
High Order Tensor Formulation for Convolutional Sparse Coding

Adel Bibi and Bernard Ghanem

King Abdullah University of Science and Technology (KAUST), Saudi Arabia

adel.bibi@kaust.edu.sa, bernard.ghanem@kaust.edu.sa

Abstract

Convolutional sparse coding (CSC) has gained attention

for its successful role as a reconstruction and a classifica-

tion tool in the computer vision and machine learning com-

munity. Current CSC methods can only reconstruct single-

feature 2D images independently. However, learning multi-

dimensional dictionaries and sparse codes for the recon-

struction of multi-dimensional data is very important, as it

examines correlations among all the data jointly. This pro-

vides more capacity for the learned dictionaries to better

reconstruct data. In this paper, we propose a generic and

novel formulation for the CSC problem that can handle an

arbitrary order tensor of data. Backed with experimental

results, our proposed formulation can not only tackle ap-

plications that are not possible with standard CSC solvers,

including colored video reconstruction (5D- tensors), but it

also performs favorably in reconstruction with much few-

er parameters as compared to naive extensions of standard

CSC to multiple features/channels.

1. Introduction

Convolutional Sparse Coding (CSC) is an importan-

t building block for a plethora of applications ranging from

image and video compression to deep convolutional net-

works [17]. To name a few, it has been successfully applied

in visual object tracking [28], image and video processing

[7, 2, 6], computational imaging [9], low- and mid-level fea-

ture learning [5], high-level vision problems [26, 27] and

even line drawings [23]. It can be argued that the success

of CSC may be biologically inspired, since there exists ev-

idence linking CSC to how images are formed in the hu-

man visual system [22]. In principle, images are formed

due to the firing of a sparse number of receptive fields in the

human brain. This can be represented mathematically as

a sum of convolutional operators firing at sparse locations.

Mathematically, the standard CSC problem is formulated as

follows:

min
xk,dk∀k

1

2

N∑

n

‖yn −

K∑

k

dk ∗ x
n
k‖

2
2 + λ

K∑

k

‖xn
k‖1

s.t. ‖dk‖
2
2 ≤ 1 ∀k = 1, ...,K

(1)

where * denotes 2D circular convolution, yn is the image

to be reconstructed, xn
k is the kth sparse code for the nth im-

age yn, and dk is the kth filter to be learned. The penalty

parameter λ > 0 controls the trade off between good re-

construction and code sparsity. Problem (1) is similar in

essence and form to the standard dictionary learning objec-

tive [1, 20]. However, the main difference lies in modeling

how an image is reconstructed. While CSC assumes that

an image is a sum of convolution responses between filters

dk and sparse maps xn
k , dictionary learning reconstructs an

image as a sparse number of linear (unstructured) combina-

tions of general dictionary elements [16, 20, 21].

Problem (1) is biconvex and non-smooth. Thus, find-

ing efficient solvers remains a challenge. However, there

have been several works in the literature that address this

challenge. For instance, the work of [4, 15] uses Parseval’s

theorem to transform the objective completely into the fre-

quency domain. By introducing auxiliary variables to sepa-

rate the coding from the dictionary learning subproblem, the

joint optimization is solved using the Alternating Direction

Method of Multipliers (ADMM). Heide et al. [8] solves the

CSC problem by using a classical fixed point method, where

one alternates between optimizing for the sparse codes and

the dictionaries independently. For each subproblem (s-

parse coding/dictionary learning), ADMM can be used on

the underlying convex optimization. Bibi et al. [3] also pro-

posed a way to solve one of the subproblems efficiently.

However, due to the nature of the problem and its diffi-

culty, learning multi-dimensional dictionaries (e.g. collec-

tions of colored images, colored videos, hyperspectral im-

ages, or in general videos represented by features of mul-

tiple sources) and their sparse codes to reconstruct multi-

dimensional data is fundamental but remains a challenge.

Joint treatment of features acquired from multiple sources

(e.g. spectral images, HOG features, and colors) often leads

to better performance when compared to treating them sep-

arately due to the high order correlations between features.

This is evident for instance in some previous work on face

recognition [24], and robust PCA [19] to name a few. In this

paper, we propose a generic new formulation to the CSC

problem in the tensor domain. The proposed model relies

on a relatively recent tensor factorization strategy (called t-

SVD) tailored to third-order tensors [12, 11]. We extend this

1772

factorization to an arbitrary order tensor which allows us to

seamlessly handle multi-dimensional data (images/videos)

more naturally and incorporate correlations among the vari-

ous features/channels. Interestingly, the new data formation

model reduces back to standard CSC, as well as, standard

sparse dictionary learning when the tensor order is set to

particular sizes.

Tensor factorization techniques and multi-linear analy-

sis provide an essential tool for handling multi-dimensional

data. Kolda et al. [13, 14] provides a good summary of ten-

sor decompositions and their applications. For instance, the

tensor Tucker decomposition has been widely used for ten-

sor completion [18] and face recognition [24]. The t-SVD

factorization [12, 11] for third order tensors has been used

for sparse dictionary learning problems [29], robust PCA

[19], clustering multi-way data [10], and image inpainting

[32, 31]. However, the t-SVD on third order tensors is lim-

ited to 1D convolutions and cannot handle higher order ten-

sor inputs. This prohibits its use in CSC problems, where at

least 2D convolutions are required for reconstructing multi-

dimensional data.

Contributions. (i) We propose a novel generic tensor for-

mulation to the CSC problem, where standard CSC and s-

tandard sparse dictionary learning are merely special cases.

(ii) To the best of our knowledge, we are proposing the first

CSC method that explicitly handles multi-dimensional da-

ta. So, for baseline comparisons on multi-dimensional da-

ta, we test our method against standard CSC applied to the

different dimensions (channels) independently. Extensive

experiments demonstrate that our model can achieve sim-

ilar results as standard CSC techniques with much fewer

parameters and performs significantly better in high sparsi-

ty domains. (iii) We demonstrate the ease of extending our

formulation to an arbitrary order tensor by learning a dic-

tionary and sparse codes from colored video (5D tensor), a

task that has not been systematically possible before.

2. Notations and Preliminaries

In this section, we introduce the notations that shall be

used throughout the paper. The operator ⊗ indicates a ten-

sor product, while the H superscript over matrices indicates

hermitian conjugate. The matrices Fn and In indicate the

(n × n) normalized discrete Fourier transform matrix and

the identity matrix, respectively. Following the notations

and definitions of [14], the order of a tensor is the number

of its dimensions. For instance, scalars are tensors of or-

der zero, vectors are tensors of order one, and matrices are

tensors of order two. They will be denoted by lowercase,

bold lowercase, and bold capital letters (e.g. a, a, A), re-

spectively. Higher order tensors refer to tensors of order

three and more, and they will be denoted by boldface Euler

script letters (e.g. A). Higher order tensors having a second

dimension of one are traditionally called vector tensors and

are denoted as
#»

A ∈ R
J1×1×J3···×Jn [11]. The Frobenius

squared norm of an N th-order tensor A ∈ R
J1×J2×···×JN

is ‖A‖2F =
∑

i1,i2,...,iN
A(i1, i2, . . . , iN)2, while its ℓ1,...1

norm is ‖A‖1,...1 =
∑

i1,...,iN
|A(i1, . . . , iN)|. The in-

ner product between two tensors of the same size is

〈A,B〉 =
∑

i1,...,iN
A(i1, . . . , iN)B(i1, . . . , iN). It is of-

ten convenient to unfold a tensor into a matrix. The un-

fold operation can be done along any of its dimension-

s. Thus, a kth-mode fold/unfold of a tensor is defined

as unfoldk(A) := A(k) ∈ R
Jk×(J1...Jk−1Jk+1...JN) and

foldk(A(k)) := A. A tensor-matrix product depend-

s on the dimension along which the product is conduct-

ed. It is called an n-mode product, if the product is a-

long the nth dimension. For U ∈ R
I×Jn , the n-mode

product is defined as (A ×n U)(i1,...,in−1,j,in+1,...,iN) =
∑Jn

in=1A(i1, . . . , iN)U(j, in). We also review some no-

tations necessary for introducing the 3rd-order tensor fac-

torization using t-SVD. All the notations and preliminaries

that follow assume A ∈ R
n1×n2×n3 . We use the MATLAB

notation A(i, :, :), A(:, j, :), and A(:, :, k) to denote the ith

horizontal, lateral, and frontal slice of a 3rd-order tensor. For

simplicity, we denote A(k) = A(:, :, k) as the kth frontal s-

lice. For a 3rd-order tensor A ∈ R
n1×n2×n3 , we have the

following definitions [12, 11]:

Definition 2.1 (Circulant Tensor Unfolding) [12]:

circ(A) =








A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
... · · ·

...

A(n3) A(n3−1) · · · A(1)








(2)

where circ(A) is a block circulant matrix of size n1n3 ×
n2n3, which essentially generates circular shifts out of the

blocks of the frontal slices of A.

Definition 2.2 (Tensor Vectorization) [12]:

MatV ec(A) =








A(1)

A(2)

...

A(n3)







, fold(MatV ec(A)) = A

(3)

where fold(.), not to be confused with the nth-mode fold,

is subscript-free and simply re-concatenates the frontal s-

lices into a 3rd-order tensor. Note that the operator circ(A)
can be in fact written as a composite of two operators as

follows circ(A) = CI(MatV ec(A)), where CI(.) simply

generates all circular shifts out of the fundamental blocks of

MatV ec(A). The reason behind the introduction of CI(.)
will become apparent in later sections.

Definition 2.3 (t-product) [12, 11]: The t-product be-

tween A ∈ R
n1×n2×n3 and B ∈ R

n2×n4×n3 is an n1 ×

1773

n4 × n3 tensor Z defined as follows:

Z = A⊛ B = fold(circ(A)MatV ec(B)) (4)

such that: Z(i, j, :) =

n2∑

k=1

A(i, k, :)⊛ B(k, j, :) ∀i, j (5)

Notice that the 3rd-order tensor A can be seen as a concate-

nation of vector tensors in the second dimension. So, the

t-product becomes analogous to standard matrix vector mul-

tiplication with the inner operation replaced with t-products

(refer to Figure 1). It is important to note that circ(.) intro-

duces structure to the tensor resulting in an efficient Fourier

diagonalization, as follows:

circ(A) = (Fn3
⊗ In1

)bdiag(MatV ec(Â))(Fn3
⊗ In2

)H

such that: bdiag(MatV ec(Â)) =






Â(1)

. . .

Â(n3)






The matrix bdiag(MatV ec(Â)) is a concatenation of the

frontal slices of Â along a diagonal matrix, where Â denotes

the result of the discrete Fourier transform of A along the

3rd dimension, e.g. Â = fft(A, [], 3) in MATLAB.

3. Mathematical Tensor Formulation

In this section, we give a detailed discussion of our tensor

CSC formulation using the new proposed operator for high-

er order t-products that has the potential to uncover high di-

mensional correlation among features/channels in the data.

Throughout this section and for the sake of generality, both

images and filters will be treated as arbitrary d-dimensional

tensors. For example, a colored image/filter I1 can be rep-

resented by a 3rd-order tensor I1 ∈ R
3×n2×n3 , where n2

and n3 are the spatial dimensions. However, throughout the

derivation of our formulation, we always allocate the second

dimension for the concatenation of different images/filters

and that means all d-dimensional images/filters are repre-

sented by a (d + 1)-dimensional tensor. Thus, our example

image/filter is now
#»

I 1 ∈ R
3×1×n2×n3 , and the set of im-

ages/filters {
#»

I 1, . . . ,
#»

IN} can now be concatenated along

the second dimension with I ∈ R
n1×N×n2×n3 .

CSC can only be written as a linear sum of t-products, if

the images/filters are 1D signals (i.e. vectorized patches):

min
D,

#»

X

1

2

N∑

n

‖
#»

Yn −D ⊛
#»

Xn‖
2
F + λ‖

#»

Xn‖1,1,1

s.t. ‖
#»

Dk‖
2
F ≤ 1 ∀k = 1, . . . ,K

(6)

where ⊛ is appropriately defined as in Equation (4),
#»

Yn ∈

R
n1×1×n2 , D ∈ R

n1×K×n2 , and
#»

Xn ∈ R
K×1×n2 . A simi-

lar formulation has been used for standard sparse dictionary

learning [32, 30], but with a tube norm ‖.‖1,1,2 replacing

Figure 1. Shows how the t-product operation is analogous to the

matrix-vector multiplication with the inner product replaced with

t-products. It is an illustration of equation (5) where n4 = 1.

the ‖.‖1,1,1 norm. Unfortunately, such formulations ignore

the 2D spatial structure in images and cannot handle multi-

dimensional features at each pixel.

To overcome the aforementioned issues of previous ten-

sor formulations, we consider an arbitrary order tensor,

where the nth multi-dimensional training image is
#»

Yn ∈

R
n1×1×n2×···×nd , the K filters {

#»

Di}
K
i=1 are concatenat-

ed along the second dimension forming the dictionary

D ∈ R
n1×K×n2×···×nd , and the nth sparse code is

#»

Xn ∈
R

K×1×n2×···×nd . In this generalization, each filter has the

same dimensionality as each image. However, in Section

4, we discuss how filters with smaller spatial extent can be

learned. To this end, new tensor theory has to be developed

for high dimensional t-product decompositions.

We start by defining the operator ⊛HO for tensors with

order higher than three. To do so, we redefine the circ(.),
MatV ec(.), and fold(.) operators for generic order tensors

as circHO(.), MatV ecHO(.), and foldHO(.) where:

Definition 3.1 (High Order t-products):

D ⊛HO

#»

X = foldHO(circHO(D)MatV ecHO(
#»

X)) (7)

The operators circHO(.) and MatV ecHO(.) apply

circ(.) and MatV ec(.) recursively on all the dimensions

in the order (3, 4, . . . , d) as follows:

Definition 3.2 (High Order Recursive MatV ec(.)):

MatV ecHO(.) = MatV ec(d)(. . . (MatV ec(3)(.)))

Here, MatV ec(i) is the standard MatV ec(.) op-

erator, but it unfolds along the ith dimension

such that MatV ecHO(.) : R
n1×K×n2×···×nd →

R
(n1n2...nd)×K and MatV ec(i)(.) : Rn1×K×n2×···×nd →

R
(n1ni)×K×n2×···×ni−1×1×ni+1×···×nd .

Definition 3.3 (High Order Recursive circ(.)):

circHO(.) = CI(d)(MatV ec(d)(. . . (CI(3)(MatV ec3(.))))

Similarly, the operator CI(i)(.) circularly shifts the

tensor blocks of size ni along the second dimen-

sion to form a block circulant tensor such that

CIi(.) : R
(n1ni)×K×n2×···×ni−1×1×ni+1×···×nd →

1774

Figure 2. Demonstrates the operation of the proposed operators (MatV eci(.), CI(i)(.), and circHO(.)) on a 4th-order tensor A ∈

R
n1×n2×n3×n4 from left to right. In practice, there is no need to construct the matrix circHO(A) as it can be efficiently diagonalized in

the Fourier domain. Refer to text for more details. It is also clear that if n1 = n2 = 1, the resultant matrix circHO(A) is best known as a

Block Circulant with Circulant Blocks matrix (BCCB) which represents a 2D convolutional operator.

R
(n1ni)×(Kni)×n2×···×ni−1×ni+1×···×nd . Thus, circHO(.)

recursively applies circ(.) from the third dimension to the

last to produce an R
(n1n2...nd)×(Kn2...nd) matrix.

Simply, foldHO(.) : R
(n1n2...nd)×(Kn2...nd) →

R
n1×K×n2×···×nd refolds the matrix back into a tensor in

the same order. Figure 2 demonstrates all the previously

defined higher order operators on a 4th order tensor.

By induction, one can show the following diagonaliza-

tion property for any D ∈ R
n1×K×n2×···× nd ,

circHO(D) = (Fnd
⊗ Fnd−1

⊗ · · · ⊗ Fn2
⊗ In1

) (8)

bdiag(MatV ecHO(D̂))(Fnd
⊗ Fnd−1

⊗ · · · ⊗ Fn2
⊗ IK)H

where D̂ is the Fourier transform of D along the dimen-

sions (3, 4 . . . , d). The operator bdiag(.) diagonalizes the

blocks of MatV ecHO(D̂) along the first dimension n1 such

that bdiag(.) : C(n1n2...nd)×K → C
(n1n2...nd)×(Kn2...nd).

Then, bdiag(MatV ecHO(D̂)) is a block diagonal matrix

with each sub block of size R
n1×K (see Figure 3).

Therefore, the overall tensor CSC problem for arbitrary

dth-order tensors (TCSC) can be formulated as:

min
D,

#»

X

1

2

N∑

n

‖
#»

Yn −D ⊛HO

#»

Xn‖
2
F + λ‖

#»

Xn‖1, . . . , 1
︸ ︷︷ ︸

d+1

s.t. ‖
#»

Dk‖
2
F ≤ 1 ∀k = 1, . . . ,K (9)

Relation to standard CSC. Our proposed CSC formula-

tion reduces back to standard CSC in Problem (1), when

we set n1 = 1, ni = 1 ∀i ≥ 4, and the second dimen-

sion K = 1 (for simplicity, we show the case of 1 filter

in the dictionary here). That is D =
#»

D ∈ R
n1×1×n2×n3 ,

Figure 3. Shows how the operator bdiag(MatV ecHO(.)) diago-

nalizes an input tensor Â.

#»

Y ∈ R
n1×1×n2×n3 , and

#»

X ∈ R
1×1×n2×n3 . Now, the ma-

trix resulting from circHO(
#»

D) can be diagonalized as:

circHO(
#»

D) = (Fn3
⊗ Fn2

)bdiag(MatV ecHO(
#̂»

D))

(Fn3 ⊗ Fn2)
H (10)

This is because, from (8), In1
= 1, Fni

= 1 ∀i ≥ 4.

Here,
#̂»

D is the 2D Fourier transform of
#»

D along the di-

mensions (3,4). The diagonalization in (10) indicates that

the matrix circHO(
#»

D) is a 2D convolutional (also called

Block Circulant with Circulant Blocks or BCCB) matrix

of the filter
#»

D, since it is diagonalized using the 2D DFT

matrix Fn3 ⊗ Fn2 . As such, it is easy to show now that
#»

D⊛HO

#»

X = d ∗x, where d and x are the 2D image patch-

es of size n2×n3. As given by the property in (5), we have

D⊛HO

#»

X =
∑K

k=1 dk ∗xk, whenD ∈ R
n1×K×n2×n3 and

#»

X ∈ R
K×1×n2×n3 are the concatenations of the K filters

along the second dimension and sparse codes along the first,

respectively. This is exactly the standard CSC Problem (1).

Relation to standard sparse dictionary learning. Our

tensor formulation also reduces back to this important and

1775

popular problem, when we set ni = 1 ∀i ≥ 2. In this

case, the tensor D ∈ R
n1×K is now a matrix and

#»

X ∈
R

K×1 is only a vector, thus, leading to circHO(D) = D,

MatV ecHO(
#»

X) =
#»

X , and Fni
= 1 ∀i ≥ 2. Therefore,

D ⊛
#»

X = Dx and the objective is the same as in standard

sparse dictionary learning.

4. Proposed Solver

To solve our tensor CSC formulation in Problem (9), we

use the traditional fixed point strategy, where we alternate

between the optimization of the sparse codes
#»

Xn and the

dictionary D. Each subproblem is convex, so we use AD-

MM to solve it. For the sake of notation simplicity and

without loss of generality, our ADMM derivation sets the

number of training examples N = 1. The detailed deriva-

tion with N ≥ 1 is left for the supplementary material.

Subproblem (1): Sparse Coding. Fixing D, we solve:

argmin
#»

X ,
#»

Z

1

2
‖

#»

Y −D ⊛HO

#»

X‖2F + λ‖
#»

Z‖1, . . . , 1
︸ ︷︷ ︸

d+1

(11)

s.t.
#»

X =
#»

Z

By introducing variable
#»

Z , we split the smooth and non-

smooth parts of the objective. We apply ADMM to itera-

tively minimize Problem (11) via the following update steps

of the primal variables (
#»

X ,
#»

Z) and the dual variable
#»

U .

• Update
#»

X : For computational efficiency, we convert

the objective into the Fourier domain by using the definition

of the operator ⊛HO . Since Fnd
⊗ · · · ⊗ Fn2

⊗ In1
and

Fnd
⊗· · ·⊗Fn2

⊗ IK are unitary matrices (or equivalently,

by Parseval’s theorem), the following can be easily shown

true.

1

2
‖

#»

Y −D ⊛HO

#»

X‖2F =
1

2
‖MatV ecHO(

#̂»

Y)

− bdiag
(

MatV ecHO(D̂)
)

MatV ec(
#̂»

X))‖2F (12)

where bdiag
(

MatV ecHO(D̂)
)

concatenates the blocks of

size n1 of the matrix D̂ along the diagonal across all di-

mensions. Therefore, the objective is now separable in the

dimensions (3, . . . , d) and the update rule in the Fourier do-

main for the ith dimension is:

X̂ (i) ← argmin
X̂ (i)

1

2
‖D̂(i)X̂ (i) − Ŷ(i)‖22 +

ρ1
2
‖X̂ (i) − Ẑ(i)‖22

+ < Û (i), X̂ (i) >

X̂ (i) ← (D̂(i)HD̂(i) + ρ1IK)−1
(

D̂(i)HŶ(i) + ρ1Ẑ
(i) − Û (i)

)

(13)

Here, D̂(i) ∈ C
n1×K is the ith frontal slice of D̂, i.e.

D̂(i) = D̂(:, :, i) where i is a joint linear running index from

1 to n3n4 . . . nd since all indices from n3 to nd are com-

bined into one for simplicity (refer to Figure (3). The same

holds for Ŷ(i) and X̂ (i). As evident from Equation (13),
#»

X
is computed in the Fourier domain, constructed one frontal

slice at a time X̂ (i) ∈ R
K×1, as a sparse linear combination

of the Fourier elements of the filters in D̂(i) of the features

in the first dimension (i.e. n1). Of course, X can be re-

constructed back from X̂ (i) ∀i by taking the inverse Fouri-

er transform of
#̂»

X ∈ R
n1×K×n2×···×nd along dimensions

(3, . . . , d).

• Update
#»

Z : We need to solve:

#»

Z ← argmin
#»

Z

λ

ρ1
‖

#»

Z‖1, . . . , 1
︸ ︷︷ ︸

d+1

+
ρ1
2
‖

#»

Z −

#»

A
︷ ︸︸ ︷
(

#»

X +

#»

U

ρ1

)

‖2F

(14)

This is the proximal operator to the ℓ1 norm, popular-

ly known as the soft thresholding operator, S λ
ρ1

(a) =

sign(a)max(0, |a| − λ
ρ1
). It is applied in an element-wise

fashion to tensor
#»

A.

• Update
#»

U :
#»

U ←
#»

U + ρ1(
#»

X −
#»

Z)

Subproblem (2): Dictionary Learning. Fixing
#»

X from

subproblem (1), we solve for D using ADMM, where the

augmented Lagrangian is:

L(D, T ,G) :=
1

2
‖

#»

Y − (D ⊛HO

#»

X)‖2F +
ρ2
2
‖D − T ‖2F

+ 〈G,D − T 〉+

K∑

k=1

✶{‖
#»

T k‖2
F
≤1} (15)

Note that all operations in Equation (15) are preserved un-

der unitary matrix multiplication. Unlike the sparse coding

step, the problem can be entirely solved in the Fourier do-

main. By using the diagonalization property of ⊛HO, the

augmented Lagrangian is rewritten as:

L(D̂, T̂ , Ĝ) :=
1

2
‖

#̂»

Y − (D̂ ⊛HO

#̂»

X)‖2F +
ρ2
2
‖D̂ − T̂ ‖2F

+ 〈Ĝ, D̂ − T̂ 〉+

K∑

k

✶
‖

#̂»

T k‖2
F
≤1

(16)

• Update D̂: Similar to updating
#»

X , updating D̂ is done

completely in the Fourier domain for efficiency. The prob-

lem is again separable in dimensions (3, . . . , d) and the up-

date rule for the ith dimension is:

D̂(i) ← argmin
D̂(i)

1

2
‖D̂(i)X̂ (i) − Ŷ(i)‖22 +

ρ

2
‖D̂(i) − T̂ (i)‖22

+ < Ĝ(i), D̂(i) >

D̂(i) ←
(

Ŷ(i)X̂ (i)⊤ + ρ2T̂
(i) − Ĝ(i)

)

(X̂ (i)X̂ (i)⊤ + ρ2IK)−1

(17)

1776

• Update T̂ : T̂ is updated using the proximal operator

for the ℓ2 unit ball as follows:

T̂ ← argmin
‖

#̂»

T i‖2
F
≤1

ρ2
2
‖T̂ −

(

D̂ +
1

ρ2
Ĝ
)

‖2F (18)

However, in CSC problems, the filters
#»

Dk have smaller s-

patial support than the training images
#»

Y . To allow for a s-

maller spatial support in the Fourier domain, the constraints

‖
#̂»

T i‖
2
F can be replaced with ‖

#̂»

T i ×p Ψ ×q Γ‖
2
F ≤ 1. Es-

sentially, we assume that the spatial dimensions are along

the pth and qth dimensions of tensor D. The matrices Ψ and

Γ simply apply inverse (d-2) inverse Fourier transform on
#̂»

T and crop the spatial dimensions according to the required

filter sizes. This technique has been used in standard CSC

before [4, 8]. As such,
#̂»

T is updated by solving:

T̂ ← argmin
T̂

ρ2
2
‖T̂ −

(

D̂ +
1

ρ2
Ĝ
)

‖2F

s.t. ‖
#̂»

T i ×p Ψ×q Γ‖
2
F ≤ 1 ∀i = 1, . . . ,K

(19)

This problem emits the following closed form solution for

each filter, where Ei =
(
D̂i +

1
ρ2
Ĝi
)
×p Ψ×q Γ:

T̂i =

{
Ei

‖Ei‖F
: if ‖Ei‖

2
F ≥ 1

Ei : else
(20)

• Update Ĝ: Ĝ ← Ĝ + ρ2(D̂ − T̂)

The CSC framework is divided into training and testing.

During training, we solve Problem (9) to compute D and
#»

X
by alternating between subproblems (1) and (2). For testing,

D is fixed and only subproblem (1) is solved to reconstruct

the test samples.

5. Experiments

In this section, we conduct three different experiments to

demonstrate the effectiveness of using our TCSC formula-

tion. (1) Since, to the best of our knowledge, there are no

existing methods that perform CSC on multi-dimensional

data (images/filters/videos), we compare the reconstruction

of TCSC with standard CSC over each feature dimension

independently. We call it single channel CSC or SCSC for

short. For a fair comparison in terms of reconstruction er-

ror, we compare both methods over several levels of sparsity

in both training and testing to showcase the effectiveness of

TCSC in high sparsity domains with much fewer parameter-

s. Colored images (4th order tensors) are used in this case.

(2) We demonstrate how TCSC performance is affected by

varying K (number of filters). (3) Lastly, we run TCSC on

(5th-order) tensors for colored video reconstruction.

Figure 4. Shows 6 out of 10 samples from the Fruit and City

datasets that have been used for training. The left column shows a

total of 12 out of 29 test images.

Datasets. Following common convention in the literature

[4, 8] and to vary the datasets across experiments, we use

the city dataset [26] for training in experiment (1) and the

fruit dataset [26] in experiment (2). Each dataset comprises

10 training images (N = 10). For testing in both experi-

ments (1) and (2), we randomly select 25 images from the

house dataset [8] along with four commonly used images

in the literature [26, 8]. Figure 4 shows some images in

these datasets. As for colored video reconstruction in exper-

iment (3) and following common practice in the dictionary

learning community [32], we use the basketball video from

the OTB50 dataset [25] for training (i.e. N = 1). From

this video, we select 10 frames (t ∈ {1, 10, 20, . . . , 90})
for training and pack them in the last tensor dimension

(n4 = 10). Then, we reconstruct 10 intermediate testing

frames at t ∈ {5, 15, 25, . . . , 95}.

Complexity. For this analysis, the dictionary is D ∈
R

n1×K×n2×n3 . TCSC is computationally more expen-

sive than SCSC (unless n1 ≫ K); however, it is more

attractive memory-wise. The time complexity of TCSC

is O(n2n3K
3) + O(n1n2n3log(n2n3)), as compared to

O(n1n2n3K
2) + O(n1n2n3log(n2n3)) for SCSC. More

importantly, TCSC has n1 times fewer parameters as com-

pared to SCSC, thus, making it much more memory effi-

cient as it encodes higher order correlations. More details

of this analysis are left to the supplemntary material.

Parameters and Implementation Details. Since SCSC

reconstructs each feature channel separately, we have n1 =
1. All the images from the fruit, city, and house dataset-

s are of spatial size n2 = n3 = 100. Also, N = 10
images are used for training and K = 100 filters in all

experiments unless stated otherwise. During training, we

set ρ1 = ρ2 = 1 increasing in every iteration as follows

ρ1,2 = min(ρmax, γρ1,2), where γ = 10−2 and ρmax = 600.

As for testing, we set ρ1 = 10−3, ρmax = 100 and γ = 10−1

for faster convergence. The filter spatial size is 11× 11.

1777

0 20 40 60 80 100

Testing sparsity (%)

50

60

70

80

90

100

110

120

130

140

P
S
N
R

(
d
B
s
)

TCSC

SCSC

λ
TCSC

 = 1, λ
SCSC

 = 1

TrainingSparsity
TCSC

 = 98.17%, TrainingSparsity
SCSC

= 97.77%

25.9 dBs

0 20 40 60 80 100

Testing sparsity (%)

50

60

70

80

90

100

110

120

130

140

P
S
N
R

(
d
B
s
)

TCSC

SCSC

λ
TCSC

 = 1, λ
SCSC

 = 5

TrainingSparsity
TCSC

 = 98.17%, TrainingSparsity
SCSC

= 98.53%

20.3 dBs

Figure 5. Shows TCSC and SCSC performance on testing set,

when the SCSC training sparsity varies from 97.77% to 98.53%.

For TCSC, the images are colored, so n1 = 3. We use

the same training setup as SCSC, i.e. they share the same

n2, n3, N , K, spatial filter size, and optimization parame-

ters (ρ1, ρ2, γ, ρmax). Since the 3rd and 4th dimensions are

spatial, then p = 3 and q = 4. For colored video recon-

struction, the TCSC dictionary is D ∈ R
3×100×100×100×10.

All parameters are detailed in the supplementary material.

As for the evaluation, we propose a new method to com-

pare reconstruction quality between two dictionaries for the

same test sample. Since the TCSC and SCSC objectives

are different, using the same trade off parameter λ for both

methods does not guarantee the same sparsity level in the

sparse codes. The sparsity level for X ∈ R
n1×n2×n3 is de-

fined as g(X)/n1n2n3, where g(X) is the total number of

elements in X such that |X (i, j, k)| ≤ 10−6. Therefore, if

SCSC has the same sparsity level as TCSC, then this implies

that SCSC has n1 times more non-zero codes than TCSC.

This is an important point to make because SCSC has n1

times more codes than TCSC. To ensure a fair comparison,

each method has to reconstruct each test sample with vary-

ing levels of sparsity, at which we report the reconstruction

PSNR. Both dictionaries are learned using the same amount

of sparsity in training.

Experiment (1): Colored Image Reconstruction. Here,

we compare the performance of TCSC and SCSC dictionar-

ies in reconstructing 29 test samples described earlier. Un-

like previous work, we want to ensure that both dictionar-

ies lead to the same amount of sparsity during training and

Table 1. Reconstruction error using TCSC trained with λ = 20 and

an average sparsity of 64% across all 29 test samples for different

values of K (number of filters in the dictionary).

K 20 40 60 80 100

dBs 70.63 94.45 98.35 104.43 104.70

Avg Sparsity(%) 63.93 64.00 66.66 60.73 65.43

testing. Otherwise, this may lead to an unfair comparison,

since dictionaries can be trained for a lower sparsity, which

in turn leads to better reconstruction. To demonstrate this,

we compare both TCSC and SCSC trained with the same

λ = 1. This leads to a training sparsity level of 98.17%
and 97.77% for TCSC and SCSC, respectively. Then, we

retrain SCSC with λ = 5, leading to a higher training spar-

sity (98.53%). Once these different dictionaries have been

trained, we reconstruct the test samples with both method-

s at varying levels of sparsity by varying λ during testing

to generate the results in Figure 5. SCSC outperforms TC-

SC at all sparsity levels for both training scenarios, but the

performance gap does decrease with an increase in training

sparsity. In the first case, SCSC training sparsity is much

less than that of TCSC. In the second case and since SC-

SC has n1 = 3 times more parameters (it codes each fea-

ture independently), the 0.36% difference in training spar-

sity, which might not seem significant at first glance, corre-

sponds to SCSC having 2.6 × 105 more non-zero elements

in its codes than TCSC. As such, the SCSC dictionary can

obviously lead to better reconstruction when the sparsity is

allowed to be lower. Thus, it is essential to ensure that both

TCSC and SCSC have the same high sparsity level during

training. To do this, we train both methods for a large set of

λ values and choose the pair that leads to the same sparsity.

We detail how the training sparsity for both methods varies

with different λ values in the supplementary material.

Now, we compare TCSC and SCSC performance, when

they are trained using the same sparsity level, first low then

high sparsity. These results are summarized in Figure 6.

TCSC consistently improves performance over SCSC as the

training sparsity level increases for both. At high sparsi-

ty, TCSC can significantly outperform SCSC, while using

n1 = 3 times less parameters than SCSC. The performance

gap in favor of TCSC results from the use of high order

correlations among all features in the dictionary, instead of

treating them independently.

To validate the generalizability of TCSC’s dictionary, we

use it to reconstruct each of the n1 features/channels sepa-

rately using the SCSC coding scheme, denoted by Tensor-

Dictionary-Single-Coding (TDSC). This measures the ca-

pacity for TCSC’s dictionary in reconstructing the indepen-

dent n1 features/channels overlooking any correlations a-

mong them. Similarly, we use the SCSC dictionary to re-

construct all n1 channels jointly using TCSC coding, denot-

ed by Single-Dictionary-Tensor-Coding (SDTC). This mea-

sures the capacity for SCSC’s dictionary to uncover correla-

tions among the n1 features. Results of this study are shown

in Figure 6(b), where the TDSC dictionary outperforms S-

1778

0 20 40 60 80 100

Testing sparsity (%)

60

70

80

90

100

110

120

130

P
S
N
R

(
d
B
s
)

TCSC

SCSC

λ
TCSC

 = 10, λ
SCSC

 = 5

TrainingSparsity
TCSC

 = 98.63%, TrainingSparsity
SCSC

= 98.53%

(a) Lower training sparsity.

0 20 40 60 80 100

Testing sparsity (%)

20

40

60

80

100

120

140

P
S
N
R

(
d
B
s
)

TCSC

SCSC

SDTC

TDSC

λ
TCSC

 = 20, λ
SCSC

 = 20

TrainingSparsity
TCSC

 = 99.55%, TrainingSparsity
SCSC

= 99.22%

(b) Higher training sparsity.

Figure 6. Shows that TCSC’s performance consistently improves over SCSC as the training sparsity level increases, while maintaining

n1 times less parameters. TCSC’s performance seems more stable, as it has lower variance across 29 testing samples. Also, Figure 6(b)

shows an extra comparison between both TCSC and SCSC dictionaries, when they are used to reconstruct single channels independently

and jointly, respectively. These are denoted as TDSC and SDTC, respectively. The TCSC dictionary has the potential to generalize in

reconstructing single channels independently (TDSC) much more effectively than both SCSC and SDTC.

Figure 7. Shows color-coded frames of the basketball video [25] used in training, along with the reconstructed frames. The number in

brackets indicates the frame ID. We also report the reconstruction PSNR for each of the reconstructed frames in green.

DTC as well as SCSC in PSNR.

Experiment (2): Effect of K. Here, we demonstrate that

TCSC performance consistently improves as the number of

filters K increases. We reconstruct the 29 test samples at a

testing sparsity level of 64% with a varying number of fil-

ters K (refer to supplementary material for other sparsity

levels). Table (1) summarizes these results and shows that

TCSC reconstruction performance increases consistently as

the number of filters increases from K = 20 to K = 100.

Experiment (3): Colored Video Reconstruction. To

showcase how TCSC can handle an arbitrary order tensor,

we conduct an experiment on colored video reconstruction.

The dictionary D ∈ R
n1×K×n2×n3×n4 , where n1 = 3

(RGB), n2 = n3 = 100 (spatial dimensions), K = 100 (fil-

ters), and n4 = 10 (frames from the same video). This task

aims to learn K filters (effectively colored video snippets)

{
#»

D}Kk=1 and their corresponding sparse codes {
#»

X k}
K
k=1 to

best reconstruct the training sample
#»

Y ∈ R
n1×1×n2×n3×n4 .

In fact, TCSC makes it possible (for the first time) to learn

multi-dimensional filters from video by considering corre-

lations across frames, as well as, the three color channels

taken jointly across all pixel locations. Figure 7 shows ex-

ample reconstructions of test frames after training on other

frames in the same video.

6. Conclusions
In this paper, we propose the first tensor formulation for

CSC problem (TCSC). TCSC allows the encoding of high-

er order correlations among features/channels that help in

learning high capacity dictionaries. It reduces to standard

2D CSC or standard sparse dictionary learning for some

special case of tensor dimensions. It also outperforms a

naive extension of standard CSC to multi-dimensions, espe-

cially at high sparsity levels, while maintaining much fewer

parameters. We show it is possible to extend TCSC to han-

dle any arbitrary order tensor. We give an example of this

in the context of colored video reconstruction.

Acknowledgments. This work was supported by the King
Abdullah University of Science and Technology (KAUST)
Office of Sponsored Research.

1779

References

[1] M. Aharon, M. Elad, and A. Bruckstein. rmk-svd: An al-

gorithm for designing overcomplete dictionaries for sparse

representation. IEEE Transactions on signal processing,

54(11):4311–4322, 2006. 1

[2] M. Aharon, M. Elad, and A. M. Bruckstein. On the unique-

ness of overcomplete dictionaries, and a practical way to re-

trieve them. Linear algebra and its applications, 2006. 1

[3] A. Bibi, H. Itani, and B. Ghanem. Fftlasso: Large-scale lasso

in the fourier domain. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 1

[4] H. Bristow, A. Eriksson, and S. Lucey. Fast convolutional

sparse coding. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2013. 1, 6

[5] B. Chen, G. Polatkan, G. Sapiro, D. Blei, D. Dunson, and

L. Carin. Deep learning with hierarchical convolutional fac-

tor analysis. IEEE transactions on pattern analysis and ma-

chine intelligence, 35(8):1887–1901, 2013. 1

[6] F. Couzinie-Devy, J. Mairal, F. Bach, and J. Ponce. Dictio-

nary learning for deblurring and digital zoom. arXiv preprint

arXiv:1110.0957, 2011. 1

[7] M. Elad and M. Aharon. Image denoising via sparse and

redundant representations over learned dictionaries. IEEE

Transactions on Image processing, 2006. 1

[8] F. Heide, W. Heidrich, and G. Wetzstein. Fast and flexible

convolutional sparse coding. In IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 5135–

5143, 2015. 1, 6

[9] F. Heide, L. Xiao, A. Kolb, M. B. Hullin, and W. Heidrich.

Imaging in scattering media using correlation image sensors

and sparse convolutional coding. Optics express, 2014. 1

[10] E. Kernfeld, S. Aeron, and M. Kilmer. Clustering multi-

way data: a novel algebraic approach. arXiv preprint arX-

iv:1412.7056, 2014. 2

[11] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover.

Third-order tensors as operators on matrices: A theoreti-

cal and computational framework with applications in imag-

ing. SIAM Journal on Matrix Analysis and Applications,

34(1):148–172, 2013. 1, 2

[12] M. E. Kilmer and C. D. Martin. Factorization strategies for

third-order tensors. Linear Algebra and its Applications,

435(3):641–658, 2011. 1, 2

[13] T. G. Kolda. Multilinear operators for higher-order decom-

positions. United States. Department of Energy, 2006. 2

[14] T. G. Kolda and B. W. Bader. Tensor decompositions and

applications. SIAM review, 51(3):455–500, 2009. 2

[15] B. Kong and C. C. Fowlkes. Fast convolutional sparse cod-

ing. Technical report, Department of Computer Science, U-

niversity of California, Irvine, 2014. 1

[16] K. Kreutz-Delgado, J. F. Murray, B. D. Rao, K. Engan, T.-W.

Lee, and T. J. Sejnowski. Dictionary learning algorithms for

sparse representation. Neural computation, 2003. 1

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in neural information processing systems, 2012. 1

[18] J. Liu, P. Musialski, P. Wonka, and J. Ye. Tensor com-

pletion for estimating missing values in visual data. IEEE

Transactions on Pattern Analysis and Machine Intelligence,

35(1):208–220, 2013. 2

[19] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan. Tensor

robust principal component analysis: Exact recovery of cor-

rupted low-rank tensors via convex optimization. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), pages 5249–5257, 2016. 1, 2

[20] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online dictionary

learning for sparse coding. In Proceedings of the 26th annual

international conference on machine learning. ACM, 2009.

1

[21] J. Mairal, J. Ponce, G. Sapiro, A. Zisserman, and F. R. Bach.

Supervised dictionary learning. In Advances in neural infor-

mation processing systems, 2009. 1

[22] B. A. Olshausen and D. J. Field. Sparse coding with an over-

complete basis set: A strategy employed by v1? Vision re-

search, pages 3311–3325, 1997. 1

[23] S. Shaheen, L. Affara, and B. Ghanem. Constrained con-

volutional sparse coding for parametric based reconstruction

of line drawings. In International Conference on Computer

Vision (ICCV), 2017. 1

[24] M. A. O. Vasilescu and D. Terzopoulos. Multilinear image

analysis for facial recognition. In Pattern Recognition, 2002.

Proceedings. 16th International Conference on, volume 2,

pages 511–514. IEEE, 2002. 1, 2

[25] Y. Wu, J. Lim, and M.-H. Yang. Online object tracking: A

benchmark. In IEEE conference on computer vision and pat-

tern recognition (CVPR), 2013. 6, 8

[26] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus. De-

convolutional networks. In IEEE conference on computer

vision and pattern recognition (CVPR), pages 2528–2535.

IEEE, 2010. 1, 6

[27] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive decon-

volutional networks for mid and high level feature learning.

In Computer Vision (ICCV), 2011 IEEE International Con-

ference on, pages 2018–2025. IEEE, 2011. 1

[28] T. Zhang, A. Bibi, and B. Ghanem. In defense of sparse

tracking: Circulant sparse tracker. In IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016. 1

[29] Z. Zhang and S. Aeron. Denoising and completion of 3d

data via multidimensional dictionary learning. arXiv preprint

arXiv:1512.09227, 2015. 2

[30] Z. Zhang and S. Aeron. Denoising and completion of 3d

data via multidimensional dictionary learning. CoRR, ab-

s/1512.09227, 2016. 3

[31] Z. Zhang and S. Aeron. Exact tensor completion using t-svd.

IEEE Transactions on Signal Processing, 2016. 2

[32] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer. Nov-

el methods for multilinear data completion and de-noising

based on tensor-svd. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3842–3849,

2014. 2, 3, 6

1780

