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Abstract

The advent of high-tech journaling tools facilitates an

image to be manipulated in a way that can easily evade

state-of-the-art image tampering detection approaches. The

recent success of the deep learning approaches in differ-

ent recognition tasks inspires us to develop a high confi-

dence detection framework which can localize manipulated

regions in an image. Unlike semantic object segmentation

where all meaningful regions (objects) are segmented, the

localization of image manipulation focuses only the possi-

ble tampered region which makes the problem even more

challenging. In order to formulate the framework, we em-

ploy a hybrid CNN-LSTM model to capture discrimina-

tive features between manipulated and non-manipulated re-

gions. One of the key properties of manipulated regions

is that they exhibit discriminative features in boundaries

shared with neighboring non-manipulated pixels. Our mo-

tivation is to learn the boundary discrepancy, i.e., the spa-

tial structure, between manipulated and non-manipulated

regions with the combination of LSTM and convolution lay-

ers. We perform end-to-end training of the network to learn

the parameters through back-propagation given ground-

truth mask information. The overall framework is capable

of detecting different types of image manipulations, includ-

ing copy-move, removal and splicing. Our model shows

promising results in localizing manipulated regions, which

is demonstrated through rigorous experimentation on three

diverse datasets.

1. Introduction

With the availability of digital image editing tools, digi-

tal altering or tampering of an image has become very easy.

In contrast, the identification of tampered images is a very

challenging problem due to the strong resemblance of a

forged image to its original one. There are certain types

of manipulations such as copy-move, splicing, removal, that

can easily deceive the human perceptual system. Digital im-

age forensics is an emerging important topic in diverse sci-

Manipulated Image Ground-truth Proposed ModelCRF_RNN

(a)

Manipulated Image Ground-truth Proposed ModelCRF_RNN

(b)
Figure 1. The figure demonstrates the challenge of segmenting ma-

nipulated regions from an image. In this figure, we consider two

types of manipulation-(a) copy-clone, and (b) removal. In (a), se-

mantic segmentation method such as CRF-RNN [60] tries to seg-

ment two seals in the image, whereas the proposed method seg-

ments only the copied seal (manipulated) from an image. In (b),

the detection of manipulated region is even harder - some part of

the image has been removed and filled with the neighboring re-

gions. Deep learning based segmentation method [60] is not able

to segment removed objects, whereas our model is capable of lo-

calizing removed objects.

entific and security/surveillance applications. Most of the

existing methods have focused on classifying whether an

image is manipulated or not. However, there are few meth-

ods [51, 24, 13] that localize manipulated regions from an

image. Some recent works address the localization prob-

lem by classifying patches as manipulated. In this paper,

we propose a novel detection framework which is capable

of locating manipulation at patch as well as pixel level.

In image forensics, most of the state-of-the-art image

tamper detection approaches exploit the frequency domain

characteristics and/or statistical properties of an image.

Some of the common methods are DWT [34], SVD [41],

PCA [43], DCT [56]. The analysis of artifacts by multi-

ple JPEG compressions is also utilized in [18, 56] to de-
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tect manipulated images, which are applicable only to the

JPEG formats. Recently, deep learning has become pop-

ular due to its promising performance in different visual

recognition tasks such as object detection [26, 8], scene

classification [62], and semantic segmentation [40]. There

have been a few recent works which exploit stacked auto-

encoders (SAE) [59], and convolutional neural networks

(CNN) [50, 9, 19] in order to detect tampered images.

Even though CNN has shown very promising performance

in understanding visual concepts such as object detection

and recognition, the detection of manipulated regions with

CNNs may not be best strategy because well manipulated

images usually do not leave any visual clue of alteration

[50], and resemble genuine images.

In semantic segmentation, deep learning models [40, 60,

7] exhibit good performance by learning hiearachical fea-

tures of different objects in an image. Recent advances

in semantic segmentation involves coarse image represen-

tations, which are recovered by upsampling. However,

coarse representation introduces significant loss of informa-

tion which might be important for learning manipulated re-

gions. In contrast to semantic segmentation, manipulated

regions could be removed objects, or copied object from

other part of the image. Fig. 1 explains the challenge of seg-

menting manipulated regions in an image. In Fig. 1(a), im-

age is tampered in such a way that the manipulated and non-

manipulated regions contain the same object (seal). Exist-

ing segmentation approaches will segment both of the ob-

jects. In addition, existing segmentation network fails to

catch the removed object from an image which is shown in

Fig. 1(b). However, our proposed model is able to segment

the manipulated regions with high accuracy as shown in the

last column of Fig. 1.

An image can be manipulated in many ways - removing

objects from an image, splicing and copy-clone. Most of the

existing forgery detection approaches focus on identifying a

specific tampering method (such as copy-move [17, 29, 35],

splicing [45]). Thus, these approaches might not do well for

other types of tampering. Moreover, it becomes infeasible

and unrealistic to assume that the type of manipulation will

be known beforehand. In real-life, image tamper detection

should be able to detect all types of manipulation rather than

focusing on a specific type.

Towards this goal of detecting and localizing manip-

ulated image regions, we present a unified deep learning

framework in order to learn the patch labels (manipulated

vs non-manipulated) and pixel-wise segmentation jointly.

These two are intricately tied together, since patch classifi-

cation can inform us about which pixels are manipulated,

and segmentation will determine whether a patch is manip-

ulated or not. Our multi-task learning framework exploits

convolutional layers along with long-short term memory

(LSTM) cells. We perform end-to-end training to learn the

joint tasks through back-propagation using ground-truth

patch labels and mask information. The proposed model

shows promising results in localizing manipulated regions

at the pixel level, as well as in patch classification, which is

demonstrated on different challenging datasets.

Framework Overview: In this paper, our goal is to

localize the manipulated regions from an image. Given an

image, we first extract patches by sliding a windows across

the image. In our framework, the image patch is taken as

input and produces a patch label (manipulated or not) and

a segmentation mask as output. Our overall framework

consists of total 5 convolutional layers and an LSTM

network with 3 stacked layers. The proposed framework

is shown in Fig. 2. In the network, first two convolutional

layers are used to learn the low-level features, such as

edges and textures. After passing through two consecutive

convolutional layers, we have a 2D feature map which has

been divided into 8 by 8 blocks. These blocks are then

fed into the LSTM network discussed in the following

paragraph.

In computer vision, LSTMs are generally used to

learn the temporal context of a video or any sequence of

data. In this work, we use an LSTM to model the spatial

relationships between neighboring pixels. This is because

manipulation breaks the natural statistics of an image in

the manipulated boundary region. We send the blocks

of low level features obtained from second convolution

layer to the LSTM cells sequentially, e.g., first block goes

to first cell, second block to second cell, and so on. The

3-stacked LSTM layers produce the correlation features

between blocks. These features are then used to classify

patches using a softmax classifier, and passed to the series

of convolution layers.

Finally, we obtain the 2D map with confidence score

of each pixel using three consecutive convolutional layers

on top of the LSTM network. With the ground-truth

mask of manipulated regions we perform end-to-end

training to classify each pixel. We compute the joint loss

obtained at the patch classification layer and the final layer

of segmentation, which is then minimized by utilizing

back-propagation algorithm.

Main Contributions. Our main contributions are as

follows.

• In this paper, we propose a unified network for patch

classification and segmentation task using convolution

layers along with an LSTM network. To the best of our

knowledge, there is no prior work on joint pixel-wise

segmentation of manipulated regions and patch tamper

classification. The intricate relationship between the two,

as explained above, justifies this integrated approach.

• In the proposed network, both patch classification

and segmentation (pixel-wise classification) exploit the
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Figure 2. Overview of proposed framework for joint tasks- patch classification and manipulated region segmentation.

interdependence between them in order to improve both

of the recognition tasks. Our framework is capable of

localizing a manipulated region with high confidence,

which is demonstrated on three datasets.

2. Related Work

The field of image forensics comprises of diverse areas to

detect manipulation including resampling detection, JPEG

artefacts, detection of copy-move operations, splicing, and

object removal. We will briefly discuss some of them be-

low.

In the past decades, several techniques have been pro-

posed to detect resampling in digital images [52, 47, 23]. In

most cases, it is assumed to be done using linear or cubic

interpolation. In [52], the authors exploit periodic proper-

ties of interpolation by the second-derivative of the trans-

formed image for detecting image manipulation. To detect

resampling on JPEG compressed images, the authors added

noise before passing the image through the resampling de-

tector and showed that adding noise aids in detecting resam-

pling [47]. In [22, 23], a feature is derived from the nor-

malized energy density and then SVM is used to robustly

detect resampled images. Some recent approaches [27, 33]

have been proposed to reduce JPEG artefacts left by com-

pression. In [5, 54], feature based forensic approaches have

been presented in order to detect manipulation in an image.

In order to detect copy-move forgeries, an image is first

divided into overlapping blocks and some sort of distance

measure or correlation is used to determine blocks that have

been cloned. Some recent works [35, 31, 30, 4] tackle the

problem of identifying and localizing copy-move manipu-

lation. In [35], the authors used an interesting segmentation

based approach to detect copy move forgeries. They first di-

vided an image into semantically independent patches and

then performed keypoint matching among these patches. In

[20], a patch-match algorithm is used to efficiently compute

an approximate nearest neighbor field over an image. They

further use invariant features such as Circular Harmonic

transforms and show robustness over duplicated blocks that

have undergone geometrical transformations.

In [45], an image splicing technique has been proposed

using visual artifacts. A novel image forgery detection

method is presented in [46] based on the steerable pyramid

transform (SPT) and the local binary pattern (LBP). The pa-

per [28] includes the recent advances in image manipulation

and discusses the process of restoring missing or damaged

areas in an image. In [6], the authors review the different

image forgery detection techniques in image forensic litera-

ture. However, in computer vision, there has been a growing

interest to detect image manipulation by applying different

computer vision and machine learning algorithms.

Many methods have been proposed to detect seam carv-

ing [53, 25, 39] and inpainting based object removal [58,

18, 37]. Several approaches exploit JPEG blocking artifacts

to detect tampered regions [38, 21, 42, 12, 13]. In com-

puter vision, deep learning shows outstanding performance

in different visual recognition tasks such as image classi-

fication [62], and semantic segmentation [40]. In [40], two

fully convolution layers have been exploited to segment dif-

ferent objects in an image. The segmentation task has been

further improved in [60, 7]. These models extract hierarchi-

cal features to represent the visual concept, which is useful

in object segmentation. Since, the manipulation does not

exhibit any visual change with respect to genuine images,

these models do not perform well in segmenting manipu-

lated regions.

Recent efforts, including [9, 10, 50, 15] in the manip-

ulation detection task, exploit deep learning based mod-

els. These tasks include detection of generic manipula-

tions [9, 10], resampling [11], splicing [50], and bootleg

[14]. In [49], the authors propose Gaussian-Neuron CNN

(GNCNN) for steganalysis. A deep learning approach to

identify facial retouching was proposed in [1]. In [59],

image region forgery detection has been performed using

stacked auto-encoder model. In [9], a new form of convolu-

tional layer is proposed to learn the manipulated features

from an image. Unlike most of the deep learning based

image tampering detection methods which use convolution

layers, we present an unique network exploiting convolu-

tion layers along with an LSTM network.
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3. Network Architecture Overview

Image manipulation techniques such as copy-clone,

splicing, and removal are very common as they are very

difficult to authenticate due to their resemblance to its gen-

uine images. The main goal of this work is to recognize

these manipulations at pixel and patch-level. Localization

of manipulated regions is a different problem than object

segmentation as tampered regions are not visually apparent.

For example, if an object is removed, the region may visu-

ally blend into the background, but needs to be identified as

manipulated. As another example, copy-move is a kind of

manipulation where one object is copied to another region

of the same image leading to two similar objects, one orig-

inally present, and another manipulated. However, only the

latter needs to be identified.

Fig. 3 shows the boundary region of manipulated and

non-manipulated block in a patch. From Fig. 3, we can

see that boundary regions of the manipulated patches are

affected, e.g. smoother boundary, when compared to non-

manipulated regions. When we zoom into the small cropped

region as shown in Fig. 3, we can see the difference be-

tween boundary of manipulated block (smoothed) and non-

manipulated region. The boundary shared between non-

manipulated and manipulated regions are sometimes inten-

tionally made smoother so that no one can visually under-

stand the artefacts seeing an image. Next, we will discuss

the details of our proposed architecture in order to recognize

and localize manipulated regions.

3.1. Model for Localizing Manipulated Regions

Here, we perform two tasks-(1) patch classification (ma-

nipulated vs non-manipulated), and (2) segmentation of ma-

nipulated regions from the patches. The proposed frame-

work is shown in Fig. 2. The network exploits convolutional

layers along with an LSTM network to classify patches, and

to segment manipulated regions.

3.1.1 Convolutional Layers

Convolutional layers consist of different filters which have

learnable weights and biases. In the first layer, the network

will take a patch as input. Each patch has R,G,B value with

dimension of 64 × 64 × 3 (width, height, color channels).

In [61], it is shown that convolutional layers are capable of

extracting different features from an image such as edges,

textures, objects, and scenes. As discussed above, manip-

ulation is better captured in the boundary of manipulated

regions. Thus, the low-level features are critical to identify

manipulated regions. The filters in convolutional layer will

create feature maps that are connected to the local region of

the previous layer. In the convolutional layers, we use ker-

nel size of 5 × 5 × D, where D is the depth of a filter. D
has different values for different layers in the network. An

Non-manipulated Region

Manipulated Region

( a ) ( b ) 

Manipulated Block

( c ) ( d ) 

Non-manipulated Block

Figure 3. The figure illustrates the boundary region of manipu-

lated block (red) and non-manipulated block (green) in column

(a). Column (b) shows the corresponding ground-truth masks for

the manipulated images in column (a). Columns (c) and (d) are

the zoomed-in version of the red (manipulated) and green (non-

manipulated) blocks respectively, showed in (a). Here, we can

see that the boundary formation is different for non-manipulated

(sharp) and manipulated (smooth) regions.

element-wise activation is also utilized in the form of RELU

function, max(0, x).
The first convolution layer creates 16 feature maps.

Then, these feature maps are combined in the next convolu-

tion layer. We keep one feature map which will be divided

into blocks to send into the LSTM cells. The reason for

using one feature map is to reduce the network complexity,

but it could be changed depending on the size of the dataset.

The feature map has been divided into 8 by 8 blocks, which

are taken as input the LSTM cells. In Fig. 2, we can see that

second convolutional layer provides a two-dimensional fea-

ture map which can be denoted as Fc2 . The 8 by 8 block of

this feature map will be fed into the LSTM cells in order to

learn the boundary transformation, which will be discussed

in the Section 3.1.2.

The output feature from the LSTM network is used as

input to the later convolutional layers. These convolutional

layers learn the mapping between features of the boundary

transformation from the LSTM and the tampered pixels us-

ing the ground-truth mask. Unlike conventional CNNs, we

do not use pooling mechanism in every convolution layer

as it causes possible loss of information. We only use max

pooling in third convolution layer.

Motivated by the segmentation work presented in [40],

we also utilize two fully convolution layers (conv layer 4

and 5 as shown in Fig. 2) at the end. In [55, 40], segmen-

tation networks represent features coarsely, which is finally

compensated by upsampling operation to match the dimen-

sion of the ground-truth mask. However, in contrast to these

approaches, we do not follow upsampling operation as it

might create additional distortion. In our network, the size
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of the feature map produced in different layers never goes

below the input patch size. Finally, after the last convolu-

tional layer, we get 64×64×2 dimensional confidence map

of each pixel using the softmax function.

3.1.2 Long-Short Term Memory (LSTM) Network

In computer vision, an LSTM network has been used in

tasks where sequential information (context) can be ex-

ploited. In [48, 16], LSTMs are used to capture the de-

pendency among a series of pixels. Manipulation distorts

the natural statistics of an image, especially in the boundary

region as shown in Fig. 3. In this paper, the LSTM network

is used to learn the correlation between the blocks in 2D

feature map provided by the second convolutional layer as

shown in Fig. 2. In order to utilize an LSTM, we first divide

the feature map Fc2 obtained from the second convolutional

layer into blocks. We split this into 8 × 8 blocks. Now, we

learn the logarithmic distance block dependency by feed-

ing each block to each cell of the LSTM in a sequential

manner. The LSTM cells correlate neighboring blocks with

current block. In this work, we utilize 3 stacked layers, and

at each layer, 64 cells are used. In the last layer, each cell

provides 256 dimensional feature vector which is converted

to a 16 × 16 block. Finally, we concatenate all the blocks

to represent a 2D feature map Flstm in the same order as

we divided them, which is then used by the third convolu-

tional layer. The key insight of using LSTM is to learn the

boundary transformation between different blocks, which

provides discriminative features between manipulated and

non-manipulated regions.

In the LSTM, information flow between the cells is con-

trolled by three gates- (1) input gate, (2) forget gate, and (3)

output gate. Each gate has a value ranging from zero to one,

activated by a sigmoid function. Let us denote cell state and

output state as Ct and zt for current cell t. Each cell pro-

duces new candidate cell state C̄t. Using the previous cell

state Ct−1 and C̄t, we can write the updated cell state Ct as

Ct = ft ◦ Ct−1 + it ◦ C̄t (1)

Here, ◦ denotes the pointwise multiplication. Finally, we

obtain the output of the current cell ht, which can be repre-

sented as

zt = ot ◦ tanh(Ct) (2)

In Eqns. 1 and 2, i, f, o represent input, forget and output

gates.

3.1.3 Training the Network

Soft-max Layers. In the proposed network, we have two

softmax layers for the two tasks- patch classification and

segmentation (pixel-wise classification). Let us denote

the probability distribution over various classes as P (Yk)

which is provided by softmax classifier. Now, we can pre-

dict label by maximizing P (Yk) with respect to k. The pre-

dicted label can be obtained by Ŷ = argmax
k

P (Yk).

Training Loss. In patch classification, patch labels are pre-

dicted at the end of the LSTM network as shown in Fig. 2.

Let us denote θp, which is a weight vector associated with

patch classification. We use cross entropy loss for patch

classification, which can be written as follows.

Lp(θp) = −
1

Mp

Mp∑

j=1

Np∑

k=1

✶(Yj = k) log(Yj = k|xj ; θp)

(3)
Here, ✶(.) is an indicator function, which equals to 1 if

j = k, otherwise it equals 0. Yj and xj imply the patch

label (manipulated or non-manipulated) and the feature of

the sample j. Mp is the number of patches.

Similarly, we can also compute a loss function for pixel-

wise classification. Let θs be the parameter vector corre-

sponding to segmentation task. So, the cross entropy loss

can be computed as

Ls(θs) = −
1

Ms

Ms∑

m=1

Ns∑

n=1

✶(Ym = n) log(Ym = n|ym; θs)

(4)

Here, Ms and Ns denote the total number of pixels, and the

number of class. y represents the input pixel. Now, we can

compute the joint loss from Eqns. 3 and 4, which can be

written as

L(θ) = Lp(θp) + Ls(θs) (5)

Here, θ contains all the parameters involving in both patch

classication and segmentation tasks. We use adaptive mo-

ment estimation (Adam) [32] optimization technique in or-

der to minimize the total loss of the network, shown in

Eqn. 5. After optimizing the loss function with all the exam-

ples, we learn the optimal set of parameters of the network.

With these optimal parameters, the network is able to pre-

dict patch labels as well as pixel-wise classification within

the patch given a test sample.

4. Experiments

In this section, we demonstrate our experimental results

for two tasks-(1) identification of tampered patch, and (2)

segmentation of manipulated regions given a patch. We

evaluate our proposed model on three datasets- NIST [3],

IEEE Forensics Challenge [2], COVERAGE [57].

Data Preparation. We train our models for patch classi-

fication and segmentation jointly. We choose three datasets

which provide ground-truth mask for manipulated region.

NIST [3] is a very challenging dataset, which includes

mainly three types of manipulation- (a) copy-clone, (b) re-

moval, and (c) splicing. This recently released dataset in-

cludes images, which are tampered in a sophisticated way to
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beat current state-of-the-art detection techniques. We also

show our results on IEEE Forensics Challenge [2] and COV-

ERAGE [57] datasets which provide ground-truth mask for

manipulation. As manipulated regions are small in number

compared to non-manipulated regions, we also perform data

augmentation in order to get rid of bias in training. As the

number of images in COVERAGE [57] is small, we fine-

tune the model trained on NIST [3].

In data preparation, we first split the whole image dataset

into three subsets- training (65%), validation (10%) and

testing (25%). These subsets are chosen randomly. Then,

we extract patches from training images which are consid-

ered as training set. Similarly, we obtain validation and test-

ing set in this process. To augment the manipulated patches,

we first obtain the bounding boxes using contour approxi-

mation method on ground-truth mask. We enlarge the box

by placing the whole manipulated region at the center to in-

clude more non-manipulated pixels in the patch. We also

consider slided version of these bounding box, which in-

cludes some part of the manipulated region. These patches

are useful for the LSTM to learn the transformation from

the manipulated region to non-manipulated region.

We use intersection over union (IoU) ratio between

ground-truth mask and a selected region to label a patch. If

a patch contains more than 12.5%(1/8) of the manipulated

pixels, we label it as manipulated. Labeling the patches

in this manner helps in learning the segmentation task bet-

ter which will be discussed later in this section. As im-

age and ground-truth mask are of same size, we can eas-

ily generate the ground-truth masks for the extracted image

patches. With these newly generated ground-truth masks

and patches, we train the whole network end-to-end.

Implementation Details. To train the model, we use

TensorFlow to define different layers of the network. To run

the experiment, we utilize multi-GPU setting. We use two

NVIDIA Tesla K80 GPUs in different sets of experiments.

Post-processing of Segmentation. Given a patch, our

network provides binary labels for patch and binary mask

for segmentation. To smooth the predicted binary mask,

we use Gaussian filtering technique. Next, we multiply the

predicted binary mask by predicted patch label. Patch clas-

sification reduces false positive pixels in the segmentation

at this stage. For example, in a non-manipulated patch, few

pixels are falsely positive, but at the same time we know

that the patch is non-manipulated with high confidence. We

can then remove those pixels from the localization results.

Evaluation Criterion. We ran a set of experiments

to evaluate our model. They are (1) performance of joint

learning, (2) comparison against other approaches, (3) per-

formance with different layers and with different sizes of

feature maps, (4) effect of labeling a patch on segmentation

task, and (5) ROC curve and qualitative analysis.

Baseline Methods: We will compare our proposed ap-

proach with various baseline methods. All the baseline

methods have been implemented for different tasks- seg-

mentation (S), patch classification (P) and joint task learn-

ing of both (J). The various baseline methods are described

below.

⋄ FCN : Fully convolutional network as proposed in [40].

⋄ S-LSTM-Conv3,4: Segmentation network using LSTM

followed by two convolution layers (conv3 and conv4).

First two convolution layers have been removed.

⋄ S-LSTM-Conv: Segmentation network using LSTM fol-

lowed by three convolution layers (conv3, conv4 and

conv5). First two convolution layers are not used.

⋄ S-Conv-LSTM-Conv: Proposed network as shown in

Fig. 2 for segmentation task only. Patch classification is

not considered.

⋄ P-LSTM: Patch classification using LSTM. No convolu-

tion layer is utilized.

⋄ P-Conv-LSTM: Patch classification using convolution lay-

ers (conv1 and conv2) followed by LSTM.

⋄ J-Conv-LSTM-Conv: Joint classification network as

shown in Fig. 2 for patch classification and segmentation.

Methods NIST [3] IEEE [2] COV [57]

P-LSTM 81.05% 84.27% 73.28%
P-Conv-LSTM 86.76% 86.05% 79.12%
J-Conv-LSTM 89.38% 87.68% 80.06%

Table 1. Classification accuracy of patches (Manipulated vs Non-

manipulated)

Performance of Joint Learning. We evaluate our pro-

posed model by training on three datasets - NIST [3], IEEE

Forensics Challenge [2], Coverage [57] datasets. Tables 1

and 2 show classification accuracy on patch classifica-

tion and segmentation tasks. From the tables, we can ob-

serve that joint-task learning performs better than single-

task learning due to strong correlation between patch clas-

sification and segmentation. Recognition on one task helps

in recognition of other task. From Table. 1, we can ob-

serve that the recognition accuracy of J-Conv-LSTM-Conv

(joint-task learning) exceeds the P-Conv-LSTM (single-

task learning) by 2.62%, 1.65%, 0.94% on NIST [3], IEEE

Forensics Challenge [2] and Coverage [57] datasets respec-

tively. Similarly, for segmentation of manipulted regions,

joint task improves the recognition accuracy by significant

margin (1.82%, 3.35%, 2.72% on NIST [3], IEEE Foren-

sics Challenge [2] and Coverage [57], respectively) when

compared to single-task network.

Comparison against Other Approaches. We compare

our network with different baseline methods and other state-

of-the-art approaches. One of the recent deep learning

based approaches for semantic segmentation is fully convo-

lutional network (FCN) as proposed in [40]. We have imple-

mented FCN with five layers (3 convolution and 2 fully con-
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Methods NIST [3] IEEE [2] COV [57]

FCN [40] 64.34% - -

S-LSTM-Conv3,4 74.43% - -

S-LSTM-Conv 78.60% 74.04% 75.38%
S-Conv-LSTM-Conv 82.78% 74.32% 78.42%
J-Conv-LSTM-Conv 84.60% 77.67% 81.14%

Table 2. Segmentation accuracy on three datasets

Methods Patch Classification Segmentation

Conv1-8f 82.90% 80.88%
Conv1-32f 78.03% 73.17%
LSTM-64h 80.56% 76.16%

Table 3. Performance of the proposed network with varying size

of feature maps in different layer.

volution layers) on NIST [3] dataset. To avoid over-fitting,

we reduce the number of feature maps in each convolution

layer. From Table. 2, we can see that FCN does not per-

form well to learn the manipulated regions. It is because

the model tries to learn the visual concept/feature from an

image whereas manipulation of an image does not leave

any visual clue. We also compare against other baselines

as shown in Table 1 and 2. From the tables, we can see

that the proposed network outperforms other baselines in

performing both tasks.

Performance of Segmentation Network with Differ-

ent Layers. We run an experiment by modifying the net-

work with different convolution layers on NIST [3] dataset.

This study basically tells us how the convolution layers help

in segmenting task. Table. 2 shows the layer-wise analy-

sis of the proposed network. We evaluate the performance

of baseline networks- S-LSTM-Conv3,4, S-LSTM-Conv as

discussed above. As we can see in Table. 2, we obtain

higher accuracy with S-Conv-LSTM-Conv in segmentation

by adding two convolution layers at the front of S-LSTM-

Conv network.

Study of Feature Map. In our proposed network, we

use first convolution layer(conv1) with 16 feature maps. We

also try with varying number of feature maps such as (1)

Conv1-8f : conv1 with 8 maps, (2) Conv1-32f : conv1 layer

with 32 feature maps. In the LSTM, each cell produces

256 dimensional feature vector at the third-stacked layer to

achieve 128 by 128 map, which is used as input to conv3

layer (please see Sec. 3.1.2 for details). We vary the size of

this feature to 64 in LSTM-64h, which generates 64 by 64
feature map before conv3 layer. Results of all these network

have been shown in Table. 3.

Effect of Labeling a Patch on Segmentation Task. In

contrast to object detection method where IoU overlap with

more than 50% is considered as correct detection, we con-

sider the IoU overlap with 12.5% in order to label the patch

as manipulated. Since we aim to localize manipulated re-

gions, IoU ratio is critical for segmenting a region. Even

though higher IoU ratio results in higher accuracy in tam-

per patch classification, it degrades the performance in seg-

mentation task. Let us consider a patch which has 20% of

the pixels manipulated. The network will label this patch as

non-manipulated (with IoU 50% labeling), but we still have

to segment these 20% pixels from the patch in segmentation

task. Due to sharing of significant portion of the network (2

convolution layers along with the LSTM network) between

these two tasks, labeling with higher IoU ratio directly af-

fects the segmentation task. Table. 4 shows the results of

joint-task learning on NIST [3] dataset for varying IoU ra-

tio.

Methods Patch Classification Segmentation

IoU-0.5 96.56% 75.32%
IoU-0.125 89.38% 84.60%

Table 4. The effect of labeling a patch with different IoU ratio on

patch classification and segmentation.

ROC Curve of Recognition. Figs. 4(a,b,c) show the

ROC plots of the two tasks- patch classification and seg-

mentation, on NIST [3], IEEE Forensics Challenge [2],

Coverage [57] datasets respectively. We also provide the

area under the curve (AUC) results in Table 5. We com-

pare our segmentation approach with other state-of-the art

approaches on NIST [3] in terms of AUC as illustrated in

Table 6. From this table, we can see that our network out-

performs state-of-the-art approaches by very large margin.

Dataset Patch Classification Segmentation

NIST [3] 0.9390 0.7641
Forensic [2] 0.8938 0.7238
Coverage [57] 0.7238 0.6137

Table 5. Area under the curve (AUC) for the ROC plots as shown

in Fig. 4

Methods AUC score

DCT Histograms [38] 0.545
ADJPEG [13] 0.5891
NADJPEG [13] 0.6567
PatchMatch [20] 0.6513
Error level analysis [42] 0.4288
Block Features [36] 0.4785
Noise Inconsistencies [44] 0.4874
Our approach 0.7641

Table 6. Comparison of AUC on NIST 2016 dataset

Qualitative Analysis of Segmentation. In Fig. 5, we

provide some examples showing segmentation results pro-

duced by the proposed network. The examples are taken
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(a) NIST [3] (b) IEEE Forensics Challenge [2] (c) COVERAGE [57]

Figure 4. ROC Curve on three datasets for patch classification and pixel-wise classification (segmentation). AUC is provided in Table 5

Manipulated Image Ground-truth Proposed Model Manipulated Image Ground-truth Proposed Model

(a) (b)

Manipulated Image Ground-truth Proposed Model Manipulated Image Ground-truth Proposed Model

(c) (d)

Manipulated Image Ground-truth Proposed Model Manipulated Image Ground-truth Proposed Model

(e) (f)

Figure 5. Some of the segmentation examples. Images are taken from three datasets.

from NIST [3], IEEE Forensics Challenge [2], Coverage

[57] datasets. The manipulation examples are generated

by copy-clone, splicing and removal techniques. The seg-

mentation results are generated after post-processing as dis-

cussed before. As we can see from the Fig. 5, the predicted

mask can locate different types of manipulation from an im-

age. More such examples will be provided in supplemen-

tary material.

5. Conclusion

In this paper, we present a unified framework for joint

patch classification and segmentation to localize manipu-

lated regions from an image. We exploit the interdepen-

dency between patch recognition and segmentation in or-

der to improve both recognition tasks. Our detailed exper-

iments showed that our approach could efficiently segment

various types of manipulations including copy-move, object

removal and splicing.

6. Acknowledgement

This research was developed with funding from the Defense

Advanced Research Projects Agency (DARPA). The views, opin-

ions and/or findings expressed are those of the author and should

not be interpreted as representing the official views or policies of

the Department of Defense or the U.S. Government. The paper is

approved for public release, distribution unlimited.

4977



References

[1] Detecting facial retouching using supervised deep learning.

[2] IEEE IFS-TC Image Forensics Challenge Dataset.

http://ifc.recod.ic.unicamp.br/fc.

website/index.py.

[3] NIST Nimble 2016 Datasets. https://www.nist.

gov/sites/default/files/documents/2016/

11/30/should_i_believe_or_not.pdf.

[4] O. M. Al-Qershi and B. E. Khoo. Passive detection of copy-

move forgery in digital images: State-of-the-art. Forensic

science international, 231(1):284–295, 2013.

[5] I. Amerini, L. Ballan, R. Caldelli, A. Del Bimbo, and

G. Serra. A sift-based forensic method for copy–move at-

tack detection and transformation recovery. IEEE Trans-

actions on Information Forensics and Security, 6(3):1099–

1110, 2011.

[6] M. D. Ansari, S. P. Ghrera, and V. Tyagi. Pixel-based im-

age forgery detection: A review. IETE journal of education,

55(1):40–46, 2014.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A

deep convolutional encoder-decoder architecture for scene

segmentation. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 2017.

[8] J. H. Bappy and A. K. Roy-Chowdhury. CNN based region

proposals for efficient object detection. In IEEE Interna-

tional Conference on Image Processing (ICIP), 2016.

[9] B. Bayar and M. C. Stamm. A deep learning approach to

universal image manipulation detection using a new convo-

lutional layer. In Proceedings of the 4th ACM Workshop on

Information Hiding and Multimedia Security, pages 5–10,

2016.

[10] B. Bayar and M. C. Stamm. Design principles of convo-

lutional neural networks for multimedia forensics. In IS&T

International Symposium on Electronic Imaging: Media Wa-

termarking, Security, and Forensics, 2017.

[11] B. Bayar and M. C. Stamm. On the robustness of constrained

convolutional neural networks to jpeg post-compression for

image resampling detection. In Proceedings of The 42nd

IEEE International Conference on Acoustics, Speech and

Signal Processing, 2017.

[12] T. Bianchi, A. De Rosa, and A. Piva. Improved dct coef-

ficient analysis for forgery localization in jpeg images. In

IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2011.

[13] T. Bianchi and A. Piva. Image forgery localization via block-

grained analysis of jpeg artifacts. IEEE Transactions on In-

formation Forensics and Security, 7(3):1003–1017, 2012.

[14] M. Buccoli, P. Bestagini, M. Zanoni, A. Sarti, and S. Tubaro.

Unsupervised feature learning for bootleg detection using

deep learning architectures. In IEEE International Workshop

on Information Forensics and Security (WIFS), 2014.

[15] J. Bunk, J. H. Bappy, T. M. Mohammed, L. Nataraj,

A. Flenner, B. Manjunath, S. Chandrasekaran, A. K. Roy-

Chowdhury, and L. Peterson. Detection and localization of

image forgeries using resampling features and deep learning.

arXiv preprint arXiv:1707.00433, 2017.

[16] W. Byeon, T. M. Breuel, F. Raue, and M. Liwicki. Scene

labeling with lstm recurrent neural networks. In IEEE Con-

ference on Computer Vision and Pattern Recognition, 2015.

[17] Y. Cao, T. Gao, L. Fan, and Q. Yang. A robust detection

algorithm for copy-move forgery in digital images. Forensic

science international, 214(1):33–43, 2012.

[18] I.-C. Chang, J. C. Yu, and C.-C. Chang. A forgery detection

algorithm for exemplar-based inpainting images using multi-

region relation. Image and Vision Computing, 31(1):57–71,

2013.

[19] J. Chen, X. Kang, Y. Liu, and Z. J. Wang. Median filter-

ing forensics based on convolutional neural networks. IEEE

Signal Processing Letters, 22(11):1849–1853, 2015.

[20] D. Cozzolino, G. Poggi, and L. Verdoliva. Efficient dense-

field copy–move forgery detection. IEEE Transactions on In-

formation Forensics and Security, 10(11):2284–2297, 2015.

[21] H. Farid. Exposing digital forgeries from jpeg ghosts.

IEEE transactions on information forensics and security,

4(1):154–160, 2009.

[22] X. Feng, I. J. Cox, and G. Doërr. An energy-based method
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