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Abstract

A first-person camera, placed at a person’s head, cap-

tures, which objects are important to the camera wearer.

Most prior methods for this task learn to detect such im-

portant objects from the manually labeled first-person data

in a supervised fashion. However, important objects are

strongly related to the camera wearer’s internal state such

as his intentions and attention, and thus, only the per-

son wearing the camera can provide the importance labels.

Such a constraint makes the annotation process costly and

limited in scalability.

In this work, we show that we can detect important ob-

jects in first-person images without the supervision by the

camera wearer or even third-person labelers. We formulate

an important detection problem as an interplay between the

1) segmentation and 2) recognition agents. The segmenta-

tion agent first proposes a possible important object seg-

mentation mask for each image, and then feeds it to the

recognition agent, which learns to predict an important ob-

ject mask using visual semantics and spatial features.

We implement such an interplay between both agents via

an alternating cross-pathway supervision scheme inside our

proposed Visual-Spatial Network (VSN). Our VSN consists

of spatial (“where”) and visual (“what”) pathways, one of

which learns common visual semantics while the other fo-

cuses on the spatial location cues. Our unsupervised learn-

ing is accomplished via a cross-pathway supervision, where

one pathway feeds its predictions to a segmentation agent,

which proposes a candidate important object segmentation

mask that is then used by the other pathway as a supervisory

signal. We show our method’s success on two different im-

portant object datasets, where our method achieves similar

or better results as the supervised methods.

1. Introduction

A question “what is where?” attempts to delineate a pic-

ture as a spatial arrangement of objects rather than a collec-

tion of unordered visual words, which inspires core com-

puter vision tasks such as recognition, segmentation, and

3D reconstruction. This spatial arrangement encodes not

Figure 1: Given an unlabeled set of first-person images our

goal is to find all objects that are important to the camera

wearer. Unlike most prior methods, we do so without using

ground truth importance labels.

only the physical relationship between objects in front of

the camera but also the interactions with the photographer

standing behind the camera1. A picture is always taken by a

photographer reflecting what is important to her/him, which

provides a strong cue to infer the internal states such as

his/her intent, attention, and emotion. In particular, first-

person videos capture unscripted interactions with scenes

suggesting that the spatial layout is arranged such that the

objects can afford the associated actions, e.g., a cup appears

to be held by right hand from the holder’s point of view.

In this paper, we aim to detect objects that are important

to the photographer from a first-person video. Since impor-

tance is a subjective matter, the photographer is the only one

who can identify an important object. However, we conjec-

ture that it is possible to detect important objects without

the supervision by the photographer or even third-person la-

belers because an important object exhibits common visual

semantics (what it looks like) and a spatial layout (where it

is in the first-person image).

To achieve this goal, we formulate an important object

1Figure-ground segmentation, and saliency detection are a line of work

that addresses the relationship with the photographer.

11956



detection task as an interaction between the 1) segmentation

and 2) recognition agents. Initially, the segmentation agent

generates a candidate important object mask for each image,

and relays this mask to the recognition agent, which then

tries to learn a classifier to predict such an important object

mask using visual semantics and spatial cues.

Our segmentation agent is implemented using an MCG

projection scheme, which employs the samples generated

from an unsupervised segmentation method [1] to propose

important object segmentation masks to the recognition

agent. Our recognition agent is implemented using the vi-

sual (“what”) and spatial (“where”) pathways of our pro-

posed Visual-Spatial Network (VSN), each of which learns

to predict important object masks by asking questions “what

an important object looks like?” and “where an important

object is in the first-person image?”. We design these path-

ways using a fully convolutional network (FCN) while also

embedding a location dependent layer in the spatial path-

way to learn the first-person spatial location prior.

Our VSN then learns to detect important objects with-

out using manually annotated importance labels. We do so

via an alternating cross-pathway supervision, in a synergis-

tic interplay between visual (“what”) and spatial (“where”)

pathways, and a segmentation agent. Each pathway’s output

is provided to a segmentation agent, which first generates a

possible important object segmentation mask and then re-

lays it to the other pathway to be used as a supervisory sig-

nal. The supervision proceeds in such an alternating fashion

as each pathway improves each other, and as the segmenta-

tion agent becomes better as well.

Why Unsupervised Learning? Building a framework

that can learn without manually collected labels is particu-

larly essential for first-person important object detection be-

cause the annotation task is not scalable at all unlike object

detection/segmentation [6, 17] where a consensus of third

parties from crowdsourcing mechanism can be used. In the

important object detection task, only the camera wearer can

perform the annotation task by looking back on his/her past

experiences. Prior methods [15] have used a wearable gaze

tracker to label the camera wearer’s visual attention. How-

ever, gaze tracker is invasive and the data that it captures

has no notion of objects. Instead, our paper addresses these

issues via an unsupervised alternating cross-pathway learn-

ing scheme, which allows our method to achieve similar or

even better results as the supervised methods do.

2. Related Work

Important Object Detection in First-Person. There

have been a number of first-person methods that explored

important object detection task either as a main task [3,

26, 8], or as an auxiliary task for an activity recogni-

tion [25, 15, 20, 7] or video summarization [12, 19]. The

work in [12, 8, 15, 25] employ hand-crafted appearance fea-

tures, egocentric and optical flow features to describe a first-

person image, and then train a discriminative classifier to

detect the regions that correspond to the important objects.

The more recent work [20, 3] use FCNs [18] to predict im-

portant objects end-to-end. Whereas the method in [3] em-

ploys a two stream visual appearance and 3D network, the

work in [20] exploits the connection between the activities

and objects and proposes a two stream appearance and op-

tical flow network with a multi-loss objective function.

All of these methods use manually annotated important

object labels, which may be costly and difficult to obtain.

Our approach, on the other hand, introduces a new unsu-

pervised learning scheme that allows us to learn important

objects without manually labeled importance annotations.

Training FCNs with Weakly-Labeled Data. Re-

cently, there have been several deep learning approaches

that proposed learning with weakly labeled or unlabeled

datasets [14, 5, 2, 21, 28, 24, 16, 23, 22] . Due to the high

cost of obtaining per-pixel labels, this has been a particu-

larly relevant problem for semantic segmentation.

The weakest form of supervision for semantic segmen-

tation includes image-level labels, which were used to train

FCNs in several prior approaches [24, 23, 22, 21]. Some re-

cent work [2] used point supervision, which requires almost

as much effort as the image-level labels but also provides

some spatial information. Several approaches employed

free form squiggles as a supervisory signal [28, 16] which

provides even more information, and are still easy enough to

annotate. Furthermore, several approaches utilized bound-

ing box level annotations for FCN training [21, 5]. Finally,

recent work achieved excellent edge detection results with-

out using any annotations at all [14].

In comparison to prior work, which focuses on the

third-person data, our method focuses on the first-person

data. Unlike third-person object detection/segmentation

tasks where annotations can be obtained via a crowdsourc-

ing mechanism, important object detection task requires the

camera wearer to provide the labels, which severely limits

its scalability. Due to such a constraint, an unsupervised

learning framework is particularly important for the impor-

tant object detection task in the first-person setting.

3. Approach Motivation

Our goal is to 1) recognize and 2) segment important

objects from a first-person image in an unsupervised set-

ting. Thus, we want our method to have two key proper-

ties: 1) it needs to segment the important objects from the

background based on the low-level grouping cues and 2) it

needs to be discriminative, i.e, recognize objects that are

important and ignore all the irrelevant objects.

To achieve these goals, we frame an important object

prediction task as an interplay between the 1) recognition

and 2) segmentation agents, where a segmentation agent
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Figure 2: We implement an interplay between the segmentation and recognition agents via an alternating cross-pathway

supervision scheme inside our proposed Visual-Spatial Network (VSN). Our VSN consists of the 1) visual (“what”) and 2)

spatial (“where”) pathways, which both act as recognition agents. In between these two pathways, the VSN uses an MCG

projection scheme, which acts as a segmentation agent. Then, given a set of unlabeled first-person training images, we first

guess “where” an important object is in the first-person image and use an MCG projection scheme to propose important

object segmentation masks. These masks are then used a supervisory signal to train a visual pathway such that it would learn

“what” an important object looks like. Then, in the V2S round, the predictions from the visual pathway are passed through

the MCG projection, and transfered to the spatial pathway. The spatial pathway then learns “where” an important object is in

the first-person image. Such an alternating cross-pathway supervision scheme is repeated for several rounds.

first proposes a possible important object mask, which a

recognition agent then uses as a supervisory signal to learn

an important object classifier based on visual (“what”) and

spatial (“where”) cues.

The main challenge of our unsupervised learning frame-

work is to prevent overfitting of either a segmentation or

a recognition agent. If the segmentation agent proposes

too many different segments, the recognition agent will not

learn a concept of important objects (particularly if these

segments are not recurring). On the other hand, if the recog-

nition agent narrowly focuses on predicting one type of ob-

ject, or an object that appears at a particular location, it will

not generalize across all images. We address the first issue

by feeding the predictions from the recognition agent to the

segmentation agent, so that the target segmentations would

consistently improve as the recognition agent gets better. To

tackle the second issue, we force the recognition agent to

learn a diverse model by making it focus on visual (“what”)

and spatial (“where”) cues in an alternating fashion.

We now provide more details related to the 1) segmen-

tation and 2) recognition agents that we want to use for our

unsupervised learning task.

3.1. Segmentation Agent

The goal of a segmentation agent is to propose segmen-

tation masks of the important objects, which could then be

used by a recognition agent as a supervisory signal. We im-

plement such a segmentation agent via our introduced MCG

projection scheme. We define MCG projection as a function

h(A,R) that takes two inputs: 1) a coarse per-pixel impor-

tant object mask prediction A, and 2) a set of regions R

obtained from a segmentation method MCG [1]. The out-

put h(A,R) then captures an important object segmentation

mask proposed by a segmentation agent.

We first run an MCG [1] segmentation algorithm, which

segments a given image into regions R. Then, for every

MCG region R, we compute the mean value of all values in

A that fall in the region R, and assign that value to the en-

tire region R. Since MCG regions overlap with each other,

the pixels belonging to multiple overlapping regions, get as-

signed multiple values (from each region they belong to).

To assign a single value to a given pixel, we perform max-
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pooling, over the values of that pixel in each of the regions

that contains that pixel. This then produces a candidate im-

portant object segmentation mask.

3.2. Recognition Agent: Motivation

To build a recognition agent that is discriminative, and

yet generalizable, we focus on two distinct aspects of an

important object prediction task: the “what” (what does an

important object look like?) and the “where” (where does

an important object appear in the first-person image?).

The Visual Cues (What it looks like?) A natural way

to predict important objects is by learning “what” they look

like. Such learned visual appearance cues can then be

used to predict important objects in an image. This is ex-

actly what is done by the supervised methods, which use

the ground-truth data to learn the visual characteristics of

“what” a prototypical important object looks like in a first-

person image. However, in the context of our problem, we

do not have access to such ground-truth data. Thus, the key

question becomes whether we can learn to detect important

objects despite not knowing “what” they look like before-

hand?

The Spatial Cues (Where it is?) We conjecture that

important objects are spatially arranged in the first-person

image to afford the camera wearer’s interactions with those

objects. In other words, by performing activities, and look-

ing at things, the camera wearer is implicitly labeling what

is important to him, which is also captured in a first-person

image. For instance, a cup often appears at the bottom right

of a first-person image, because most people look down at

it and also hold it with their right hand.

Thus, since 1) people typically look down at an object,

with which they interact, and 2) since most people are right-

handed, we conjecture that many important objects appear

at the bottom-right of a first-person image, which we guess

to be at (x, y) location (0.6W, 0.75H), where W and H

denote the width and height of the first-person image. We

refer to this location as a spatial important object location

prior.

Since we do not have ground truth labels, we cannot di-

rectly supervise our network by telling it “what” an impor-

tant object looks like. However, we can tell the network

“where” we think an important object is such that the net-

work would learn the visual appearance cues necessary to

recognize “what” appears at that location. In the best case,

there will be a true important object at our specified loca-

tion, and the network will then learn “what” that important

object looks like. Otherwise, if our guess is incorrect, the

network will try to learn a meaningless pattern of “what”

something that is not an important object looks like. If we

make enough correct guesses of “where” the true important

objects are, our network will learn “what” important objects

look like without ever using ground truth importance labels.

4. Visual-Spatial Network

To holistically integrate both segmentation and recogni-

tion agents, we introduce a Visual-Spatial Network (VSN)

that learns to detect important objects from unlabeled first-

person data. Our network consists of the 1) visual (“what”)

and 2) spatial (“where”) pathways, which act as recognition

agents. In between these two pathways, the VSN employs

an MCG projection scheme, which acts as a segmentation

agent.

During training, we first use an MCG projection to

propose a candidate important object segmentation mask,

which is then used by the visual “what” pathway as a super-

visory signal. Then, the predictions from the visual pathway

are used by the segmentation agent to generate an improved

important object segmentation mask, which is used as a su-

pervisory signal by the spatial “where” pathway. Such a su-

pervision scheme between the two pathways proceeds in an

alternating fashion, allowing each pathway to improve each

other, while the segmentation agent also improves. We refer

to such a learning scheme as a cross-pathway supervision,

which we illustrate in Fig. 2.

4.1. Visual “What” Pathway

The visual pathway of our VSN is based on a fully con-

volutional VGG architecture [27], which is pretrained for

the segmentation task on Pascal VOC dataset with 20 dis-

tinct classes such as airplane, bus, cow, etc. We note that

the classes in Pascal VOC dataset are quite different com-

pared to the important object classes in the datasets that we

use for our experiments. For instance, Pascal VOC segmen-

tation dataset does not include annotations for classes such

as food package, knife, suitcase, sweater, pizza and many

more object classes. In the experimental section, we also

verify this claim by showing that the VGG FCN [27] that

was pretrained for the Pascal VOC semantic segmentation

task alone produces poor important object detection results.

We want to make it clear that we do not claim that our

method does not use any annotations at all. Our main claim

is that we can learn to detect important objects in first-

person images without manually annotated first-person im-

portance labels. Our network still needs a general visual

recognition capability to differentiate between various vi-

sual appearance cues. Otherwise, due to a noisy supervi-

sory signals that we use to train each pathway, our network

would struggle to learn the visual cues that are indicative of

true important objects.

4.2. Spatial “Where” Pathway

The spatial pathway is also based on the pretrained VGG

FCN [27]. However, unlike the visual pathway, the spa-

tial pathway incorporates a two-channel grid of normal-

ized X and Y coordinates that correspond to every pixel
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in the first-person image. These X,Y coordinate mesh-

grids could be obtained by calling a matlab command

[X,Y]=meshgrid(1:W,1:H), where W,H are the width

and height of an image respectively. We then use a bilinear

interpolation to downsample these grids 8 times and con-

catenate them to the visual fc7 features. Such concatenated

representation is then used as an input to the fc8 layer that

predicts important objects. Note that we do not concatenate

X,Y grids with the input image so that we could preserve

the original structure in the early layers of a VGG network,

and use the VGG weights as an initialization.

4.3. Alternating Cross-Pathway Supervision

We now describe our alternating cross-pathway supervi-

sion scheme, which is implemented via a synergistic inter-

play between the spatial and the visual pathways, and with

a segmentation agent in between these two pathways.

Initial Round. In the initial round, we want the visual

pathway to predict important objects based on “what” they

look like. It should learn to do so from the important object

segmentation masks provided by an MCG projection step.

These initial segmentation masks are constructed based on

our guesses “where” important objects might appear in the

first-person image.

Formally, we are given a batch of unlabeled first-person

RGB images, which we denote as B ∈ R
N×C×H×W ,

where N depicts a batch size, H and W refer to the height

and width of an image, and C refers to the number of chan-

nels (C = 3 for RGB images). Then, let G ∈ R
N×H×W

denote images with a Gaussian placed around a spatial im-

portant object prior location (0.6W, 0.75H).

Furthermore let h denote the MCG projection function

that takes two inputs: 1) a coarse important object mask A,

and 2) MCG regions R, and outputs a candidate important

object segmentation mask h(A,R).
Finally, let f(B) ∈ R

N×H×W depict the output of the

visual pathway that takes a batch of first-person images as

its input and outputs a per-pixel important objects map for

every image in the batch. Then the cross-entropy loss that

we minimize during the initial round is:

L = −

N
X

i=1

H×W
X

j=1

h

hj(G
(i), R(i)) log (fj(B

(i)))

+ (1− hj(G
(i), R(i))) log (1− fj(B

(i)))
i

V2S Round. During the V2S (Visual to Spatial) round,

given the important object masks based on “what” they look

like, we want spatial pathway to find image segments in the

first-person image “where” such important objects appear.

Formally, let g(B,X, Y ) ∈ R
N×H×W depict the output

of the spatial pathway, where in this case X,Y denote a

batch of normalized coordinate grids (each with dimensions

EgoNet [3] VSN Ground Truth

Figure 3: The qualitative important object predictions re-

sults. Despite not using any importance labels during train-

ing, our VSN correctly recognizes and localizes important

objects in all three cases.

N×H×W ). Then the cross-entropy loss that we minimize

during the V2S round is:

L =−

N
X

i=1

H×W
X

j=1

h

hj(f(B
(i)), R(i)) log (gj(B

(i), X(i), Y (i)))

+ (1− hj(f(B
(i)), R(i))) log (1− gj(B

(i), X(i), Y (i)))
i

S2V Round. In the S2V (Spatial to Visual) round, the

visual pathway receives important object masks from the

spatial pathway. Then, based on the spatial pathway’s pre-

dictions “where” an important object is, the visual path-

way tries to learn “what” those important objects look like.

The cross-entropy loss function that we minimize during the

S2V round is:

L =−

N
X

i=1

H×W
X

j=1

h

hj(g(B
(i), X(i), Y (i)), R(i)) log (fj(B

(i)))

+ (1− hj(g(B
(i), X(i), Y (i)), R(i))) log (1− fj(B

(i)))
i

Alternation. We alternate our cross-pathway supervi-

sion process between the V2S and S2V rounds until there

is no significant change in performance (3-4 rounds). Such

an alternating learning scheme is beneficial because differ-

ent visual/spatial feature inputs to the two pathways, force

each pathway to maintain focus on objects that exhibit dif-

ferent spatial/visual characteristics. For instance, the spatial

pathway can focus on objects that are at the same spatial

location, but exhibit different visual features. In contrast,

the visual pathway is able to focus on the objects that look

similar but are at different locations. Such an alternation be-

tween the two pathways provides diversity to our learning

scheme, which we empirically show to be beneficial.
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4.4. Using Extra Unlabeled Data for Training

We note that unlike supervised methods that use man-

ually annotated importance labels, we use unlabeled data,

which leads to a much harder learning task. We compen-

sate the lack of importance labels with large amounts of

unlabeled data, a strategy, which was also used by an unsu-

pervised edge detector [14]. For all of our experiments, we

train our VSN on the combined datasets of (1) first-person

important object RGBD [3], (2) GTEA Gaze+ [15], and (3)

five relevant first-person videos downloaded from YouTube

(without using the labels even if they exist). We note that

using more unlabeled data to train our model is essential

for achieving the results that are competitive with the su-

pervised methods’ performance.

We point out that our method’s ability to use unlabeled

data for training is a big advantage in comparison to the su-

pervised methods. The performance of CNNs typically im-

proves with more training data, and unlabeled data is easy

and cheap to obtain. In comparison, getting labeled data

is costly and time consuming, especially if it requires per-

pixel labels as in our work.

4.5. Prediction during Testing

During testing, we average the predictions from the vi-

sual and spatial pathways. Such a prediction scheme allows

each pathway to correct some of the other pathway’s mis-

takes, and achieve a better important object prediction ac-

curacy than any individual pathway alone would.

4.6. Implementation Details

For all of our experiments, we used a Caffe deep learning

library [10]. We employed visual and spatial pathways that

adapted the VGG FCN architecture [27]. During training,

each of the optimization rounds was set to 2000 iterations.

During those rounds one of the selected pathways was opti-

mized to minimize the per-pixel sigmoid cross entropy loss,

while the other was fixed. We performed 3 rounds in total,

which was enough to reach convergence. During the train-

ing we used a learning rate of 10−7, the momentum equal

to 0.9, the weight decay of 0.0005, and the batch size of 15.

5. Experimental Results

In this section, we present quantitative and qualitative re-

sults of our VSN method. We test our method on two first-

person datasets, that have per pixel important object anno-

tations: (1) First-Person Important Object RGBD [3], and

(2) GTEA Gaze+ [15] datasets. Even though both datasets

have annotated importance labels, they are quite different.

GTEA Gaze+ dataset captures the activities of cooking dif-

ferent meals, and thus there is less variation in the scene and

the activity itself. In comparison, the first-person important

object RGBD dataset is smaller but captures people doing

FP-AO-RGBD GTEA Gaze+ mean

Method MF AP MF AP MF AP

VGG FCN [27] 0.166 0.106 0.325 0.214 0.246 0.160

GBVS [9] 0.197 0.136 0.383 0.296 0.290 0.216

Judd [11] 0.182 0.107 0.406 0.328 0.294 0.218

DCL [13] 0.255 0.068 0.427 0.120 0.341 0.094

SIOLP 0.278 0.148 0.416 0.209 0.347 0.179

Trained SIOLP‡ 0.282 0.176 0.446 0.351 0.364 0.264

FP-MCG [1]‡ 0.317 0.187 0.447 0.361 0.382 0.274

DeepLab [4]‡ 0.370 0.266 0.472 0.390 0.421 0.328

EgoNet [3]‡ 0.396 0.313 0.536 0.449 0.466 0.381

VSN 0.421 0.316 0.482 0.472 0.452 0.394

VSN+EgoNet‡ 0.455 0.382 0.588 0.604 0.522 0.493

Table 1: The quantitative important object prediction re-

sults on the first-person important object RGBD and GTEA

Gaze+ datasets according to the max F-score (MF) and av-

erage precision (AP) metrics. Our results indicate that even

without using important object labels our VSN achieves

similar or even better results than the supervised baselines.

Supervised methods are marked with ‡.

seven different activities in pretty different scenes, which

makes the dataset more diverse and slightly more chal-

lenging. The First-Person Important Object RGBD dataset

has 4247 annotated examples from seven video sequences,

whereas for the GTEA Gaze+ dataset we use 6332 images

from 22 different sequences.

We evaluate the important object detection accuracy us-

ing max F-score (MF), and average precision (AP), which

are obtained by thresholding the probabilistic important ob-

ject maps at small intervals and computing a precision and

recall curve against the ground-truth important objects.

As our baselines we use a collection of the methods that

were recently shown to perform well on this task as well

as some of our own baselines. EgoNet [3] is a two-stream

network that incorporates appearance and 3D cues to de-

tect important objects. We also include a DeepLab [4] sys-

tem, which we train for the important object detection task.

Additionally, we incorporate a MCG [1] method trained

for first-person important object detection (FP-MCG). Fur-

thermore, we include three popular visual saliency meth-

ods: (1) Judd [11], (2) GBVS [9], and (3) Deep Contrast

Saliency method [13]. Additionally, we also evaluate the

results achieved by (1) a spatial important object location

prior (SIOLP), and (2) a spatial important object location

prior that was obtained by extracting it from the training

data using ground-truth important object labels. Further-

more, to show that the network that we used to pretrain our

VSN performs poorly by itself, we include a VGG FCN [27]

baseline. To obtain important object predictions we simply

sum up the probabilities for all 20 predicted Pascal VOC

classes. Finally, to show that the predictions of our VSN

method are highly complementary to the best performing
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RGB Input Spatial Pathway Visual Pathway

(a) Spatial pathway performing better than the visual pathway

RGB Input Spatial Pathway Visual Pathway

(b) Visual pathway performing better than the spatial pathway

Figure 4: A figure illustrating a qualitative important object prediction comparison between the visual and spatial pathways

(best viewed in color). Subfigure 4(a) illustrates instances where the spatial pathway’s reliance on location features is ben-

eficial: it detects small and partially occluded important objects, which the visual pathway fails to detect accurately. The

Subfigure 4(b) shows instances where the spatial pathway’s reliance on location features leads to incorrect results: it falsely

marks regions in the first-person image as important objects just because they appear at a certain location in the first-person

image. In contrast, the visual pathway correctly predicts important objects in those instances.

EgoNet method’s predictions, we combine these two meth-

ods via averaging, and demonstrate that for each dataset

VSN significantly improves EgoNet’s results.

We also note that Judd [11], GBVS [9], DCL [13],

SIOLP, VGG-FCN, and our VSN methods do not use any

important object annotations. All the other methods are

trained using the manually annotated important object la-

bels. We also note that all the FCN baselines (VGG-FCN,

DeepLab, EgoNet and VSN) were pretrained for semantic

segmentation under the same conditions.

We used publicly available implementations of VGG-

FCN, GBVS, Judd, FP-MCG [1], and DeepLab [4] and

trained and evaluated all these baselines ourselves. We

obtained the results for EgoNet from the technical report

in [3]. To the best of our knowledge EgoNet is currently the

best performing method in this task, and thus, to compare

to the most recent and best performing system, we adopted

the evaluation procedure from [3].

Our evaluations provide evidence for several conclu-

sions. In Subsections 5.1, 5.2, we show that despite not

using any important object labels our VSN achieves results

similar or even better than the supervised methods do. Fur-

thermore, In Subsection 5.3, we provide a few ablation ex-

periments, which show that 1) using both visual and spatial

pathways is beneficial, 2) the location of an important object

spatial prior is important, and that 3) using more unlabeled

training data leads to better results.

5.1. Results on Important Object RGBD Dataset

In Table 1, we present important object detection results

on the First-Person Important Object RGBD dataset [3], av-

eraged over 7 video sequences from different activities. The

results indicate that our VSN achieves the best per-class

mean MF and AP scores. These results may seem sur-

prising, because unlike EgoNet and all the other supervised

baselines, our VSN does not use any important object anno-

tations. However, VSN uses a larger amount of unlabeled

data for its training, which leads to a better performance.

We also note that the VGG-FCN, which we use as an

initialization for both of our VSN pathways, achieves the

worst performance among all the baselines, which suggests

that predicting 20 Pascal VOC classes alone is not enough

to achieve a good performance on the important object de-

tection task. We also point out that combining VSN and

EgoNet predictions, leads to a greatly improved accuracy

according to both metrics, which implies that both methods

learn complementary important object information.

In Figure 3, we also compare qualitative important ob-

ject detection results of our VSN and a supervised EgoNet

model. We show that unlike EgoNet, our VSN correctly

detects and segments important objects in all three cases.

5.2. Results on GTEA Gaze+ Dataset

In Table 1, we present MF and AP important object de-

tection results on the GTEA Gaze+ dataset [15] averaged

over 22 videos. The results indicate that our VSN outper-

forms all the other methods according to AP metric, and is

outperformed only by EgoNet according to the MF metric.

We also note that just like with the previous dataset, com-

bining VSN and EgoNet predictions leads to a dramatic ac-

curacy boost according to both metrics.

5.3. Ablation Experiments

The Need for Spatial and Visual Pathways. One may

notice that the spatial pathway is a more powerful version of

a visual pathway since it can use both spatial and visual cues

to predict important objects. Therefore, a natural question

is whether we need a visual pathway at all.

To answer this question we quantitatively compare our

approach to the baselines that use either two visual path-
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Figure 5: Our results demonstrate that using a visual and

a spatial pathway (VSN) yields better important object de-

tection accuracy than using either two visual (VVN) or two

spatial pathways (SSN).

ways (VVN) or two spatial pathways (SSN). We present

these results in Figure 5, where we show that our VSN

method achieves 0.421 MF accuracy,whereas the VVN and

SSN baselines yield 0.402 and 0.400 MF accuracy respec-

tively, suggesting that having a visual and a spatial pathway

in the network is beneficial.

In Figure 4, we also present a few qualitative compar-

isons between the predictions from the visual and spatial

pathways. In Subfigure 4(a), we illustrate instances where

the spatial pathway’s reliance on location features is bene-

ficial: unlike the visual pathway, it is able to detect small

and partially occluded important objects because they ap-

pear at a certain location. However, in Subfigure 4(b), we

present instances where the spatial pathway’s reliance on

location features leads to incorrect results: it falsely marks

regions in the first-person image as important objects just

because those regions appear at a certain location in an im-

age. In contrast, in those cases, the visual pathway correctly

predicts important objects because it makes the predictions

based on “what” those objects look like.

Thus, these qualitative and quantitative results suggest

that the spatial and visual pathways can complement each

other, and thus, having both of them is beneficial.

Selecting a Spatial Important Object Prior. The ini-

tial selection of a location prior is critical to the success

of our method. To validate its importance, we run sev-

eral experiments on important object RGBD dataset with

different location priors. First, we experiment with a loca-

tion (0.5W, 0.5H) where H and W are the height and the

width of an image. This is a center prior commonly used

by first-person methods. Using this location prior, the path-

way that was trained the last yields 0.22 MF score, suggest-

ing that in this case, a center location does not capture im-

portant objects well. In comparison, the pathway that was

trained the last in our original model (i.e. the location prior

(0.6W, 0.75H)) yields 0.407 MF.

Given how important the selection of a location prior is,

we need a principled way to select it. To do this we propose

to utilize a generic hand detector or an unsupervised visual

saliency detector on our dataset (not trained on our dataset).

Then, for each image we can compute a weighted average

of XY locations in the image (weighted by the hand de-

tector probabilities), and then compute an average of these

weighted average locations across the entire dataset.

We report that when applied on an important object

RGBD dataset, such a scheme yields a location prior of

(0.542W, 0.713H). Training the VSN using this spatial

prior then yields almost equivalent results as our original

model that uses (0.6W, 0.75H) location prior. We also note

that simply detecting hands is not enough to detect impor-

tant objects. A baseline that detects all objects and hands in

the scene, and then uses objects that are closest to the hands

as important object predictions yields 0.259 MF.

Importance of Unlabeled Training Data Size. Finally,

we also want to verify that using more unlabeled training

data leads to better results. To do this, we train VSN on

the same amount of unlabeled data, as there is labeled data

used by the supervised methods (4247 samples). We report

that using less unlabeled data leads to 0.316 MF, which is

substantially lower than our original model.

6. Conclusions

In this work, we propose to detect important objects from

unlabeled first-person images by formulating our problem

as an interplay between the 1) recognition and 2) segmen-

tation agents. To do this, we integrate these two agents in-

side an alternating cross-pathway supervision scheme of our

proposed Visual-Spatial Network (VSN). The MCG pro-

jection scheme (a segmentation agent) proposes important

object segmentation masks, whereas the spatial and visual

pathways (recognition agents) use these masks as a super-

visory signal to predict important object masks based on

visual semantics and spatial features. We demonstrate the

effectiveness of such scheme by showing that it achieves

similar or even better results than the supervised methods.

We believe that in the future, our method could be ex-

tended to other tasks such as first-person activity recogni-

tion, or egocentric video summarization. Furthermore, our

method’s ability to learn without manually annotated la-

bels could be used to learn from large-scale unlabeled first-

person datasets on the web, and in the long run, replace the

supervised methods, which are constrained by the amount

of available annotated data.
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