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Abstract

We consider the question: what can be learnt by look-

ing at and listening to a large number of unlabelled videos?

There is a valuable, but so far untapped, source of infor-

mation contained in the video itself – the correspondence

between the visual and the audio streams, and we intro-

duce a novel “Audio-Visual Correspondence” learning task

that makes use of this. Training visual and audio networks

from scratch, without any additional supervision other than

the raw unconstrained videos themselves, is shown to suc-

cessfully solve this task, and, more interestingly, result in

good visual and audio representations. These features set

the new state-of-the-art on two sound classification bench-

marks, and perform on par with the state-of-the-art self-

supervised approaches on ImageNet classification. We also

demonstrate that the network is able to localize objects in

both modalities, as well as perform fine-grained recognition

tasks.

1. Introduction

Visual and audio events tend to occur together; not al-

ways but often: the movement of fingers and sound of the

instrument when a piano, guitar or drum is played; lips

moving and speech when talking; cars moving and engine

noise when observing a street. The visual and audio events

are concurrent in these cases because there is a common

cause. In this paper we investigate whether we can use this

simple observation to learn about the world both visually

and aurally by simply watching and listening to videos.

We ask the question: what can be learnt by training vi-

sual and audio networks simultaneously to predict whether

visual information (a video frame) corresponds or not to au-

dio information (a sound snippet)? This is a looser require-

ment than that the visual and audio events occur in sync. It

only requires that there is something in the image that cor-

relates with something in the audio clip – a car present in

the video frame, for instance, correlating with engine noise;

or an exterior shot with the sound of wind.

Our motivation for this work is three fold: first, as in

many recent self-supervision tasks [1, 7, 9, 21, 22, 25, 35,

36], it is interesting to learn from a virtually infinite source

of free supervision (video with visual and audio modes in

this case) rather than requiring strong supervision; second,

this is a possible source of supervision that an infant could

use as their visual and audio capabilities develop; third, we

want to know what can be learnt, and how well the networks

are trained, for example in the performance of the visual and

audio networks for other tasks.

Of course, we are not the first to make the observa-

tion that visual and audio events co-occur, and to use

their concurrence or correlation as supervision for train-

ing a network. In a series of recent and inspiring pa-

pers [3, 12, 23, 24], the group at MIT has investigated pre-

cisely this. However, their goal is always to train a single

network for one of the modes, for example, train a visual

network to generate sounds in [23, 24]; or train an audio

network to correlate with visual outputs in [3, 12], where

the visual networks are pre-trained and fixed and act as a

teacher. In earlier, pre deep-learning, approaches the obser-

vation was used to beautiful effect in [15] showing “pixels

that sound” (e.g. for a guitar) learnt using CCA. In contrast,

we train both visual and audio networks and, somewhat sur-

prisingly, show that this is beneficial – in that our perfor-

mance improves substantially over that of [3] when trained

on the same data.

In summary: our goal is to design a system that is able to

learn both visual and audio semantic information in a com-

pletely unsupervised manner by simply looking at and lis-

tening to a large number of unlabelled videos. To achieve

this we introduce a novel Audio-Visual Correspondence

(AVC) learning task that is used to train the two (visual and

audio) networks from scratch. This task is described in sec-

tion 2, together with the network architecture and training

procedure. In section 3 we describe what semantic informa-

tion has been learnt, and assess the performance of the audio

and visual networks. We find, which we had not anticipated,

that this task leads to quite fine grained visual and audio

discrimination, e.g. into different instruments. In terms of

quantitative performance, the audio network exceed those

recently trained for audio recognition using visual super-
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Vision subnetwork
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Fusion layers Correspond?

Audio-visual correspondence detector network
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Figure 1. Audio-visual correspondence task (AVC). A network

should learn to determine whether a pair of (video frame, short

audio clip) correspond to each other or not. Positives are (frame,

audio) extracted from the same time of one video, while negatives

are a frame and audio extracted from different videos.

vision, and the visual network has similar performance to

those trained for other, purely visual, self-supervision tasks.

Furthermore, we show, as an added benefit, that we are able

to localize the source of the audio event in the video frame

(and also localize the corresponding regions of the sound

source) using activation visualization.

In terms of prior work, the most closely related deep

learning approach that we know of is ‘SyncNet’ in [6].

However, [6] is aimed at learning to synchronize lip-regions

and speech for lip-reading, rather than the more general

video and audio material considered here for learning se-

mantic representations. More generally, the AVC task is a

form of co-training [5], where there are two ‘views’ of the

data, and each view provides complementary information.

In our case the two views are visual and audio (and each

can determine semantic information independently). A sim-

ilar scenario arises when the two views are visual and lan-

guage (text) as in [10, 19, 32] where a common embedding

is learnt. However, usually one (or both) of the networks

(for images and text) are pre-trained, in contrast to the ap-

proach taken here where no supervision is required and both

networks are trained from scratch.

2. Audio-visual correspondence learning

The core idea is to use a valuable but so far untapped

source of information contained in the video itself – the cor-

respondence between visual and audio streams available by

virtue of them appearing together at the same time in the

same video. By seeing and hearing many examples of a

person playing a violin and examples of a dog barking, and

never, or at least very infrequently, seeing a violin being

played while hearing a dog bark and vice versa, it should be

possible to conclude what a violin and a dog look and sound

like, without ever being explicitly taught what is a violin or

a dog.

We leverage this for learning by an audio-visual corre-

spondence (AVC) task, illustrated in Figure 1. The AVC

task is a simple binary classification task: given an example

video frame and a short audio clip – decide whether they

correspond to each other or not. The corresponding (posi-

tive) pairs are the ones that are taken at the same time from

the same video, while mismatched (negative) pairs are ex-

tracted from different videos. The only way for a system to

solve this task is if it learns to detect various semantic con-

cepts in both the visual and the audio domain. Indeed, we

demonstrate in Section 3.5 that our network automatically

learns relevant semantic concepts in both modalities.

It should be noted that the task is very difficult. The

network is made to learn visual and audio features and

concepts from scratch without ever seeing a single label.

Furthermore, the AVC task itself is quite hard when done

on completely unconstrained videos – videos can be very

noisy, the audio source is not necessarily visible in the video

(e.g. camera operator speaking, person narrating the video,

sound source out of view or occluded, etc.), and the audio

and visual content can be completely unrelated (e.g. edited

videos with added music, very low volume sound, ambient

sound such as wind dominating the audio track despite other

audio events being present, etc.). Nevertheless, the results

in Section 3 show that our network is able to fairly success-

fully solve the AVC task, and in the process learn very good

visual and audio representations.

2.1. Network architecture

To tackle the AVC task, we propose the network struc-

ture shown in Figure 2. It has three distinct parts: the vision

and the audio subnetworks which extract visual and audio

features, respectively, and the fusion network which takes

these features into account to produce the final decision on

whether the visual and audio signals correspond. Here we

describe the three parts in more detail.

Vision subnetwork. The input to the vision subnetwork is

a 224 × 224 colour image. We follow the VGG-network

[31] design style, with 3× 3 convolutional filters, and 2× 2

max-pooling layers with stride 2 and no padding. The net-

work can be segmented into four blocks of conv+conv+pool

layers such that inside each block the two conv layers have

the same number of filters, while consecutive blocks have

doubling filter numbers: 64, 128, 256 and 512. At the very

end, max-pooling is performed across all spatial locations

to produce a single 512-D feature vector. Each conv layer is

followed by batch normalization [13] and a ReLU nonlin-

earity.

Audio subnetwork. The input to the audio subnetwork is a

1 second sound clip converted into a log-spectrogram (more

details are provided later in this section), which is thereafter

treated as a greyscale 257× 199 image. The architecture of

the audio subnetwork is identical to the vision one with the

exception that input pixels are 1-D intensities instead of 3-

D colours and therefore the conv1 1 filter sizes are 3×

smaller compared to the vision subnetwork. The final audio

feature is also 512-D.
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Figure 2. L3-Net architecture. Each blocks represents a single

layer with text providing more information – first row: layer name

and parameters, second row: output feature map size. Layers with

a name prefix conv, pool, fc, concat, softmax are convo-

lutional, max-pooling, fully connected, concatenation and softmax

layers, respectively. The listed parameters are: conv – kernel size

and number of channels, pooling – kernel size, fc – size of the

weight matrix. The stride of pool layers is equal to the kernel size

and there is no padding. Each convolutional layer is followed by

batch normalization [13] and a ReLU nonlinearity, and the first

fully connected layer (fc1) is followed by ReLU.

Fusion network. The two 512-D visual and audio fea-

tures are concatenated into a 1024-D vector which is passed

through the fusion network to produce a 2-way classifica-

tion output, namely, whether the vision and audio corre-

spond or not. It consists of two fully connected layers, with

ReLU in between them, and the intermediate feature size of

128-D.

2.2. Implementation details

Training data sampling. A non-corresponding frame-

audio pair is compiled by randomly sampling two different

videos and picking a random frame from one and a random

1 second audio clip from the other. A corresponding frame-

audio pair is created by sampling a random video, picking

a random frame in that video, and then picking a random

1 second audio clip that overlaps in time with the sampled

frame. This provides additional training samples compared

to simply sampling the 1 second audio with the frame at its

mid-point. We use standard data augmentation techniques

for images: each training image is uniformly scaled such

that the smallest dimension is equal to 256, followed by ran-

dom cropping into 224 × 224, random horizontal flipping,

and brightness and saturation jittering. Audio is only aug-

mented by changing the volume up to 10% randomly but

consistently across the sample.

Log-spectrogram computation. The 1 second audio is re-

sampled to 48 kHz, and a spectrogram is computed with

window length of 0.01 seconds and a half-window overlap;

this produces 199 windows with 257 frequency bands. The

response map is passed through a logarithm before feeding

it into the audio subnetwork.

Training procedure. We use the Adam optimizer [16],

weight decay 10
−5, and perform a grid search on the learn-

ing rate, although 10
−4 usually works well. The network

was trained on 16 GPUs in parallel with synchronous train-

ing implemented in TensorFlow, where each worker pro-

cessed a 16-element batch, thus making the effective batch

size of 256. For a training set of 400k 10 second videos, the

network is trained for two days, during which it has seen

60M frame-audio pairs.

3. Results and discussion

Our “look, listen and learn” network (L3-Net) approach

is evaluated and examined in multiple ways. First, the per-

formance of the network on the audio-visual correspon-

dence task itself is investigated, and compared to supervised

baselines. Second, the quality of the learnt visual and audio

features is tested in a transfer learning setting, on visual and

audio classification tasks. Finally, we perform a qualitative

analysis of what the network has learnt. We start by intro-

ducing the datasets used for training.

3.1. Datasets

Two video datasets are used for training the networks:

Flickr-SoundNet and Kinetics-Sounds.

Flickr-SoundNet [3]. This is a large unlabelled dataset of

completely unconstrained videos from Flickr, compiled by

searching for popular tags, but no tags or any sort of ad-

ditional information apart from the videos themselves are

used. It contains over 2 million videos but for practical rea-

sons we use a random subset of 500k videos (400k train-

ing, 50k validation and 50k test) and only use the first 10

seconds of each video. This is the dataset that is used for

training the L
3-Net for the transfer learning experiments in

Sections 3.3 and 3.4.

Kinetics-Sounds. While our goal is to learn from com-

pletely unconstrained videos, having a labelled dataset is
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useful for quantitative evaluation. For this purpose we took

a subset (much smaller than Flickr-SoundNet) of the Ki-

netics dataset [14], which contains YouTube videos man-

ually annotated for human actions using Mechanical Turk,

and cropped to 10 seconds around the action. The subset

contains 19k 10 second video clips (15k training, 1.9k val-

idation, 1.9k test) formed by filtering the Kinetics dataset

for 34 human action classes, which have been chosen to be

potentially manifested visually and aurally, such as play-

ing various instruments (guitar, violin, xylophone, etc.),

using tools (lawn mowing, shovelling snow, etc.), as well

as performing miscellaneous actions (tap dancing, bowl-

ing, laughing, singing, blowing nose, etc.). Although this

dataset is fairly clean by construction, it still contains con-

siderable noise, e.g. the bowling action is often accompa-

nied by loud music at the bowling alley, human voices (cam-

era operators or video narrations) often masks the sound of

interest, and many videos contain sound tracks that are com-

pletely unrelated to the visual content (e.g. music montage

for a snow shovelling video).

3.2. Audio­visual correspondence

First we evaluate the performance of our method on the

task it was trained to solve – deciding whether a frame

and a 1 second audio clip correspond (Section 2). For the

Kinetics-Sounds dataset which contains labelled videos, we

also evaluate two supervised baselines in order to gauge

how well the AVC training compares to supervised training.

Supervised baselines. For both baselines we first train vi-

sion and audio networks independently on the action clas-

sification task, and then combine them in two different

ways. The vision network has an identical feature extrac-

tion trunk as our vision subnetwork (Section 2.1), on top

of which two fully connected layers are attached (sizes:

512×128 and 128×34) to perform classification into the 34

Kinetics-Sounds classes. The audio classification network

is constructed analogously. The direct combination base-

line computes the audio-video correspondence score as the

similarity of class score distributions of the two networks,

computed as the scalar product between the 34-D network

softmax outputs, and decides that audio and video are in

correspondence if the score is larger than a threshold. The

motivation behind this baseline is that if the vision network

believes the frame contains a dog while the audio network

is confident it hears a violin, then the (frame, audio) pair

is unlikely to be in correspondence. The supervised pre-

training baseline takes the feature extraction trunks from

the two trained networks, assembles them into our network

architecture by concatenating the features and adding two

fully connected layers (Section 2.1). The weights of the

feature extractors are frozen and the fully connected lay-

ers are trained on the AVC task in the same manner as our

network. This is the strongest baseline as it directly cor-

Method Flickr-SoundNet Kinetics-Sounds

Supervised direct – 65%

Supervised pretraining – 74%

L
3-Net 78% 74%

Table 1. Audio-visual correspondence (AVC) results. Test set

accuracy on the AVC task for the L
3-Net, and the two supervised

baselines on the labelled Kinetics-Sounds dataset. The number

of positives and negatives is the same, so chance gets 50%. All

methods are trained on the training set of the respective datasets.

responds to our method, but with features learnt in a fully

supervised manner.

Results and discussion. Table 1 shows the results on the

AVC task. The L
3-Net achieves 74% and 78% on the two

datasets, where chance is 50%. It should be noted that the

task itself is quite hard due to the unconstrained nature of

the videos (Section 2), as well as due to the very local input

data which lacks context – even humans find it hard to judge

whether an isolated frame and an isolated single second of

audio correspond; informal human tests indicated that hu-

mans are only a few percent better than the L
3-Net. Fur-

thermore, the supervised baselines do not beat the L
3-Net

as “supervised pretraining” performs on par with it, while

“supervised direct combination” works significantly worse

as, unlike “supervised pretraining”, it has not been trained

for the AVC task.

3.3. Audio features

In this section we evaluate the power of the audio repre-

sentation that emerges from the L
3-Net approach. Namely,

the L3-Net audio subnetwork trained on Flickr-SoundNet is

used to extract features from 1 second audio clips, and the

effectiveness of these features is evaluated on two standard

sound classification benchmarks: ESC-50 and DCASE.

Environmental sound classification (ESC-50) [27]. This

dataset contains 2000 audio clips, 5 seconds each, equally

balanced between 50 classes. These include animal

sounds, natural soundscapes, human non-speech sounds, in-

terior/domestic sounds, and exterior/urban noises. The data

is split into 5 predefined folds and performance is measured

in terms of mean accuracy over 5 leave-one-fold-out evalu-

ations.

Detection and classification of acoustic scenes and events

(DCASE) [33]. We consider the scene classification task of

the challenge which contains 10 classes (bus, busy street,

office, open air market, park, quiet street, restaurant, super-

market, tube, tube station), with 10 training and 100 test

clips per class, where each clip is 30 seconds long.

Experimental procedure. To enable a fair direct compar-

ison with the current state-of-the-art, Aytar et al. [3], we

follow the same experimental setup. Multiple overlapping

subclips are extracted from each recording and described
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(a) ESC-50 (b) DCASE

Method Accuracy

SVM-MFCC [27] 39.6%

Autoencoder [3] 39.9%

Random Forest [27] 44.3%

Piczak ConvNet [26] 64.5%

SoundNet [3] 74.2%

Ours random 62.5%

Ours 79.3%

Human perf. [27] 81.3%

Method Accuracy

RG [28] 69%

LTT [20] 72%

RNH [29] 77%

Ensemble [33] 78%

SoundNet [3] 88%

Ours random 85%

Ours 93%

Table 2. Sound classification. “Ours random” is an additional

baseline which shows the performance of our network without L3-

training. Our L3-training sets the new state-of-the-art by a large

margin on both benchmarks.

Method Top 1 accuracy

Random 18.3%

Pathak et al. [25] 22.3%

Krähenbühl et al. [17] 24.5%

Donahue et al. [8] 31.0%

Doersch et al. [7] 31.7%

Zhang et al. [36] (init: [17]) 32.6%

Noroozi and Favaro [22] 34.7%

Ours random 12.9%

Ours 32.3%

Table 3. Visual classification on ImageNet. Following [36], our

features are evaluated by training a linear classifier on the Ima-

geNet training set and measuring the classification accuracy on

the validation set. For more details and discussions see Section

3.4. All performance numbers apart from ours are provided by au-

thors of [36], showing only the best performance for each method

over all parameter choices (e.g. Donahue et al. [8] achieve 27.1%

instead of 31.0% when taking features from pool5 instead of

conv3).

using our features. For 5 second recordings from ESC-50

we extract 10 equally spaced 1 second subclips, while for

the 6 times longer DCASE recordings, 60 subclips are ex-

tracted per clip. The audio features are obtained by max-

pooling the last convolutional layer of the audio subnetwork

(conv4 2), before the ReLU, into a 4 × 3 × 512 = 6144

dimensional representation (the conv4 2 outputs are orig-

inally 16 × 12 × 512). The features are preprocessed us-

ing z-score normalization, i.e. shifted and scaled to have a

zero mean and unit variance. A multi-class one-vs-all lin-

ear SVM is trained, and at test time the class scores for a

recording are computed as the mean over the class scores

for its subclips.

Results and discussion. Table 2 shows the results on ESC-

50 and DCASE. On both benchmarks we convincingly beat

the previous state-of-the-art, SoundNet [3], by 5.1% and

5% absolute. For ESC-50 we reduce the gap between the

previous best result and the human performance by 72%

while for DCASE we reduce the error by 42%. The results

are especially impressive as SoundNet uses two vision net-

works trained in a fully supervised manner on ImageNet and

Places2 as teachers for the audio network, while we learn

both the vision and the audio networks without any super-

vision whatsoever. Note that we train our networks with a

random subset of the SoundNet videos for efficiency pur-

poses, so it is possible that further gains can be achieved by

using all the available training data.

3.4. Visual features

In this section we evaluate the power of the visual repre-

sentation that emerges from the L
3-Net approach. Namely,

the L
3-Net vision subnetwork trained on Flickr-SoundNet

is used to extract features from images, and the effective-

ness of these features is evaluated on the ImageNet large

scale visual recognition challenge 2012 [30].

Experimental procedure. We follow the experimental

setup of Zhang et al. [36] where features are extracted from

256 × 256 images and used to perform linear classification

on ImageNet. As in [36], we take conv4 2 features af-

ter ReLU and perform max-pooling with equal kernel and

stride sizes until feature dimensionality is below 10k; in our

case this results in 4×4×512 = 8192-D features. A single

fully connected layer is added to perform linear classifica-

tion into the 1000 ImageNet classes. All the weights are

frozen to their L3-Net-trained values, apart from the final

classification layer which is trained with cross-entropy loss

on the ImageNet training set. The training procedure (data

augmentation, learning rate schedule, label smoothing) is

identical to [34], the only differences being that we use the

Adam optimizer instead of RMSprop, and a 256×256 input

image instead of 299 × 299 as it fits our architecture better

and to be consistent with [36].

Results and discussion. Classification accuracy on the Im-

ageNet validation set is shown in Table 3 and contrasted

with other unsupervised and self-supervised methods. We

also test the performance of random features, i.e. our L3-

Net architecture without AVC training but with a trained

classification layer.

Our L
3-Net-trained features achieve 32.3% accuracy

which is on par with other state-of-the-art self-supervised

methods of [7, 8, 22, 36], while convincingly beating ran-

dom initialization, data-dependent initialization [17], and

Context Encoders [25]. It should be noted that these meth-

ods use the AlexNet [18] architecture which is different to

ours, so the results are not fully comparable. On the one

hand, our architecture when trained from scratch in its en-

tirety achieves a higher performance (59.2% vs AlexNet’s

51.0%). On the other hand, it is deeper which makes it

harder to train as can be seen from the fact that our random

features perform worse than theirs (12.9% vs AlexNet’s

18.3%), and that all competing methods hit peak perfor-

mance when they use earlier layers (e.g. [8] drops from

31.0% to 27.1% when going from conv3 to pool5). In

613



Fingerpicking Lawn mowing P. accordion P. bass guitar P. saxophone Typing Bowling P. clarinet P. organ

Figure 3. Learnt visual concepts. Each column shows five images that most activate a particular unit of the 512 in pool4 for the vision

subnetwork. Note that these features do not take sound as input. Videos come from the Kinetics-Sounds test set and the network was

trained on the Kinetics-Sounds train set. The top row shows the dominant action label for the unit (“P.” stands for “playing”).

Fingerpicking Lawn mowing P. accordion P. bass guitar P. saxophone Typing Bowling P. clarinet P. organ

Figure 4. Visual semantic heatmap. Examples correspond to the ones in Figure 3. A semantic heatmap is obtained as a slice of activations

from conv4 2 of the vision subnetwork that corresponds to the same unit from pool4 as in Figure 3, i.e. the unit that responds highly to

the class in question.

614



fact, when measuring the improvement achieved due to

AVC or self-supervised training versus the performance of

the network with random initialization, our AVC training

beats all competitors.

Another important fact to consider is that all competing

methods actually use ImageNet images when training. Al-

though they do not make use of the labels, the underlying

image statistics are the same: objects are fairly central in the

image, and the networks have seen, for example, abundant

images of 120 breads of dogs and thus potentially learnt

their distinguishing features. In contrast, we use a com-

pletely separate source of training data in the form of frames

from Flickr videos – here the objects are in general not cen-

tred, it is likely that the network has never seen a “Tibetan

terrier” nor the majority of other fine-grained categories.

Furthermore, video frames have vastly different low-level

statistics to still images, with strong artefacts such as mo-

tion blur. With these factors hampering our network, it is

impressive that our visual features L3-Net-trained on Flickr

videos perform on par with self-supervised state-of-the-art

trained on ImageNet.

3.5. Qualitative analysis

In this section we analyse what is it that the network

has learnt. We visualize the results on the test set of the

Kinetics-Sounds dataset, so the network has not seen the

videos during training. Further examples on the Flickr-

SoundNet are provided in [2].

Vision features. To probe what the vision subnetwork has

learnt, we pick a particular ‘unit’ in pool4 (i.e. a compo-

nent of the 512 dimensional pool4 vector) and rank the

test images by its magnitude. Figure 3 shows the images

that activate particular units in pool4 the most (i.e. are

ranked highest by its magnitude). As can be seen, the vision

subnetwork has automatically learnt, without any explicit

supervision, to recognize semantic entities such as guitars,

accordions, keyboards, clarinets, bowling alleys, lawns or

lawnmowers, etc. Furthermore, it has learnt finer-grained

categories as well as it is able to distinguish between acous-

tic and bass guitars (“fingerpicking” is mostly associated

with acoustic guitars).

Figure 4 shows heatmaps for the images in Figure 3, ob-

tained by simply displaying the spatial activations of the

corresponding vision unit (i.e. if the k component of pool4

is chosen, then the k channel of conv4 2 is displayed –

since the k component is just the spatial max over this chan-

nel (after ReLU)). Objects are successfully detected despite

significant clutter and occlusions. It is interesting to observe

the type of cues that the network decides to use, e.g. the

“playing clarinet” unit, instead of trying to detect the entire

clarinet, seems to mostly activate on the interface between

the player’s face and the clarinet.

Further examples included in the extended version of this

paper [2] illustrate that scene level semantic categories (as

opposed to the object level categories shown here) are also

learnt by the network.

Audio features. Figure 5 shows what particular audio

units are sensitive to. For visualization purposes, instead

of showing the sound form, we display the video frame

that corresponds to the sound. It can be seen that the au-

dio subnetwork, again without any supervision, manages

to learn various semantic entities, as well as perform fine-

grained classification (“fingerpicking” vs “playing bass gui-

tar”). Note that some units are naturally confused – the

“tap dancing” unit also responds to “pen tapping”, while

the “saxophone” unit is sometimes confused with a “trom-

bone”. These are reasonable mistakes, especially when tak-

ing into account that the sound input is only one second in

length.

Figure 6 shows spectrograms and their semantic

heatmaps, illustrating that our L3-Net learns to detect au-

dio events. For example, it shows clear preference for low

frequencies when detecting bass guitars, attention to wide

frequency range when detecting lawnmowers, and temporal

‘steps’ when detecting fingerpicking and tap dancing.

Versus random features. Could the results in Figures 3

and 5 simply be obtained by chance due to examining a

large number of units, as colourfully illustrated by the dead

salmon experiment [4]? It is unlikely as there are only 512

units in pool4 to choose from, and many of those were

found to be highly correlated with a semantic concept. Nev-

ertheless, we repeated the same experiment with a random

network (i.e. a network that has not been trained), and have

failed to find such correlation. In more detail, we examined

how many out of the action classes in Kinetics-Sounds have

a unit in pool4 which shows high preference for the class.

For the vision subnetwork the preference is determined by

ranking all images by their unit activation, and retaining the

top 5; if 4 out of these 5 images correspond to one class,

then that class is deemed to have a high-preference for the

unit (a similar procedure is carried out for the audio sub-

network using spectrograms). Our trained vision and audio

networks have high-preference units for 10 and 11 out of a

possible 34 action classes, respectively, compared to 1 and 1

for the random vision and audio networks. Furthermore, if

the threshold for deeming a unit to be high-preference is re-

duced to 3, our trained vision and audio subnetworks cover

23 and 20 classes, respectively, compared to the 4 and 3 of

a random network, respectively. These results confirm that

our network has indeed learnt semantic features.

4. Discussion

We have shown that the network trained for the AVC

task achieves superior results on sound classification to re-

cent methods that pre-train and fix the visual networks (one
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Fingerpicking Lawn mowing P. accordion P. bass guitar P. saxophone Typing P. xylophone Tap dancing Tickling

Figure 5. Learnt audio concepts. Each column shows five sounds that most activate a particular unit in pool4 of the audio subnetwork.

Purely for visualization purposes, as it is hard to display sound, the frame of the video that is aligned with the sound is shown instead of the

actual sound form, but we stress that no vision is used in this experiment. Videos come from the Kinetics-Sounds test set and the network

was trained on the Kinetics-Sounds train set. The top row shows the dominant action label for the unit (“P.” stands for “playing”).

Fingerpicking Lawn mowing P. bass guitar Tap dancing

Figure 6. Audio semantic heatmaps. Each pair of columns shows

a single action class (top, “P.” stands for “playing”), five log-

spectrograms (left) and spectrogram semantic heatmaps (right) for

the class. Horizontal and vertical axes correspond to the time and

frequency dimensions, respectively. A semantic heatmap is ob-

tained as a slice of activations of the unit from conv4 2 of the au-

dio subnetwork which shows preference for the considered class.

each for ImageNet and Scenes), and we conjecture that the

reason for this is that the additional freedom of the visual

network allows the learning to better take advantage of the

opportunities offered by the variety of visual information in

the video (rather than be restricted to seeing only through

the eyes of the pre-trained network). Also, the visual fea-

tures that emerge from the L3-Net are on par with the state-

of-the-art among self-supervised approaches. Furthermore,

it has been demonstrated that the network automatically

learns, in both modalities, fine-grained distinctions such as

bass versus acoustic guitar or saxophone versus clarinet.

The localization visualization results are reminiscent of

the classic highlighted pixels in [15], except in our case we

do not just learn the few pixels that move (concurrent with

the sound) but instead are able to learn extended regions

corresponding to the instrument.

We motivated this work by considering correlation of

video and audio events. However, we believe there is ad-

ditional information in concurrency of the two streams, as

concurrency is stronger than correlation because the events

need to be synchronised (of course, if events are concurrent

then they will correlate, but not vice versa). Training for

concurrency will require video (multiple frames) as input,

rather than a single video frame, but it would be interesting

to explore what more is gained from this stronger condition.

In the future, it would be interesting to learn from the

recently released large dataset of videos curated according

to audio, rather than visual, events [11] and see what subtle

visual semantic categories are discovered.
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