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Abstract

Facial alignment involves finding a set of landmark

points on an image with a known semantic meaning. How-

ever, this semantic meaning of landmark points is often lost

in 2D approaches where landmarks are either moved to vis-

ible boundaries or ignored as the pose of the face changes.

In order to extract consistent alignment points across large

poses, the 3D structure of the face must be considered in the

alignment step. However, extracting a 3D structure from

a single 2D image usually requires alignment in the first

place. We present our novel approach to simultaneously ex-

tract the 3D shape of the face and the semantically consis-

tent 2D alignment through a 3D Spatial Transformer Net-

work (3DSTN) to model both the camera projection matrix

and the warping parameters of a 3D model. By utilizing a

generic 3D model and a Thin Plate Spline (TPS) warping

function, we are able to generate subject specific 3D shapes

without the need for a large 3D shape basis. In addition, our

proposed network can be trained in an end-to-end frame-

work on entirely synthetic data from the 300W-LP dataset.

Unlike other 3D methods, our approach only requires one

pass through the network resulting in a faster than real-

time alignment. Evaluations of our model on the Annotated

Facial Landmarks in the Wild (AFLW) and AFLW2000-3D

datasets show our method achieves state-of-the-art perfor-

mance over other 3D approaches to alignment.

1. Introduction

Robust face recognition and analysis are contingent upon

accurate localization of facial features. When modeling

faces, the landmark points of interest consist of points that

lie along the shape boundaries of facial features, e.g. eyes,

lips, mouth, etc. When dealing with face images collected

in the wild conditions, facial occlusion of landmarks be-

comes a common problem for off-angle faces. Predicting

the occlusion state of each landmarking points is one of the

Figure 1. A subject from the CMU Multi-PIE dataset [18, 19] land-

marked and frontalized by our method at various poses. Land-

marks found by our model are overlaid in green if they are de-

termined to be a visible landmark and blue if self-occluded. The

non-visible regions of the face are determined by the estimated

camera center and the estimated 3D shape. Best viewed in color.

challenges due to variations of objects in faces, e.g. beards

and mustaches, sunglasses and other noisy objects. Addi-

tionally, face images of interest nowadays usually contain

off-angle poses, illumination variations, low resolutions,

and partial occlusions.

Many complex factors could affect the appearance of

a face image in real-world scenarios and providing toler-

ance to these factors is the main challenge for researchers.

Among these factors, pose is often the most important factor

to be dealt with. It is known that as facial pose deviates from

a frontal view, most face recognition systems have difficulty

in performing robustly. In order to handle a wide range of

pose changes, it becomes necessary to utilize 3D structural

information of faces. However, many of the existing 3D

face modeling schemes [1, 4, 42] have many drawbacks,

such as computation time and complexity. Though these

can be mitigated by using depth sensors [23] or by track-

ing results from frame to frame in video [39], this can cause

difficulty when they have to be applied in real-world large
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Figure 2. (a & d): Images in the wild from the AFLW dataset. (b &

d): 3D landmarks (green: visible, blue: occluded) estimated from

input image. (e & f): 3D model generated from input image. Best

viewed in color.

scale unconstrained face recognition scenarios where video

and depth information is not available. The 3D generic elas-

tic model (3D-GEM) approach was proposed as an efficient

and reliable 3D modeling method from a single 2D image.

Heo et al. [22, 35] claim that the depth information of a

face is not extremely discriminative when factoring out the

2D spatial location of facial features. In our method, we

follow this idea and observe that fairly accurate 3D models

can be generated by using a simple mean shape deformed to

the input image at a relatively low computational cost com-

pared to other approaches.

1.1. Our Contributions in this Work

(1) We take the approach of using a simple mean shape

and using a parametric, non-linear warping of that shape

through alignment on the image to be able to model any

unseen example. A key flaw in many approaches that rely

on a 3D Morphable Model (3DMM) is that it needs enough

examples of the data to be able to model unseen samples.

However, in the case of 3D faces, most datasets are very

small.

(2) Our approach is efficiently implemented in an end-

to-end deep learning framework allowing for the alignment

and 3D modeling tasks to be codependent. This ensures that

alignment points are semantically consistent across chang-

ing poses of the object which also allows for more consis-

tent 3D model generation and frontalization on images in

the wild as shown in Figs. 1 and 2.

(3) Our method only requires a single pass through the

network allowing us to achieve faster than real-time pro-

cessing of images with state-of-the-art performance over

other 2D and 3D approaches to alignment.

2. Related Work

There have been numerous studies related to face align-

ment since the first work of Active Shape Models (ASM)

[14] in 1995. A comprehensive literature review in face

alignment is beyond the scope of this work. In this paper,

we mainly focus on recent Convolutional Neural Network

(CNN) approaches to solve the face alignment problem. Es-

pecially those methods aimed at using 3D approaches to

achieve robust alignment results.

2.1. Face Alignment Methods

While Principal Component Analysis (PCA) and its vari-

ants [14, 13, 15] were successfully used to model the fa-

cial shapes and appearances, there have since been many

advances in facial alignment. Landmark locations can be

directly predicted by a regression from a learned feature

space [9, 16, 44]. Xiong et al. [45] presented the Global

Supervised Descent Method (GSDM) method to solve the

problem of 2D face alignment. The objective function in

GSDM is divided into multiple regions of similar gradient

directions. It then constructs a separate cascaded shape re-

gressor for each region. Yu et al. [46] incorporated 3D

pose landmarking models with group sparsity to indicate

the best landmarks. These kind of methods shows an in-

crease of performance on landmark localization. However,

these methods all rely on hand-crafted features. Recently,

CNN-based methods have achieved good results in facial

alignment [51, 48]. 3DDFA [51] fits a dense 3D face model

to the image via CNN and DDN [48] proposes a novel cas-

caded framework incorporating geometric constraints for

localizing landmarks in faces and other non-rigid objects.

Recently, shape regression has been used in numerous fa-

cial landmarking methods [41, 36, 43].

There are several recent works studying the human head

rotations [12, 53], nonlinear statistical models ([17]) and

3D shape models [8, 20]. Nonlinear statistical model ap-

proaches are impractical in real-time applications. View-

based methods employ a separate model for each viewpoint

mode. Traditionally, the modes are specified as part of the

algorithm design, and problems can arise at midpoints be-

tween models.

2.2. CNNs for 3D Object Modeling

While estimating a 3D model from images is not a new

problem, the challenging task of modeling objects from a

single image has always posed a challenge. This is, of

course, due to the ambiguous nature of images where depth

information is removed. With the recent success of deep

learning and especially CNNs in extracting salient informa-

tion from images, there have been many explorations into

how to best use CNNs for modeling objects in 3 dimen-

sions. Many of these approaches are aimed creating a depth

estimation for natural images [33, 2, 37, 32, 31]. While

the results on uncontrolled images are impressive, the fact

that these models are very general means they tend to suf-

fer when applied to specific objects, such as faces. In fact,

many times, the depth estimate for faces in the scene tend
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to be fairly flat. By limiting the scope of the method, the

resulting estimated 3D model can be made much more ac-

curate. Hassner et al. [21] use a 3D model of the face to be

able to frontalize faces in unseen images with the end goal

of improving face recognition by limiting the variations the

matcher has to learn. However, this approach requires land-

marks on the input face in the same fashion as other meth-

ods [22, 35, 21, 34, 52].

A 2D approach to landmarking inevitably suffers from

the problem of visibility and self-occlusion. As Zhu et

al. [52] show, the problem of landmark marching, where

landmarks tend to move to the visible boundary, can cause

issues when estimating 3D models from purely 2D align-

ment. However, this problem can be alleviated by using a

3D model of the face in the alignment step itself as done in

[27, 51]. Both of these methods make use of an underly-

ing 3D Morphable Model (3DMM) and try to fit the model

to the input image in order to find the 2D landmarks. This

of course requires a basis to use and the Basel Face Model

(BFM) [24] is a very popular model to use. However, the

BFM is only created from a set of 100 male and 100 fe-

male scans. As any basis can only recreate combinations

of the underlying samples, this can severely limit the capa-

bility of these models to fit outlier faces or expressions not

seen before. Although there has been recent efforts to gen-

erate more accurate 3DMMs [6], neither the data nor the

model is available to researchers in the field of biometrics.

Therefore, we propose to use a smooth warping function,

Thin Plate Splines (TPS) [5], to warp mean shapes to fit the

input image and generate new 3D shapes. In this fashion,

any new face can be modeled, even if its shape cannot be

reconstructed by the BFM.

3. 3D Spatial Transformer Networks

In order to model how a face truly changes from view-

point to viewpoint, it is necessary to have both the true 3D

model of the subject in the image and the properties of the

camera used to capture the image, usually in the form of the

camera projection matrix. However, knowledge of the true

3D model and the camera projection matrix are almost al-

ways not available. Jaderberg et al. [25], in their work on

Spatial Transformer Networks, use a deep network to esti-

mate the parameters of either an affine transformation or a

2D Thin Plate Spline (TPS) transformation. These param-

eters are then used to generate a new sampling grid which

can then be used to generate the transformed image.

We approach finding the unknown camera projection

matrix parameters and the parameters needed to generate

the 3D model of the head in a similar fashion. Both the

camera projection parameters and the warping parameters,

a TPS warp in this case, can be estimated from deep fea-

tures generated from the image using any architecture. The

TPS parameters can be used to warp a model of the face

to match what the network estimates the true 3D shape is

and the camera projection parameters can be used to texture

the 3D coordinates from the 2D image. Additionally, the

pose of the face can be determined from the camera param-

eters allowing for a visibility map to be generated for the

3D model. This allows us to only texture vertexes that are

visible in the image as opposed to vertexes that are occluded

by the face itself. The architecture of our model is shown

in Figure 3. Sections 3.1,3.2, and 3.3 detail how to create

differentiable modules to utilize the camera projection and

TPS parameters that are estimated by the deep network to

warp and project a 3D model to a 2D image plane for texture

sampling.

3.1. Camera Projection Transformers

In order to be able to perform end-to-end training of a

network designed to model 3D transformations of the face,

a differentiable module that performs a camera projection

must be created. This will be part of the grid generator por-

tion of the Spatial Transformer. Modeling how a 3D point

will map to the camera coordinates is expressed by the well

known camera projection equation

pc=̃Mpw (1)

where pc is the homogeneous 2D point in the camera co-

ordinate system, pw is the homogeneous 3D point in the

world coordinate system, and M is the 3x4 camera projec-

tion matrix. This relationship is only defined up to scale

due to the ambiguity of scale present in projective geom-

etry, hence the =̃ instead of a hard equality. The camera

projection matrix has only 11 degrees of freedom since it

is only defined up to scale as well. Therefore, this mod-

ule takes in the 11 parameters estimated by a previous layer

as the input in the form of a length 11 vector, a. In order

to perform backpropogation on the new grid generator, the

derivative of the generated grid with respect to a must be

computed.

Since Eqn. 1 is only defined up to scale, the final output

of this module will have to divide out the scale factor. By

first rewriting the camera projection matrix as

M =



a1 a2 a3 a4
a5 a6 a7 a8
a9 a10 a11 1


 =



mT

1

mT
2

mT
3


 (2)

where ai is the ith element of a, the final output of the cam-

era projection module can be written as

O =

[
xc

yc

]
=




mT
1
pw

mT
3
pw

mT
2
pw

mT
3
pw


 (3)

The gradient with respect to each of the rows of M can be
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Figure 3. Network design of the 3D TPS Spatial Transformer for facial alignment. Because a 3D model and an estimate of the camera

position are found in the output of the network, visibility of landmarks can also be determined. Visible landmarks are shown in green while

non-visible landmarks are shown in blue.

shown to be

δO

δmT
1

=

[
pT

w

mT
3
pw

0

]
δO

δmT
2

=

[
0
pT

w

mT
3
pw

]

δO

δmT
3

=




−pT
w(m

T
1
pw)

(mT
3
pw)

2

−pT
w(m

T
2
pw)

(mT
3
pw)

2


 (4)

Using the chain rule, the gradient of the loss of the network

with respect to the input can be found as

δL

δa
=




(
δL
δO

δO
δmT

1

)T

(
δL
δO

δO
δmT

2

)T

(
δL
δO

δO
δmT

3

)T




(5)

Since M is only defined up to scale, the last element of M

can be defined to be a constant which means that only the

first 11 elements of this gradient are used to actually per-

form the backpropogation on a. Since M relates many pairs

of 2D and 3D points, the gradient is computed for every pair

and added together to give the final gradient that is used for

updating a.

3.2. 3D Thin Plate Spline Transformers

When modeling the 3D structure of a face, a generic

model cannot represent the variety of shapes that might be

seen in an image. Therefore, some method of warping a

model must be used to allow the method to handle unseen

shapes. Thin Plate Spline (TPS) warping has been used by

many applications to great effect [5, 11]. TPS warps have

the very dersirable features of providing a closed form of a

smooth, parameterized warping given a set of control points

and desired destination points. Jaderberg et al. [25] showed

how 2D TPS Spatial Transformers could lead to good nor-

malization of nonlinearly transformed input images. Ap-

plying a TPS to a 3D set of points follows a very similar

process. As in [25], the TPS parameters would be estimated

from a deep network of some sort and passed as input to a

3D grid generator module.

A 3D TPS function is of the form

f∆x
(x, y, z) =




b1x
b2x
b3x
b4x




T 


1
x
y
z


+

n∑

j=1

wjxU (|cj − (x, y) |)

(6)

where b1x, b2x, b3x, b4x, and wjx are the parameters of the

function, cj is the jth control point used in determining

the function parameters, and U(r) = r2 log r. This func-

tion is normally learned by setting up a system of linear

equations using the known control points, cj and the cor-

responding points in the warped 3D object. The function

finds the change in a single coordinate, the change in the

x-coordinate in the case of Eqn. 6. Similarly, one such
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function is created for each dimension, i.e. f∆x
(x, y, z),

f∆y
(x, y, z), and f∆z

(x, y, z). The 3D TPS module would

then take in the parameters for all three of these functions

as input and output the newly transformed points on a 3D

structure as

O =



x′

y′

z′


 =



f∆x

(x, y, z)
f∆y

(x, y, z)
f∆z

(x, y, z)


+



x
y
z


 (7)

This means that the 3D TPS module must have all of the 3D

vertices of the generic model and the control points on the

generic model as fixed parameters specified from the start.

This will allow the module to warp the specified model by

the warps specified by the TPS parameters.

As in 3.1, the gradient of the loss with respect to the input

parameters must be computed in order to perform backpro-

pogation on this module. As usual, the chain rule can be

used to find this by computing the gradient of the output

with respect to the input parameters. Since each 3D vertex

in the generic model will give one 3D vertex as an output,

it is easier to compute the gradient on one of these points,

pi = (xi, yi, zi), first. This can be shown to be

δO

δθ∆x

=




1 0 0
xi 0 0
yi 0 0
zi 0 0

U (|c1 − (xi, yi, zi) |) 0 0
...

...
...

U (|cn − (xi, yi, zi) |) 0 0




T

(8)

where θ∆x
are the parameters of f∆x

. Similarly, the gradi-

ents for θ∆y
and θ∆z

are the same with only the non-zeros

values in either the second or third row respectively. The

final gradient of the loss with respect to the parameters can

be computed as

δL

δθ∆x

=
δL

δO

δO

δθ∆x

(9)

Since this is only for a single point, once again the gradi-

ent can be computed for every point and added for each set

of parameters to get the final gradient for each set of pa-

rameters that can be used to update previous layers of the

network.

3.3. Warped Camera Projection Transformers

In order to make use of the TPS warped 3D points in

the camera projection module of the transformer network,

the module must take in as input the warped coordinates.

This means that such a module would also have to do back-

propogation on the 3D coordinates as well as the camera

projection parameters. Since 3.1 already specified how to

compute the gradient of the loss with respect to the camera

projection parameters, all that is left to do is compute the

gradient of the loss with respect to the 3D coordinates in

this module. Taking the derivative of the output in Eqn. 3

with respect to the 3D point, pw results in

δO

δpw

=




mT
1

mT
3
pw

−
mT

1
pw

(mT
3
pw)

2m
T
3

mT
2

mT
3
pw

−
mT

2
pw

(mT
3
pw)

2m
T
3


 (10)

However, since pw is in homogeneous coordinates and only

the gradient with respect to the x, y, and z coordinates are

needed, the actual gradient becomes

δO

δp′

w

=




m′T
1

mT
3
pw

−
mT

1
pw

(mT
3
pw)

2m
′T
3

m′T
2

mT
3
pw

−
mT

2
pw

(mT
3
pw)

2m
′T
3


 (11)

where

p′

w =



xw

yw
zw


 m′

i =



mi1

mi3

mi3


 (12)

and mij is the jth element of mi. This gradient is computed

for every 3D point independently and used in the chain rule

to compute
δL

δpw

=
δL

δO

δO

δpw

(13)

which can then be used to perform backpropogation on each

pw.

3.4. 2D Landmark Regression

In order to further improve the landmark accuracy, we

extend our network with a landmark refinement stage. This

stage treats the projected 2D coordinates from the previ-

ous stage as initial points and estimates the offsets for each

point. To extract the feature vector for each point, a 3 × 3
convolution layer is attached on top of the last convolution

layer in the base model, followed by a 1 × 1 convolution

layer for more nonlinearity, resulting in a feature map with

D channels. Then each initial point is projected onto this

feature map and its D-dimensional feature vector is ex-

tracted along the channel direction. Notice that the initial

points are often not aligned with the grids on the feature

map. Therefore, their feature vectors are sampled with bi-

linear interpolation.

Given the feature vector for each landmark, it goes

through a fully-connected (FC) layer to output the offsets,

i.e. δx and δy . Then the offsets are added to the coordi-

nates of the initial location. For each landmark we use an

independent FC layer. We don’t share the FC layer for all

landmarks because each landmark should have a unique be-

havior of offsets. For example, the center of the eye may

move left after regression whereas the corner of the eye may
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move right. Also, sometimes two initial landmarks may be

projected to the same location due to a certain pose. We

want them to move to different locations even when they

have the same feature vector.

3.5. 3D Model Regression From 2D Landmarks

Once the 2D regression is performed, the mapping be-

tween the 3D model and the 2D landmarks is broken. While

this is not necessarily a problem in the case of sparse facial

alignment, if a denser scheme is needed, the entire model

would have to be retrained. In order to avoid this, we cre-

ate a new 3D model that does map to these 2D landmarks

by finding a new set of 3D coordinates that project to the

new 2D landmarks and warping the 3D model to fit these

new points. To find the new 3D coordinates, we need to

backproject rays through each of the 2D landmarks through

3D space using the camera projection matrix we have esti-

mated. The equation for the ray of points associated with a

given homogeneous 2D point, pi
2D, is defined as

pi′
3D =

[
A−1b

1

]
+ λ

[
A−1pi

2D

0

]
(14)

where A and b are the first three and the last column of the

estimated camera projection matrix respectively.

These rays represent all possible points in 3D that could

project to the determined locations in the image. We then

find the closest point, pi′
3D, on the ray to the original 3D co-

ordinate, pi
3D, to use as the new 3D point as shown in Fig.

4. These new correspondences are used to perform a TPS

warping of the model. After this warping, the landmark

points on the model will project to exactly the regressed 2D

landmarks, recovering the mapping between the 3D model

and the 2D image. This new model can then be projected

onto the image to generate a much more accurate texturing

of the 3D model. This same style of warping can be used to

move the 3D coordinates anywhere we choose. This means

neutralizing out expressions, especially smiles, is very easy

to do by using the texture from the regressed 3D shape.

While the non-smiling shape will not be as accurate due to

the fact that a non-smiling image was not seen, it still gives

convincing qualitative results, as seen in Fig. 5, which indi-

cate it may be a worthwhile avenue of exploration for future

work, especially in face recognition.

4. Experiments

4.1. Datasets

300W-LP: The 300W-LP [51] dataset contains 122,450

synthetically generated views of faces from the AFW [54],

LFPW [3], HELEN [30], and IBUG [38] datasets. These

images not only contain rotated faces but also attempt to

move the background in a convincing fashion, making it a

Figure 4. Backprojection or rays through image landmarks. The

closest points are found for each ray-landmark pair to use as new

3D coordinates for the face model. The original model (green) is

warped to fit the new landmarks with a 3D TPS warp resulting in

a new face model (red).

Figure 5. 3D renderings of input face with a smiling expression.

The resulting regressed 3D model (green box) maintains the smile

and is very similar to the input image while the same texture ap-

plied to the original shape (red box) suffers a small degradation in

shape but allows for a non-smiling rendering of the input image.

very useful dataset for training 3D approaches to work on

real world images.

AFLW: The Annotated Facial Landmarks in the Wild

(AFLW) dataset [28] is a relatively large dataset for evalu-

ating facial alignment on wild images. It contains approxi-

mately 25,000 faces annotated with 21 landmarks with vis-

ibility labels. The dataset provides pose estimates so re-

sults are grouped into three different pose ranges, [0◦, 30◦],
(30◦, 60◦], and (60◦, 90◦]. Due to the inconsistency in the

bounding boxes in the AFLW dataset, we adopt the use of

a face detector first to normalize the scale of the faces. The

Multiple Scale Faster Region-based CNN approach [49]

has shown good results and at a fast speed. We use the

recent extension to this work, the Contextual Multi-Scale

Region-based CNN (CMS-RCNN) approach [50] to per-

form the face detection in any experiment where face detec-

tion is needed. The CMS-RCNN approach detects 98.8%

(13,865), 95.9% (5,710), and 86.5% (3,830) of the faces in

the [0◦, 30◦], (30◦, 60◦], and (60◦, 90◦] pose ranges respec-

tively.

AFLW2000-3D: Zhu et al. [51] accurately pointed out

how merely evaluating an alignment scheme on the visible

landmarks in a dataset can result in artificially low errors.

Therefore, a true evaluation of any 3D alignment method
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must also evaluate alignment on the non-visible landmarks

as well. The AFLW2000-3D dataset contains the first 2000

images of the AFLW dataset but with all 68 points defined

by the scheme in the CMU MPIE dataset [18, 19]. These

points were found by aligning the Basel Face Model to the

images. While this is a synthetic dataset, meaning the true

location of the non-visible landmarks is not known, it is the

best one can do when dealing with real images. As these

images are from the AFLW dataset, they are also grouped

into the same pose ranges.

4.2. Implementation Details

Our network is implemented in the Caffe [26] frame-

work. A new layer is created consisting of the 3D TPS

transformation module, the camera projection module and

the bilinear sampler module. All modules are differentiable

so that the whole network can be trained end-to-end.

We adopt two architectures, AlexNet [29] and VGG-16

[40], as the pre-trained models for our shared feature extrac-

tion networks in Fig. 3, i.e. we use the convolution layers

from the pre-trained models to initialize ours. Since these

networks already extract informative low-level features and

we do not want to lose this information, we freeze some of

the earlier convolution layers and finetune the rest. For the

AlexNet architecture, we freeze the first layer while for the

VGG-16 architecture, the first 4 layers are frozen.

The 2D landmark regression is implemented by attach-

ing additional layers on top of the last convolution layer.

With N landmarks to regress, we need N FC layers to com-

pute the offsets for each individual landmark. While it’s

possible to setup N individual FC layers, here we imple-

ment this by adding one Scaling layer followed by a Re-

duction layer and Bias layer. During training only the new

layers are updated and all previous layers are frozen.

4.3. Training on 300W­LP

When training our model, we train on the AFW, HE-

LEN, and LFPW subsets of the 300W-LP dataset and use

the IBUG portion as a validation set. All sets are normalized

using the bounding boxes from the CMS-RCNN detector

by reshaping the detected faces to 250 x 250 pixels. For the

AlexNet architecture, we train for 100,000 iterations with a

batch size of 50. The initial learning rate is set to 0.001 and

drops by a factor of 2 after 50,000 iterations. When train-

ing the landmark regression, the initial learning rate is 0.01

and drops by a factor of 10 every 40,000 iterations. For the

VGG-16 architecture, we train for 200,000 iterations with a

batch size of 25. The initial learning rate is set to 0.001 and

drops by a factor of 2 after 100,000 iterations. When train-

ing the landmark regression, the initial learning rate is 0.01

and drops by a factor of 10 every 70,000 iterations. The

momentum for all experiments is set to 0.9. Euclidean loss

is applied to 3D vertexes, 2D projected landmarks and 2D

Table 1. Alignment accuracy for both the AlexNet (AN) and VGG-

16 (VGG) models. (LR: landmark regression)

AFLW Dataset (21 pts)

[0, 30] (30, 60] (60, 90] mean std

AN 4.88 5.55 7.10 5.84 1.14

AN+LR 4.00 4.48 5.89 4.79 0.98

VGG 4.15 4.64 5.96 4.92 0.94

VGG+LR 3.46 3.78 4.77 4.00 0.69

regressed landmarks.

4.4. Ablation Experiments

To investigate the effect of each component in our net-

work, we conduct two ablation studies. All the models in

these experiments are trained on the same 300W LP dataset

and tested on the detected images in AFLW. We first test

the effect of the different pre-trained models. We fine-tune

our network from the AlexNet and VGG-16 models pre-

trained on the ImageNet dataset and evaluate the landmark

accuracy before the regression step. The VGG-16 model

outperforms the AlexNet model in all three pose ranges on

the AFLW detected set as shown in Table 1. This seems to

indicate that a good base model is important for the param-

eter estimation portion of the network. Second, we evaluate

the effect of landmark regression stage. We compare the er-

rors between the regressed and projected landmarks. Table

1 shows that the landmark regression step greatly helps to

improve the accuracy.

4.5. Comparison Experiments

AFLW: Since the CMS-RCNN approach may only de-

tect the easier to landmark faces, we use the provided

bounding box anytime the face is not detected by the detec-

tor. Due to the inconsistency between the two bounding box

schemes, faces are not always normalized properly. How-

ever, we feel this is the only way to get a fair comparison to

other methods without artificially making the dataset easier

by only evaluating on detected faces. We compare against

baseline methods used by [51] on the same dataset, namely

Cascaded Deformable Shape Models (CDM) [47], Robust

Cascaded Pose Regression (RCPR) [7], Explicit Shape Re-

gression (ESR) [10], SDM [44] and 3DDFA [51]. All

methods except for CDM were retrained on the 300W-LP

dataset. The Normalized Mean Error (NME) is computed

by averaging the error of the visible landmarks and normal-

izing it by the square root of the bounding box size (h x

w) provided in the dataset. Table 2 clearly shows that our

model using the VGG-16 architecture has achieved better

accuracy in all pose ranges, especially the (60◦, 90◦] cate-

gory, and has achieved a smaller standard deviation in the

error. This means that not only are the landmarks more ac-

curate, they are more consistent than the other methods.
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Figure 6. CED curves for both the AlexNet (red) and VGG-16 (green) architectures on both the AFLW (left) and AFLW2000-3D (right)

dataset. To balance the distributions, we randomly sample 13,209 faces from AFLW and 915 faces from AFLW2000-3D, split evenly

among the 3 categories, and compute the CED curve. This is done 10 times and the average of the resulting CED curves are reported. The

mean NME% for each architecture from Table 2 is also reported in the legend.

Table 2. The NME(%) of face alignment results on AFLW and AFLW2000-3D. The best two numbers in each category are shown in bold.

AFLW Dataset (21 pts) AFLW 2000-3D Dataset (68 pts)

Method [0, 30] (30, 60] (60, 90] mean std [0, 30] (30, 60] (60, 90] mean std

CDM 8.15 13.02 16.17 12.44 4.04 - - - - -

RCPR 5.43 6.58 11.53 7.85 3.24 4.26 5.96 13.18 7.80 4.74

ESR 5.66 7.12 11.94 8.24 3.29 4.60 6.70 12.67 7.99 4.19

SDM 4.75 5.55 9.34 6.55 2.45 3.67 4.94 9.76 6.12 3.21

3DDFA 5.00 5.06 6.74 5.60 0.99 3.78 4.54 7.93 5.42 2.21

3DDFA+SDM 4.75 4.83 6.38 5.32 0.92 3.43 4.24 7.17 4.94 1.97

Ours (AlexNet) 4.11 4.69 6.61 5.14 1.31 3.71 5.33 7.19 5.41 1.74

Ours (VGG-16) 3.55 3.92 5.21 4.23 0.87 3.15 4.33 5.98 4.49 1.42

AFLW2000-3D: The baseline methods were evaluated

using the bounding box of the 68 landmarks so we retrained

our models using the same bounding box on the training

data. Generating these is trivial due to the 3D models. The

NME is computed using the bounding box size. Here we

see that though 3DDFA+SDM performs well, the VGG-

16 architecture of our model still performs best in both the

[0◦, 30◦] and (60◦, 90◦] ranges. While the VGG-16 model is

only second best in the (30◦, 60◦] range by a small amount,

the improvement in (60◦, 90◦] means that, once again, our

method generates more accurate and more consistent land-

marks, even in a 3D sense. Cumulative Error Distribution

(CED) curves are reported for both architectures on both

datasets in Fig. 6.

4.6. Running Speed

In order to evaluate the speed of our method, we evalu-

ate the models on a random subset of 1200 faces from the

AFLW subset split evenly into the [0◦, 30◦], (30◦, 60◦], and

(60◦, 90◦] pose ranges. The images are processed one at a

time to avoid any benefit from batch processing. The mod-

els are evaluated on a 3.40 GHz Intel Core i7-6700 CPU and

an NVIDIA GeForce GTX TITAN X GPU. Our AlexNet

trained model takes a total of 7.064 seconds to landmark

the 1200 faces for an average of 0.0059 seconds per im-

age or approximately 170 faces per second. The deeper and

more accurate VGG-16 model landmarks the 1200 faces in

22.765 seconds for an average of 0.0190 seconds or approx-

imately 52 faces per second. In comparison, the 3DDFA

approach [51] takes 75.72 ms (3 iterations at 25.24 ms per

iteration as specified in [51]) with 2/3 of the time being

used to process data on the CPU.

5. Conclusions

In this paper we propose a method using 3D Spatial

Transformer Networks with TPS warping to generate both

a 3D model of the face and accurate 2D landmarks across

large pose variation. The limited data used in the genera-

tion of a 3DMM can mean that unseen face shapes cannot

be modeled. By using a TPS warp, any potential face can

be modeled through a regression of 2D landmarks, of which

there is much more data available. We have shown how this

approach leads to more accurate and consistent landmarks

over other 2D and 3D methods.
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