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Abstract

This paper presents a method to assess a basketball

player’s performance from his/her first-person video. A key

challenge lies in the fact that the evaluation metric is highly

subjective and specific to a particular evaluator. We lever-

age the first-person camera to address this challenge. The

spatiotemporal visual semantics provided by a first-person

view allows us to reason about the camera wearer’s actions

while he/she is participating in an unscripted basketball

game. Our method takes a player’s first-person video and

provides a player’s performance measure that is specific to

an evaluator’s preference.

To achieve this goal, we first use a convolutional LSTM

network to detect atomic basketball events from first-person

videos. Our network’s ability to zoom-in to the salient re-

gions addresses the issue of a severe camera wearer’s head

movement in first-person videos. The detected atomic events

are then passed through the Gaussian mixtures to construct

a highly non-linear visual spatiotemporal basketball as-

sessment feature. Finally, we use this feature to learn a bas-

ketball assessment model from pairs of labeled first-person

basketball videos, for which a basketball expert indicates,

which of the two players is better.

We demonstrate that despite not knowing the basketball

evaluator’s criterion, our model learns to accurately assess

the players in real-world games. Furthermore, our model

can also discover basketball events that contribute posi-

tively and negatively to a player’s performance.

1. Introduction

A gifted offensive college basketball player, Kris Jenk-

ins (Villanova), made a three point buzzer beater against

UNC (2015-2016 season), and recorded one of the greatest

endings in NCAA championship history. He was arguably

one of the best players in the entire NCAA tournament. A

question is “what makes him stand out from his peer play-

ers?”. His stats, e.g., average points and rebounds per game,

can be a measure to evaluate his excellence. However, these

measures do not capture every basketball aspect that a coach
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Figure 1: Our goal is to assess a basketball player’s perfor-

mance based on an evaluator’s criterion from an unscripted

first-person basketball video of a player. During training,

we learn such a model from the pairs of weakly labeled

first-person basketball videos. During testing, our model

predicts a performance measure customized to a particular

evaluator from a first-person basketball video. Addition-

ally, our model can also discover basketball events that con-

tribute positively and negatively to a player’s performance.

may want to use for assessing his potential impact in the fu-

ture team, which is difficult to measure quantitatively. NBA

coaches and scouts are eager to catch every nuance of a bas-

ketball player’s abilities by watching a large number of his

basketball videos.

Now consider a college recruitment process where there

is a massive number of high school players. In such condi-

tions, the searching task for the best players becomes much

more challenging, more expensive and also more labor in-

tense. More importantly, the recruiters need to measure and

evaluate a sequence of atomic decision makings, e.g., when

does a player shoot, whether he makes a shot, how good is
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his passing ability, etc. There exists neither universal mea-

sure nor golden standard to do this, i.e., most scouts and

coaches have their own subjective evaluation criterion.

In this paper, we address a problem of computational

basketball player assessment customized to a coach’s or

scout’s evaluation criterion. Our conjecture is that a first-

person video captures a player’s basketball actions and

his/her basketball decision making in a form of the cam-

era motion and visual semantics of the scene. A key chal-

lenge of first-person videos is that it immediately violates

primary assumptions made for third-person recognition sys-

tems: first-person videos are highly unstable and jittery

and visual semantics does not appear as iconic as in third-

person [9].

Our first-person approach innovates the traditional as-

sessment methods, e.g., watching hours of third-person

videos taken by non professional videographers and assess-

ing the players in them. In contrast, a first-person video

records what the player sees, which directly tells us what

is happening to the player himself, e.g., the body pose of a

point guard who is about to pass at HD resolution while a

third-person video produces a limited visual access to such

subtle signals. Furthermore, the 3D camera egomotion of

the first person video reflects the decision making of how

the player responds to the team configuration, e.g., can I

drive towards the basket and successfully finish a layup?

Finally, a first-person camera eliminates the tracking and

player association tasks of the third-person video analysis,

which prevents applications of computational approaches

for amateur games1.

Our system takes a first-person video of basketball play-

ers and outputs a basketball assessment metric that is spe-

cific to an evaluator’s preference. The evaluator provides

the comparative weak labels of the performance of the play-

ers, e.g., the player A is better than B based on his own sub-

jective criteria.

Our method first uses a convolutional LSTM to detect

atomic basketball events from a first-person video. Our net-

work’s ability to localize the most informative regions in a

first-person image, is essential for first-person videos where

the camera undergoes severe head movement, which causes

videos to be blurry. These atomic events are then passed

through the Gaussian mixtures to produce a highly non-

linear visual spatiotemporal basketball assessment feature.

Finally, our basketball assessment model is learned from the

pairs of labeled first-person basketball videos by minimiz-

ing a hinge loss function. We learn such a basketball skill

assessment model from our new 10.3 hour long first-person

basketball dataset that captures 48 distinct college level bas-

ketball players in an unscripted basketball game.

Impact Ample money and effort have been invested in

1Usage of commercial tracking systems using multiple calibrated cam-

eras is limited due to a high cost [1]

recruiting, assessing, and drafting basketball players every

year. However, limited progress has been made on develop-

ing computational models that can be used to automatically

assess an athlete’s performance in a particular sport [39, 23].

As wearable technology advances, cameras can be non-

invasively worn by players, which delivers a vivid sense of

their dynamics, e.g., Spanish Liga ACB has demonstrated a

possibility of a jersey camera that allows you to put yourself

in the court [2]. This trend will open up a new opportunity

to share experiences and evaluate performance across play-

ers in different continents without bias and discrimination.

Our work takes a first step towards enabling a computational

analysis for such first-person data.

Contribution To the best of our knowledge, this is the

first paper that addresses practical behavioral assessment

tasks using first-person vision specific to an evaluator’s

preference. The core technical contributions of the paper

include 1) a basketball assessment model that assesses the

players based an an evaluator’s assessment criterion, which

we learn from the pairs of weakly labeled first-person bas-

ketball videos; 2) a predictive network that learns the vi-

sual semantics of important actions and localizes salient re-

gions of first-person images to handle unstable first-person

videos and 3) a new 10.3 hour long first-person basketball

video dataset capturing 48 players in an unscripted basket-

ball game.

2. Related Work

Talent wins games, but teamwork and intelligence wins

championships. — Michael Jordan

Accurate diagnosis and evaluation of athletes is a key

factor to build a synergic teamwork. However, it is highly

subjective and task dependent, and the psychological and

financial cost of such process is enormous. A large body

of sport analytics and kinesiology has studied a computa-

tional approaches to provide a quantitative measure of the

performance [39, 23, 38, 19, 25].

Kinematic abstraction (position, orientation, velocity,

and trajectory) of the players offers a global centric repre-

sentation of team behaviors, which allows a detailed anal-

ysis of the game such as the probability of shoot success,

rebound, and future movement prediction [38, 19, 35]. Not

only an individual performance, but also team performance

can be measured through the kinematic abstraction [25, 23].

These kinematic data are often obtained by multiple

third-person videos [1, 19, 23] where the players and ball

are detected using recognition algorithms combined with

multiple view geometry [14]. Tracking and data associa-

tion is a key issue where the role of the players provides a

strong cue to disambiguate appearance based tracking [22].

Events such as ball movement, can be also recognized using

a spatiotemporal analysis [24]. As players behave strategi-
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cally and collectively, their group movement can be pre-

dicted [17] and the ball can be localized without detec-

tion. Various computational models have been used for

such tasks, e.g., Dynamic Bayesian Network [36], hierar-

chical LSTM [15], attention based LSTM [31] learned from

a large collection of third-person videos.

Unlike third-person videos, first-person cameras closely

capture what the players see. Such property is beneficial

to understand activities highly correlated with visual atten-

tion, e.g., object manipulation and social communications.

Important objects to the camera wearer are detected and

segmented [20, 8, 32, 12, 5], which can be used to com-

press life-log videos [20, 21]. As visual attention is also

related with the intent of the camera wearer, her/his future

movement can be predicted [27]. Beyond individual behav-

iors, joint attention is a primary indicator of social inter-

actions, which can be directly computed from first-person

videos [11, 29], and further used for human-robot interac-

tions [33, 13].

In sports, the complex interactions with a scene in first-

person videos can be learned through spatiotemporal visual

patterns. For instance, the scene can tell us about the ac-

tivity [18] and the egomotion can tell us about the physical

dynamics of activity [28]. Joint attention still exists in team

sports which can be described by the team formation [30]

and future behaviors [35].

Unlike previous work that mainly focuses on recognizing

and tracking objects, activities, and joint attention, we take

one step further: performance assessment based on the eval-

uator’s preference. We introduce a computational model

that exhibits strong predictive power when applied on the

real world first-person basketball video data.

3. Basketball Performance Assessment Model

We define a measure of performance assessment using a

first-person video:

S(V) =

P

T

t=1 p
(1)
t w

Tφ(Vt,x)
P

T

t=1 p
(1)
t

(1)

where V is a first-person video of T number of frames, φ is

a visual spatiotemporal basketball assessment feature, and

w is a weight vector of performance regressor. Vt ⊂ V
is a segmented video starting at the tth frame with a fixed

length, Ts. p
(1)
t ∈ [0, 1] is a relevance of Vt to evaluate a

given player’s performance. x ∈ R
2 is the 2D coordinate of

the basketball player, i.e., the projection of 3D camera pose

computed by structure from motion [14] onto the canonical

basketball court. In Figure 2, we provide a detailed illustra-

tion of our basketball assessment prediction framework.

3.1. Visual Spatiotemporal Assessment Feature

Our first goal is to use a first-person basketball video to

build a powerful feature representation that could be used

for an effective player’s performance assessment. We iden-

tify three key challenges related to building such a repre-

sentation from first-person basketball videos: 1) our system

needs to handle severe camera wearer’s head motion, 2) we

need to have an interpretable basketball representation in

terms of its atomic events, and 3) our feature representation

has to be highly discriminative for a player’s performance

prediction task.

To address these problems, we propose to represent the

visual feature of the segmented video, Vt, as follows, where

each function below addresses one of the listed challenges:

φ(Vt,x) = fgm (fevent (fcrop (Vt) ,x)) , (2)

where fcrop is a function that handles a severe camera

wearer’s head motion by producing a cropped video by

zooming in on the important regions, fevent is a function

that computes the probability of atomic basketball events,

and fgm is a Gaussian mixture function that computes a

highly non-linear visual feature of the video.

Zooming-In. A key property of fcrop is the ability to

zoom-in to relevant pixels which allows to learn an effective

visual representation for the basketball performance assess-

ment. Using this regional cropping, we minimize the ef-

fect of jittery and unstable nature of first person videos that

causes larger variation of visual data. In our experimental

section, we demonstrate that using fcrop in our model sub-

stantially improves the prediction performance. Thus, ini-

tially we process a first-person video to produce a cropped

video:

Vt = fcrop(Vt;wcrop),

where fcrop is parametrized by wcrop, Vt is the cropped

video with fixed size Cw × Cw × 3 × Ts, and Cw is the

width and height of the cropping window.

We predict the center of the cropping window by learn-

ing wcrop using a fully convolutional network [7]. To do

this, we train the network to predict the location of a ball,

which is typically where most players are looking at. After-

wards, for each frame in a video, we compute a weighted

average of XY location coordinates weighted by the de-

tected ball probabilities and then crop a fixed size patch

around such a weighted average location. We illustrate

some of the qualitative zoom-in examples in Figure 6.

Atomic Basketball Event Detection. To build an inter-

pretable representation in terms of atomic basketball events,

we predict basketball events of 1) sombeody shooting a ball,

2) the camera wearer possessing the ball, and 3) a made

shot respectively. Note that the cropped video focuses on
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Figure 2: A detailed illustration of our basketball assessment prediction scheme. Given a video segment from time interval

[t, t + 10], we first feed it through a function fcrop, which zooms-in to the relevant parts of a video. We then apply fevent
to predict 4 atomic basketball events from a zoomed-in video and a player’s (x, y) location on the court. We then feed these

predictions through a Gaussian mixture function fgm, which produces a highly non-linear visual spatiotemporal assessment

feature. Finally, we use this feature to compute a player’s assessment measure by multiplying it with linear weights learned

from the data, and with a predicted relevance indicator for a given video segment.

the ball and its visual context, which allows to learn the vi-

sual semantics of each atomic event more effectively. To

do this we use a multi-path convolutional LSTM network,

where each pathway predicts its respective atomic basket-

ball event. We note that such a multi-path architecture is

beneficial as it allows each pathway to focus on learning a

single atomic basketball concept. In contrast, we observed

that training a similar network with a single pathway failed

to produce accurate predictions for all three atomic events.

Given a cropped video, our multi-path network is jointly

trained to minimize the following cross-entropy loss:

Levent = −

Ts
X

t=1

3
X

b=1

y
(b)
t log p

(b)
t + (1− y

(b)
t ) log

⇣

1− p
(b)
t

⌘

,

where p
(b)
t depicts a network’s prediction for an atomic

basketball event b at a time step t; y
(b)
t ∈ {0, 1} is a binary

atomic basketball event ground truth value for frame t and

basketball event b.

We also note that because many important basketball

events occur when somebody shoots the ball [3, 4], the de-

tected probability p
(1)
t is also later used in Equation (1), as

a relevance indicator for each video segment, Vt.

As our fourth atomic basketball event p
(4)
t , we use a bi-

nary value indicating whether a player is in the 2 point or 3

point zone, which is obtained from a player’s (x, y) location

coordinates on the court.

We then split each of the 4 basketball event predictions in

half across the temporal dimension, and perform temporal

max pooling for each of the 8 blocks. All the pooled values

are then concatenated into a single vector bt:

bt = fevent(Vt,x;wevent)

Gaussian Mixtures. To build a representation that is

discriminative, and yet generalizable, we construct a highly

non-linear feature that works well with a linear classifier.

To achieve these goals we employ Gaussian mixtures, that

transform the atomic basketball event feature, into a com-

plex basketball assessment feature, which we will show to

be very effective in our assessment model. Formally, given

a vector bt over Ts, we compute the visual spatiotemporal

assessment features for a given video segment as:

φt = fgm
(

bt; {µn,Σn}
N

n=1

)

where fgm is parametrized by Gaussian mixtures,

{µn,Σn}
N
n=1, and N is the number of mixtures. Each mix-

ture j is defined by a function z(y
(1)
t1

, y
(1)
t2

, . . . , y
(4)
t1

, y
(4)
t2

) =

j. Here y
(i)
t1
, y

(i)
t2

∈ {0, 1} refer to the binary ground

truth values associated with an atomic basketball event i ∈
{1, 2, 3, 4}; the index t1 indicates the first half of an input

video segment, whereas t2 indicates the second half. Ev-

ery possible combination of these values define one of the

28 = 256 Gaussian mixtures. We learn the parameters of

each Gaussian mixture using maximum likelihood from the

training data with diagonal covariances.

3.2. Basketball Assessment Prediction

We learn a linear weight w in Equation (1) based on the

comparative assessment of players provided by a former

professional basketball player in Section 4. We minimize

the following hinge loss:

Lw =

D
X

i=1

max

✓

0,

✓

1

2
− Yi

◆

(

S(Vi

1)− S(Vi

2)
)

◆

, (3)

where Yi = 1 if a basketball expert declared Player 1 to

be better than Player 2; otherwise Yi = 0 . S(Vi
1), S(V

i
2)

depict our predicted performance measure for Players 1,

and 2 respectively, Vi
1 and Vi

2 are the first-person basketball

videos of Player 1 and Player 2 respectively, and D is the

number of data points. Then based on Equation 1, we can

compute the subgradients of this loss function with respect

to w and find w by minimizing it via a standard gradient

descent. In Figure 3, we provide an illustration of such a

learning framework.
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Figure 3: An illustration of of our training procedure to learn the linear weights w that are used to assess a given basketball

player’s performance. As an input we take a pair of labeled first-person basketball videos with a label provided by a basketball

expert indicating, which of the two players is better. Then, we compute visual spatiotemporal basketball assessment features

for all input video segments, and use them to learn weights w by minimizing our formulated hinge loss function.

Why Linear Classifier? We only have 250 labeled pairs

for learning the weights, which is a small amount of train-

ing data. Thus, making a classifier more complex typically

results in a severe overfitting. Through our experiments, we

discovered that linear weights work the best.

3.3. Implementation Details

For all of our experiments involving CNNs, we used

a Caffe library [16]. Both networks were based on

DeepLab’s [7] architecture and were trained for 4000 it-

erations with a learning rate of 10−8, 0.9 momentum, the

weight decay of 5 · 10−5, and 30 samples per batch. The

LSTM layers inside the atomic basketball event network

spanned 10 consecutive frames in the video input. Each

pathway in the atomic basketball event network was com-

posed of two 1024 dimensional convolution layers with ker-

nel size 1×1 and a 1024 dimensional LSTM layer. The net-

works were trained using standard data augmentation. To

learn the weights w we used a learning rate of 0.001 and

ran gradient descent optimization for 100 iterations.

4. First-Person Basketball Dataset

We present a first person basketball dataset composed of

10.3 hours of videos with 48 college players. Each video is

about 13 minutes long captured by GoPro Hero 3 Black Edi-

tion mounted with a head strip. It is recorded at 1280×960

with 100 fps. We record 48 videos during the two days,

with a different group of people playing each day. We use

24 videos from the first day for training and 24 videos from

the second day for testing. We extract the video frames at

5 fps to get 98, 452 frames for training, and 87, 393 frames

for testing.

We ask a former professional basketball player (played

in an European national team) to label which player per-

forms better given a pair of first-person videos. Total 500

pairs are used: 250 for training and 250 for testing. Note

that there were no players overlapping between the training

and testing splits.

We also label three simple basketball events: 1) some-

body shooting a ball, 2) the camera wearer possessing the

Atomic Events

p
(1)

p
(2)

p
(3) mean

Tran et al. [37] 0.312 0.428 0.193 0.311

Singh et al [34] 0.469 0.649 0.185 0.434

Bertasius et al [6] 0.548 0.723 0.289 0.520

Ma et al [26] 0.622 0.718 0.364 0.568

Ours: no LSTM & no zoom-in 0.711 0.705 0.192 0.536

Ours: no zoom-in 0.693 0.710 0.248 0.550

Ours: single path 0.678 0.754 0.308 0.580

Ours: no LSTM 0.718 0.746 0.397 0.620

Ours 0.724 0.756 0.395 0.625

Table 1: The quantitative results for atomic basketball event

detection on our first-person basketball dataset according

to max F-score (MF) metric. These results show that our

method 1) outperforms prior first-person methods and 2)

that each component plays a critical role in our system.

ball, and 3) a made shot. These are the key atomic events

that drive a basketball game. In total, we obtain 3, 734,

4, 502, and 2, 175 annotations for each of these three events

respectively.

Furthermore, to train a ball detector we label the location

of a ball at 5, 073 images by clicking once on the location.

We then place a fixed sized Gaussian around those locations

and use it as a ground truth label.

5. Experimental Results

5.1. Quantitative Results

Atomic Basketball Event Detection. In Table 1, we

first illustrate our results for atomic basketball event detec-

tion task. The results are evaluated according to the max-

imum F-score (MF) metric by thresholding the predicted

atomic event probabilities at small intervals and then com-

puting a precision and recall curve. First, we compare our

model’s predictions with several recent first-person activity

recognition baselines [34, 6, 26] and also with the success-

ful video activity recognition baseline C3D [37]. We show

that our model outperforms all of these baselines for each

atomic event.

Furthermore, to justify our model’s design choices, in
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Figure 4: We randomly select 4 pairs of basketball players, and visualize how our assessment model evaluates each player

over time. The red plot denotes the better player in a pair, whereas the blue plot depicts the worse player. The y-axis in the

plot illustrates our predicted performance measure for an event occurring at a specific time in a player’s first-person video.

Accuracy

Pred. Events GT Events

LRCN [10] 2-pt made shot detector fail -

LRCN [10] 3-pt made shot detector fail -

Ours: no GMs 0.477 -

Ours: no p
(3) 0.496 -

Ours: no p
(2) 0.515 -

Ours: no p
(1) 0.536 -

Ours: single GM-top2 0.537 -

Ours: all weights w set to 1 0.583 -

Ours: single GM-top1 0.609 -

Ours: no p
(4) 0.649 -

Ours 0.765 0.793

Table 2: The quantitative results for our basketball assess-

ment task. We evaluate our method on 250 labeled pairs of

players, and predict, which of the two players in a pair is

better. We then compute the accuracy as the fraction of cor-

rect predictions. We report the results of various baselines

in two settings: 1) using our predicted atomic events, and 2)

using ground truth atomic events. These results show that

1) our model achieves best results, 2) that each of our pro-

posed components is important, and 3) that our system is

pretty robust to atomic event recognition errors.

Table 1 we also include several experiments studying the

effect of 1) a multi-path architecture, 2) LSTM layers, and

3) zooming-in scheme. Our experiments indicate that each

of these components is crucial for achieving a solid atomic

event recognition accuracy, i.e. the system achieves the

best performance when all three of these components are

included in the model.

Basketball Assessment Results. In Table 2, we present

our results for assessing 24 basketball players from our test-

ing dataset. To test our method’s accuracy we evaluate our

method on 250 labeled pairs of players, where a label pro-

vided by a basketball expert indicates, which of the two

players is better. For each player, our method produces an

assessment measure indicating, which player is better (the

higher the better). To obtain the accuracy, we compute the

fraction of correct predictions across all 250 pairs.

We note that to the best of our knowledge, we are the first

to formally investigate a basketball performance assessment

task from a first-person video. Thus, there are no well estab-

lished prior baselines for this task. As a result, we include

the following list of baselines for a comparison.

First, we include two basketball activity baselines: the

detectors of 1) 2-point and 2) 3-point shots made by the

camera wearer. We label all instances in our dataset where

these activities occur and discover ≈ 100 of such instances.

Note that such a small number of instances is not a flaw

of our dataset, but instead an inherent characteristic of our

task. Such basketball activities belong to a long-tail data

distribution, i.e. they occur pretty rarely, and thus, it is dif-

ficult to train supervised classifiers for such activity recog-

nition. We then train an LRCN [10] model as 1) a 2 point

made shot detector, and 2) a 3 point made shot detector.

We report that due to a small amount of training data, in all

cases the network severely overfit the training data and did

not learn any meaningful pattern.

Furthermore, to justify each of our proposed components

in the model, in Table 2 we also include several ablation

baselines. First, we study how 1) Gaussian Mixtures (GM)

and 2) the process of learning the weights affect the perfor-

mance assessment accuracy. We do it 1) with our predicted

and 2) with the ground truth atomic events. We show that

in both cases, each of our proposed components is benefi-

cial. In addition, we also observe that our system is robust

to atomic event recognition errors: the accuracy when using

the ground truth atomic events is only 2.8% better compared

to our original model.

We also present the performance assessment results

when we remove one of the four atomic events from our

system. We show that our method performs the best when

all four atomic events are used, suggesting that each atomic

event is useful. Finally, as two extra baselines we manu-

ally select two Gaussian mixtures with the largest weight

magnitudes and use each of their predictions independently

(denoted as single GM-top1,2 in Table 2). We show that

our full model outperforms all the other baselines, thus, in-

dicating that each of our proposed component in our model

is crucial for an accurate player performance assessment.
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Figure 5: A visualization of basketball activities that we discovered by manually inspecting Gaussian mixtures associated

with the largest basketball assessment model weights w. Each row in the figure depicts a separate event, and the columns

illustrate the time lapse of the event (from left to right), We discover that the two most positive Gaussian mixtures correspond

to the events of a player making a 2 point and a 3 point shot respectively (the first two rows), while the mixture with the most

negative weight captures an event when a player misses a 2 point shot (last row).

5.2. Qualitative Results

In addition, in Figure 4, we also include a more dynamic

visualization of how our assessment model works over time.

To do this, we randomly select 4 pairs of basketball play-

ers, and visualize how our model evaluates each player over

time. The red plot in each pair denotes the better player,

whereas the blue plot depicts the worse player. The y-axis

in the plot illustrates our predicted performance measure

for an event occurring at a specific time in a player’s first-

person video.

Furthermore, in Figure 6 we also include examples of

short sequences, illustrating 1) a player’s actions that con-

tributed most positively to his/her performance assessment

and also 2) actions that contributed most negatively. We se-

lect these action sequences by picking the first-person video

sequences with a largest positive and negative values of the

terms inside the summation of Equation 1 (which also cor-

respond to positive and negative peaks from Figure 4). Such

terms depict each video segment’s contribution to the over-

all basketball skill assessment measure.

We would like to note that it is quite difficult to include

such results in an image format, because 1) images are static

and thus, they cannot capture the full content of the videos;

2) images in the paper, appear at a very low-resolution com-

pared to the original 480×640 videos, which makes it more

difficult to understand what kind of events are depicted in

these images. To address some of these issues, in our sup-

plementary material, we include even more of such qualita-

tive examples in a video format.

Understanding the Feature Representation. Earlier,

we claimed that Gaussian mixtures produce a highly non-

linear feature representation. We now want to get a better

insight into what it represents. To do so we analyze the

learned weights w, and then manually inspect the Gaussian

mixtures associated with the largest magnitude weights in

w. Upon doing so we discover that the two mixtures with

the most positive weights learn to capture basketball activi-

ties when camera wearer makes a 2 point shot, and a 3 point

shot respectively. Conversely, the mixtures with the two

most negative weights represent the activities of the camera

missing a 2 point shot, and the camera wearer’s defender

making a shot respectively. In Figure 5, we include several

sequences corresponding to such discovered activities.

6. Conclusions

In this work, we introduced a basketball assessment

model that evaluates a player’s performance from his/her

first-person basketball video. We showed that we can learn

powerful visual spatiotemporal assessment features from

first-person videos, and then use them to learn our skill

assessment model from the pairs of weakly labeled first-

person basketball videos. We demonstrated that despite

not knowing the labeler’s assessment criterion, our model

learns to evaluate players with a solid accuracy. In addition,

we can also use our model to discover the camera wearer’s

activities that contribute positively or negatively to his/her

performance assessment.

We also note that performance assessment is an impor-

tant problem in many different areas not just basketball.

These include musical instrument playing, job related activ-

ities, and even our daily moments such as cooking a meal.

In our future work, we plan to investigate these new areas,

and try to generalize our model to such activities too.
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(a) The detected events that contributed most positively to a player’s performance assessment score according to our model

(b) The detected events that contributed most negatively to a player’s performance assessment score according to our model

Figure 6: A figure illustrating the events that contribute most positively (top figure) and most negatively (bottom figure) to a

player’s performance measure according to our model. The red box illustrates the location where our method zooms-in. Each

row in the figure depicts a separate event, and the columns illustrate the time lapse of the event (from left to right). We note

that among the detected positive events our method recognizes events such as assists, made layups, and made three pointers,

whereas among the detected negative events, our method identifies events such as missed layups, and missed jumpshots. We

present more of such video examples in the supplementary material.
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