance may vary significantly across filter sets, even if
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Figure 3: Relative root mean square error (RRMSE) of HS

reconstruction per camera response function over all test

files (green) and a random selection of pixels from all test

files (blue) using the Arad and Ben-Shahar method. Per-

formance over a random pixel subset is a strong predictor

of overall performance, with subset RRMSE varying by at

most 0.0001 from test set RRMSE. Note the performance

gap between the best and worst performing cameras.

only a small number of consumer camera filter sets are con-

sidered. Since none of these cameras were designed with

HS reconstruction in mind, optimal filter selection over fil-

ter spaces beyond such commercial cameras may offer sig-

nificant performance gains for HS reconstruction.

That said, evaluating performance of a specific filter set

in the task of HS estimation may be a computationally in-

tensive task. Depending on the methodology used, recon-

struction of a 1MP test image may take hours [15] or sec-

onds [4]. Even while using the latter methodology, exhaus-

tive evaluation of large filter spaces remains impractical.

To further compound the problem, the filter space (the

space of filter combinations) is neither continuous nor con-

vex. Hence it is unlikely that convex optimization methods

will converge to an optimal solution. Fortunately, evolu-

tionary algorithms are well suited for such problems and

may provide a near-optimal solution at a significantly lower

computational cost than exhaustive evaluation.

In order to efficiently discover filter sets well-suited for

HS reconstruction within large filter spaces, the following

evolutionary approach is applied: a small “population” of

random filter combinations is generated. These filter sets

are evaluated and ranked for reconstruction performance.

Finally, a new “population” of filters is generated via “sur-

vival of the fittest”, crossover, mutation and random re-

placement:

• “Survival of the fittest” preserves the highest rated

filter sets.

• Crossover combines two filter sets to produce an “off-

spring” containing randomly selected filters from each

of the two sets.

• Mutation produces a new filter set by randomly re-

placing one out of the n filters in a filter set of size

n.

• Random replacement new filter sets are produced by

randomly selecting filters from the entire filter space.

Filter sets from the current population were randomly se-

lected to participate in crossover/mutation with a probabil-

ity proportional to their fitness ranking. Filter sets for ran-

dom replacement were selected with equal probability from

the entire filter space.

In our experiment each new “population” was composed

of: 10% previous populations filters selected by “Survival

of the fittest”, 40% crossover products of filter sets from the

previous population, 10% mutations of filter sets from the

previous population and 40% randomly generated filter sets.

This evolutionary optimization process is repeated un-

til the best reconstruction performance remains constant

across several iterations, or a predefined run time limit is

reached. Note again that whenever possible we carry out

both the evolutionary optimization as well as an exshaus-

tive search in order to ratify the former approach through

the latter.

7. Evaluation and Results

In order to evaluate the performance of our proposed

methodology we have performed evolutionary optimization

of 3 filter sets over the following filter spaces:

• A set of 21 filters provided by Midopt[1].

• The set of 84 commercial camera filters measured by

Jiang et al. [13] (3-filters per camera × 28 cameras).

• A set of 1022 filters provided by OMEGA Optical [2].

Note that these spaces contain 1330, 95284, and 1.77 · 108

possible 3-filter combinations, respectively.

As detailed in Sec. 4, the Arad and Ben-Shahar [4]

method has a significant computational advantage over the

Nguyen et al. [20] method when evaluation of multiple filter

sets is required. Furthermore, since the Nguyen et al. [20]

method relies on an illumination correction (“white balanc-

ing”) step, its performance may be adversely impacted by

filter sets that do not approximate RGB/CIE-1913. Hence,

the following experiments employed only the Arad and

Ben-Shahar [4] methodology. The training set in each ex-

periment comprised of 106 pixels randomly selected from

51 BGU HS database[4] training images (20, 000 pixels per

image). To further reduce computational cost, the test set

comprised of the 2.5 · 106 random pixel sample described

in Sec. 5.2. As discussed in Fig. 3, this approach provide

highly reliable approximation for a fraction of the compu-

tational effort.
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7.1. Midopt Filter Space

In order to explore alternatives to consumer cameras,

as well as the convergence of evolutionary optimization, a

small scale experiment was performed over the Midopt filter

space. the Midopt filter collection [1] contains 21 band-pass

and “color correction” filters that result in a relatively small
((

21

3

)

= 1330
)

filter space. Exhaustive evaluation was per-

formed, resulting in the RRMSE performance depicted in

Fig. 4. Similarly to the results over 28 consumer cameras

described in Fig. 3, there is a significant performance gap

between the best and worst performing filter sets. Addi-

tionally, the best performing filter set provides an average

RRMSE of 0.116 - an improvement over consumer cam-

eras (best RRMSE=0.127). Hence we conclude that even a

small, generic, filter set may provide an advantage relative

to consumer camera RGB filters.

Figure 4: Relative root mean square error of HS recon-

struction per filter set in Midopt filter space. Note the per-

formance gap between the best and worst performing filter

sets.

While the Midopt filter set may be too small in order to

enjoy significant performance gains via evolutionary opti-

mization, a small-scale experiment was performed. Con-

vergence rates were examined by performing 50 repetitions

of evolutionary optimization with a population size of 100.

On average, optimization converged to the optimal filter set

(RRMSE 0.116) within 9.14 iterations (standard deviation

8.07), after examining 499 distinct filters (less than 38% of

the entire filter space). Fig. 8a depicts the optimal filter set

within the Midopt filter space.

Finally, in order to further verify the representation

power of the random pixels subset used during evolutionary

optimization, RRMSE values of the top-performing filter

set was recomputed over all test images (9.2 · 107 hyper-

spectral pixels), producing RRMSE=0.116 yet again.

7.2. Commercial Camera Filter Space

Exploring combinations of band-pass and “color correc-

tion” filters provided a significant advantage in HS recon-

struction accuracy over existing camera designs. Rather

than forgo RGB-like filters completely, it may be bene-

ficial to examine alternative combinations of filters from

consumer RGB cameras. Therefore, we consider the filter

space defined by all 84 consumer camera filters measured

by Jiang et al. [13] (three filters per camera × 28 cam-

eras). These filters span a filter space of size
(

84

3

)

= 95284
over which both exhaustive evaluation and evolutionary op-

timization were performed.

Fig. 5 depicts the RRMSE of HS reconstruction per filter

set. The optimal filter set (fig. 8b) included the blue fil-

ter from a Canon 5DMarkII, the green filter from a Nikon

D40, and the red filter from a Hasselblad H2. Combined

as a filter set, they provided a RRMSE of 0.119 - an im-

provement over each individual camera (Canon 5DMarkII

RRMSE 0.133, Nikon D40 RRMSE 0.149, Hasselblad H2

0.154) as well as over the the highest performing consumer

camera (Nikon D5100 RRMSE 0.127).

Figure 5: Relative root mean square error of HS reconstruc-

tion per filter set in commercial camera filter space. Note

the performance gap between the best and worst perform-

ing filter sets.

While exhaustive evaluation of 95284 filter sets was re-

quired in order to find the globally optimal filter set, evolu-

tionary optimization provided a significantly faster conver-

gence. With a population size of 300, a near optimal filter

set (RRMSE 0.120) was found within 4 generations. The

globally optimal filter set (RRMSE 0.119) was located after

46 generations, requiring the evaluation of less than 13800

filter sets, namely less than 15% of the entire filter space

and the effort done in the exhaustive search. Repeated ex-

periments with the same parameters (50 repetitions) show

that the optimal filter set is found, on average, after 34.8 it-

erations (standard deviation 23.1), examining 8232 distinct

filter sets (less than 9% of the entire filter space).
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7.3. OMEGA Optical Filter Space

Previous experiments not only demonstrated the utility

of non-RGB-like filters in HS reconstruction but also the ef-

ficient convergence of evolutionary optimization over large

filter spaces. Therefore a final experiment was performed

over a large and highly varied filter space. The OMEGA fil-

ter space is spanned by 1022 assorted optical filters [2], pro-

viding
(

1022

3

)

= 177388540 possible combinations. Since

exhaustive evaluation of the entire OMEGA Optical filter

space would take many processor-years, only evolutionary

optimization and random search were performed.

Using a population size of 300, three evolutionary opti-

mizations were repeated, each with a maximal runtime of

50 generations that together evaluated a total of 39,595 fil-

ter sets and produced a filter set with a RRMSE of 0.107.

The convergence was very fast and obtained a filter set with

RRMSE=0.109 after only 4031 evaluations, while the final

gain of 0.002 in RRMSE was obtained during the rest of the

evolutionary optimization process. Perhaps not surprisingly

given the size of the filter set, this result outperforms the

best sets obtained from the smaller Midopt and commercial

camera filter sets.

To obtain some measure of performance gain over ex-

haustive search, should we have been able to perform one,

we carried out a random search by repeatedly sampling the

filter space for sets of size 3 and evaluating their merit for

HS reconstruction. This procedure was repeated 450,000

times and produced a filter set with a RRMSE of 0.107. Ex-

haustive search required 344,600 filter evaluations, an order

of magnitude more than evolutionary optimization, to first

encounter a filter set with RRMSE=0.107. Figs. 6 and 7

present convergence rates of both processes and Fig. 8c de-

picts the optimal filter set found within the OMEGA filter

space. As in Sec. 7.2, recomputing the RRMSE values of

the top performing filter set over all test images (9.2 · 107

hyper-spectral pixels) produced identical RRMSE values.

8. Discussion

By exploring various filter spaces, we find that hyper-

spectral estimation errors can be reduced at least 20.6% by

simply selecting an optimal consumer camera (cf. Olymus

E-PL2 vs. Nikon D5100 when using the Arad and Ben-

Shahar [4] method). If custom filter sets are considered,

estimation errors can be reduced at least 33.1% (cf. Oly-

mus E-PL2 vs. optimal filter set found in OMEGA filter

space). Larger and more varied filter spaces may even pro-

vide additional gains. Fig. 9 demonstrates the performance

gap between reconstruction using consumer camera filter

sets and optimized filter sets. In a field where “state of the

art” methods often compete for single percentage point ad-

vantages, such a performance gap should not be overlooked.

Furthermore, we demonstrated that evolutionary optimiza-

Figure 6: Convergence rates of the best evolutionary op-

timization (green, cut at after 50 generations) and random

search (magenta). Dashed green line denotes the lowest

RRMSE found. Note the fast convergence of the optimiza-

tion.

Figure 7: Comparison of convergence rates between all evo-

lutionary iterations (blue, yellow, green) compared to ex-

haustive evaluation over the same amount of filter set eval-

uations. Note that all evolutionary optimization attempts

converged to RRMSE≤ 0.109 within at most 12, 920 fil-

ter evaluations, while exhaustive evaluation required over

175, 900 evaluation to reach the same result and over

238, 700 evaluations to improve upon it.

tion can select optimal or near-optimal filter sets from large

filter spaces, while exploring only a small fraction of the

filter space and a small sample of the test data.

As our experiments found filter selection to signifi-

cantly impact performance of two HS reconstruction sys-

tems based on different methodologies, there is reason to

believe that future HS-from-RGB systems, or even current

hybrid RGB-HS systems, can be similarly affected. The de-
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(a) (b) (c)

Figure 8: Filter sets with the lowest RRMSE found for Midopt filter space 8a, commercial camera filter space 8b, and

OMEGA optical filter space 8c.

(a) (b)

(c)

Figure 9: (a) Average channel RRMSE of a HS image reconstructed using the optimal OMEGA filter set. (b) average channel

RRMSE of a HS image reconstructed using the Olymus E-PL2 filter set. (c) Two representative failure cases where spectra

reconstructed using the optimal OMEGA filter set (green) match ground truth spectra from the test pixel subset (black) while

spectra reconstructed using the Olymus E-PL2 filter set (blue) did not.

sign of any such system should therefore take filter selection

into account and may employ our suggested methodology

for optimizating this process.
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