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Figure 1: Our 3D reconstruction method. (a) Input 3D CAD model. (b) Image of the instance to reconstruct. (c) Detection of 3D model

in point clouds. (c) Final reconstruction we obtain, with close-up comparisons to the nominal CAD prior.

Abstract

We present an efficient and automatic approach for ac-

curate instance reconstruction of big 3D objects from mul-

tiple, unorganized and unstructured point clouds, in pres-

ence of dynamic clutter and occlusions. In contrast to con-

ventional scanning, where the background is assumed to

be rather static, we aim at handling dynamic clutter where

the background drastically changes during object scanning.

Currently, it is tedious to solve this problem with available

methods unless the object of interest is first segmented out

from the rest of the scene. We address the problem by as-

suming the availability of a prior CAD model, roughly re-

sembling the object to be reconstructed. This assumption

almost always holds in applications such as industrial in-

spection or reverse engineering. With aid of this prior act-

ing as a proxy, we propose a fully enhanced pipeline, capa-

ble of automatically detecting and segmenting the object of

interest from scenes and creating a pose graph, online, with

linear complexity. This allows initial scan alignment to the

CAD model space, which is then refined without the CAD

constraint to fully recover a high fidelity 3D reconstruction,

accurate up to the sensor noise level. We also contribute

a novel object detection method, local implicit shape mod-

els (LISM) and give a fast verification scheme. We evaluate

our method on multiple datasets, demonstrating the abil-

ity to accurately reconstruct objects from small sizes up to

125m3.

1. Introduction

3D reconstruction involves the recovery of digitized ob-

ject or scene using a 2D/3D sensor, typically through multi-

ple acquisition steps. From reverse engineering to industrial

inspection, its applications are plentiful. Due to such wide

use, from the early days of vision, it attracted significant

attention of both research community and industry [24, 7].

Despite the huge demand, many marker-free approaches

based solely on 3D data either involve acquisition of or-

dered scans[31, 21], or follow the de-facto standard pipeline

[19] in case of unordered scans. The former suffers from the

requirements of redundant depth capture with large overlap

and scenes with very little clutter or occlusions. Due to the

volumetric nature of scan fusion, such techniques also do

not scale well to large objects while retaining high preci-

sion. The latter exploits 3D keypoint matching of all scans

to one another, alleviating the order constraint. Thanks to

3D descriptors, it could well operate in full 3D. Yet, match-

ing of scans to each other is an O(N2) problem and pre-

vents the methods from scaling to an arbitrary number of

scans. In addition, neither of those can handle scenes with

extensive dynamic clutter or occlusions.

Nowadays, with the capability of collecting high quality,

large scale and big data, it is critical to offer automated solu-

tions for providing highly accurate reconstructions regard-

less of the acquisition scenarios. In this paper, we tackle

the problem of 3D instance reconstruction from a handful

of unorganized point clouds, where the object of interest
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is large in size, texture-less, surrounded by significant dy-

namic background clutter and is viewed under occlusions.

Our method can handle scenes between which no single

transformation exists, i.e. the same objects appear in dif-

ferent locations, such as the one in Fig. 2. We also do

not impose any constraints on the order of acquisition. To

solve all of these problems simultaneously, we make use of

the reasonable assumption that a rough, nominal 3D CAD

model prior of the object-to-reconstruct is available before-

hand and propose a novel reconstruction pipeline. Such

assumption of a nominal prior is valid for many applica-

tions especially in industry, where the objective is to com-

pare the reconstruction to the designed CAD model. Even

for the cases where this model does not exist, one could al-

ways generate a rough, inaccurate mesh model with existing

methods, e.g. KinectFusion [31], to act as a prior. Note that,

due to manufacturing errors, sensor noise, damages and en-

vironmental factors, physical instances deviate significantly

from the CAD models and the end-goal is an automatic al-

gorithm to accurately recover the particular instance of the

model. With the introduction of the prior model, we re-

factor the standard 3D reconstruction procedures via multi-

fold contributions. We replace the scan-to-scan matching

with model-to-scan matching resulting in absolute poses for

each camera. Unlike the case in object instance detection

where false positives (FP) are tolerable, object instance re-

construction is easily jeopardized by the inclusion of a sin-

gle FP. Therefore, one of our goals is to suppress FP, even at

the expense of some true negatives. To achieve this, we con-

tribute a probabilistic Local Implicit Shape Model (LISM)

formulation for the object instance detection and pose esti-

mation, accompanied by a rigorous hypotheses verification

to reject all wrong pose candidates. This matching is fol-

lowed by automatically segmenting out the points belong-

ing to the object and transforming them back onto the model

coordinate frame. Doing this for multiple views results in

roughly aligned partial scans in the CAD space. To fully

recover the exact object, the CAD prior is then discarded

(as it might cause undesired bias) and a global multi-view

refinement is conducted only to optimize the camera poses.

In global scan registration, the creation of a pose graph

indicating which scans can be registered to each other is re-

quired. The typical complexity of obtaining this graph is

O(N2), where all scans are matched to one another. We

profit from the CAD prior and contribute by automatically

computing this graph, in which only cameras sharing signif-

icant view overlap are linked. This reduces the complexity

to O(N), and robustifies the whole pipeline.

The entire procedure is made efficient so that large scans

are handled in reasonable time. Exhaustive evaluations

demonstrate high accuracy regardless of the size of the ob-

jects, clutter and occlusions.1

1Our suppl. video is under: https://youtu.be/KPA_8BNuOvg
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Figure 2: Dynamic Clutter and Occlusions on Mian Dataset [28]:

There is change in relative locations of the objects between scenes.

This easily fools the modern global registration algorithms [46].

We operate on the object level and circumvents this problem.

2. Prior Art

Arguably, the most wide-spread 3D reconstruction meth-

ods are KinectFusion[31] and its derivatives [9, 21, 37].

These methods have been successful in reconstructing small

isolated objects, but their application is not immediate when

the size increases, or clutter and occlusions are introduced

[32]. Due to extensive usage of signed-distance fields, they

are bound to depth images and a sequential acquisition.

Abundance of works exists in multi-view global align-

ment from multiple 3D unorganized point clouds [2, 10,

13, 12, 43, 47, 38, 17, 40, 22, 8, 12, 46]. These methods

assume the scans to be roughly initialized and reasonably

well-segmented. They, in general, handle slight synthetic

noise well enough, but they do not deal with cluttered and

occluded data. Another track of works try to overcome the

aforementioned constraints by using keypoint detectors and

matching descriptors in 3D scans. These methods operate

on a subset of points during matching. One of the pio-

neering works proposing a feature agnostic, automatic and

constraint-free algorithm is the graph based in-hand scan-

ning from D. Huber and M. Hebert [19]. The authors set a

baseline for this family of methods. Novatnack and Nishino

[33] developed a scale dependent descriptor for better ini-

tialization and fused it with [19] to assess the power of their

descriptor. Yet both of these relied on range image data.

Mian et. al. [28] proposed a tensor feature and a hashing

framework operating on meshes. Fantoni et al. [14] uses

3D keypoint matching as an initial stage of multiview align-

ment to bring the scans to a rough alignment. Zhu et. al.

[47, 49] as well as Liu and Yonghuai [27] use genetic algo-

rithms to discover the matching scans and use this in global

alignment context. These stochastic schemes are correspon-

dence free but slow. Similar to [28], Zhu et. al. [48] de-

vises a local-to-global minimum spanning tree method to

align the scans. A majority of these automatic alignment

procedures suffer from increased worst case complexity of

O(N2), where N is the number of views. Moreover, since

there is no integrated segmentation, the registration proce-

dure cannot handle clutter and occlusions.

Use of CAD models in reconstruction is not novel by

itself. Savarese et. al. [45] enrich the multiview reconstruc-

tion from 2D images with a CAD prior. Guney and Geiger
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Figure 3: Proposed 3D reconstruction pipeline: Prior CAD model

is trained to create the model representation. Input scenes are then

parsed for the model pose. Pose estimates initialize a rough re-

construction, with segmentation and automatically computed pose

graph. This is then further refined to the full reconstruction.

[18] use object knowledge to resolve the stereo ambiguities.

Birdal et. al. use models in triangulation by registration [4].

Other works [26, 44, 50] use CAD prior to detect generic

object classes. Our approach differs from all of those in the

sense that we use proxy instance priors for initial alignment

of scans and then operate directly on 3D points.

Salas et. al. [36] propose SLAM++ using object priors to

constrain a SLAM system. Our work is differentiated from

theirs in the sense that we perform instance reconstruction

using the CAD prior, and not SLAM. In our setting, the

background as well as the object is allowed to change dy-

namically between different acquisitions.

3. Method

Given a set of unstructured and unordered 3D scenes

{Si} ∈ S, we seek to find a set of transformations {Ti} ∈
SE(3) so as to stitch and reconstruct a global model SG:

SG =

N
⋃

i=1

(T0

i ◦ Si) (1)

T ◦ S applies transformation T to the scene S. In this

setting, both the transformations {T0

i } ∈ SE(3) and the

global model SG are unknown and we do not assume known

initialization. Due to the lack of a common reference frame

and apriori information about {Si}, obtaining the set {T0

i }
typically requires O(N2) worst case complexity, where all

the scene clouds are matched to one another to obtain the

relative transformations aligning them. To better condition

the problem and reduce its complexity, we introduce the su-

pervision of a CAD proxy M in form of a mesh model and

re-write Eq. (1):

SG =

N
⋃

i=1

(

T
M
i ◦ (Si|M)

)

(2)

where T
M
i ∈ SE(3) is the transformation from the scene

to the model space, such that the segmented scene points

(Si|M) come to the best agreement. To estimate {TM
i },

we follow a two stage technique. First, a rather approxi-

mate estimate {T̃M
i } is made by matching the CAD model

to a single scene. Note that this time, the set {T̃M
i } can

be computed in O(N), since it only requires CAD to scan

alignment. However, because scene clouds suffer from par-

tial visibility, noise and deviations w.r.t. the CAD model,

the discovery of the pose of the model in the scans provides

only rough initial transformations to the model coordinate

frame. For this reason, as the final stage, the CAD prior

is disregarded and the scans are globally refined, simulta-

neously. This lets us reconstruct configurations deviating

significantly from the CAD prior.

Our procedure of multi-view refinement is similar to

[14], where a global scheme for scan alignment is em-

ployed. Let S1, . . .SM be the set of scans that are to be

brought in alignment. To generalize and formalize the no-

tation for registrations of all point clouds to each other, we

maintain a directed pose graph in form of an adjacency ma-

trix A ∈ {0, 1}M×M , such that A(h, k) = 1 iff cloud Sh

can be registered to cloud Sk. Let θ = (θ1, . . . ,θM ) be the

absolute camera poses of each view. The alignment error

between two clouds Sh and Sk then reads:

E(θh,θk) = A(h, k)

Nh
∑

i=1

ρ

(

‖d(θh ◦ phi ,θk ◦ q
h
i )‖

2

)

(3)

where {phi → qhi } are the Nh closest point correspondences

obtained from the clouds Sh and Sk. The point-to-plane

distance d(·, ·) is defined to be:

d(pi, qi) = (Rpi + t− qi)
Tn

q
i (4)

with n
q
i referring to the normal associated to point qi. R

and t are the components of the pair transformation {R ∈
SO(3), t ∈ R

3}. The overall alignment error, which we

want to minimize at this stage, is obtained by summing up

the contribution of every pair of overlapping views:

E(θ) =

M
∑

h=1

M
∑

k=1

A(h, k)

Nh
∑

i=1

ρ

(

‖d(θh ◦ phi ,θk ◦ qhi )‖
2

)

(5)

where ρ is the robust estimator. The final absolute poses are

the result of the minimization (θ1, ...,θM ) = argminθ(E),
and align the M clouds in a least squares sense. In con-

trast to the pairwise registration error in Eq. (3), which

has closed form solution for the relative transformation θ,

there are no closed form solutions in the multiview set-

ting. Therefore, we use a non-linear optimization proce-

dure, Levenberg Marquardt. The rotations are parameter-

ized with angle-axis representation (w ∈ R
3, φ). We con-

strain the frame with the highest number of points found on

the CAD model to be static and update (solve for) the rest

of the poses. In practice, this leads to faster convergence.
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Figure 4: Local Implicit Voting: Given multiple scene point pairs,

tied to a common reference sr , we generate features fri, activating

different codebook buckets (middle). Each bucket casts votes for

multiple (m,α) pairs in the local voting space of sr .

Note that, in contrast to the methods that exploit pairwise

registration, our poses are absolute and do not suffer from

drifts or tracking artifacts. We also do not require a conver-

sion from relative poses to absolute ones, which are usually

obtained by the computation of a minimum spanning tree or

shortest paths over the pose graph [16, 19]. This property

eases the implementation and reduces errors, that are to be

encountered in usual heuristics.

Due to the accuracy requirements, unlike [14], we

omit using distance transforms at this stage. We rather

use speeded up KD-Trees to achieve exact nearest neigh-

bors [30]. Since we optimize over the poses, and not over

3D points, the trees are built only once in the beginning

and all closest point computations are done in the local co-

ordinate frame of the view of interest. This is important

for efficiency. For reasons of accuracy, we use analytical

Jacobians. As cloud sizes become large, this optimization

exhibits significant computational costs. This is why, a pri-

ori sampling plays a huge role, where we use ≈ 20k to 30k

points per scan, distributed evenly in space.

To summarize, our key contribution lies in obtaining

{TM
i } in a robust, efficient and accurate manner. We will

now show how to compute the rough alignment {T̃M
i } and

the pose graph (adjacency matrix) A.

3.1. Locally Implicit Models for Estimating {T̃M
i }

While using any method, which is capable of handling

3D points, e.g. [20, 42, 28, 41, 34], is possible, we mainly

follow the Geometric Hashing of Drost et al. [11] and Birdal

and Ilic [6] due to efficiency and robustness to clutter and

occlusions. Yet, we introduce a more effective probabilistic

formulation, inspired by the implicit shape models [23].

Model Description In the first stage, we generate a pose

invariant codebook encoding all possible semi-global struc-

tures that could be found on the CAD model. We repre-

sent this semi-global geometry via simple point pair fea-

tures (PPF) of oriented point pairs (mi,mj):

fij = (‖d‖2, 6 (ni,d), 6 (nj ,d), 6 (ni,nj)) (6)

where d = mi − mj , ni and nj are the surface normals

at points mi and mj . 6 (·, ·) is the angle operator. The

complete set of such features F = {fij} for the prior CAD

model is collected and quantized to generate the codebook:

F̂ . We use our codebook to relate a feature f (key) to a set

of oriented references points {(mi,mj)} (stored in buck-

ets) and build the global model description as an inverted

file i.e. a hashtable H. Thus, each bucket in the codebook

contains self-similar point pairs extracted from the CAD

model. Whenever a pair from the scene is matched to one in

the model, their normals at the reference points are aligned.

Then, the full pose of the object can be obtained once the

rotation angle α around the normal is known. This can

be done by aligning Local Coordinate Frames (LCF) con-

structed from matched pairs. Thus, instead of storing the

full PPF, we store only this local parameterization {mr, α}
composed of the model reference point mr and rotation an-

gle α. A pair correspondence resolves the full 6DOF pose

and what is left is to retrieve the matching pairs {sr, si} and

{mr,mi}. We now give a novel way to do this.

Probabilistic Formulation During detection, a new point

cloud scene S is encountered and downsampled to a set of

points SD = {sr}, some of which are assumed to lie on

the object. The sampling also enforces spatial uniformity

(see our suppl. material). We fix a reference point sr and

pair it with all the other samples {si}. Each pair makes

up a PPF fri. The original method [11] associates fri to a

unique key and can not account for the quantization errors

that inevitably happen due to the noise. To circumvent these

quantization artifacts, resulting from the hard assignment in

[11], we quantize fri to K different bins (K > 1), activat-

ing different codebook entries as in ISM. This soft quanti-

zation results in possibly matching buckets F̄ri = {f̄1..̄fK}.

F̄ri indexes the buckets of H, with weights p(f̄k|fri). For

each matching bucket, we collect the valid interpretations

p(m,α|̄f), inversely proportional to the size of the bucket

Nb, denoting the probabilities of particular pose configura-

tion, given the quantized feature. Formally:

p(m, α|sr, si) = p(m, α|f) (7)

=
∑

k

p(m, α|̄fk)p(f̄k|f) (8)

with p(f̄k|f) = 1

K
and p(m,α|̄f) = 1

Nb

being uniformly
distributed. This probability is actually the prior on the PPF

of the particular object and can be computed differently ac-

counting for the nature of the object geometry using a suited

distribution. At this point, the gathered pair representations

for a particular scene reference point are sufficient to re-

cover for the object pose. However, due to outliers, some

of these matches will be erroneous. Therefore, a 2D voting

scheme is employed, locally for each scene reference point

sr. The voting space is composed of the alignment of the
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LCF α as well as the model point correspondence m:

V (m, α) =
∑

i

p(m, α|sr, si) (9)

For each sr, there is a voting space Vr(m, α), from which
the best alignment is extracted as:

(m∗
r , α

∗
r) = argmax

m,α
Vr(m, α) (10)

Each such (m∗
r , α

∗
r) corresponds to a pose hypothesis.

This is similar to performing Generalized Hough Transform

(GHT) on reference point level locally and is the reason why

we attribute the name Local ISM to our method. After all

pose hypotheses are extracted, as the maxima in the local

spaces, the poses are clustered together to assemble the fi-

nal consensus, further boosting the final confidence.

Hypotheses Verification and Rejection Devised match-

ing theoretically generates a pose hypothesis for each scene

reference point, which is assumed to be found on the model.

There are typically ∼ 400 − 1000 such points, reducing

to 50 poses after the clustering, where the close-by poses

are grouped together and averaged. Still, as many hypothe-

ses as the number of clusters remain to be verified and the

best pose is expected to be refined. In our problem of in-

stance reconstruction it is critical that no false positive pose

hypotheses survives. For this reason we introduce a rigor-

ous hypothesis verification scheme. The effective verifica-

tion requires fine registration, while efficient registration re-

quires as few poses as possible. This creates a chicken and

egg problem. We address this issue via a multi-level regis-

tration approach. In the first stage, sparsely sampled scan

points are finely registered to the model using the efficient

LM-ICP [15] variant of Iterative Closest Point (ICP) regis-

tration [3]. We also build a 3D distance transform for fast

nearest neighbor access. Our sparse LM-ICP requires only

1ms per hypothesis, allowing us to verify all the hypotheses.

We define the hypothesis score to be:

Ξ(θi) =
1

NM

NM
∑

j

{

1, ‖θ−1

i ◦mj − sk(j))‖ < τθ

0, otherwise

(11)

where θi is the pose hypothesis and sk(j) the closest sam-

pled scene point to transformed model point θ−1

i ◦mj . In-

tuitively, this score reflects the percentage of visible model

points. The surviving poses are then sorted, taken to the

next level and densely refined. This coarse to fine scheme

is repeated for 3 levels of the pyramid. Finally, a dense reg-

istration is performed to accurately obtain the final pose.

Until this stage the surface normals are excluded from

the fine registration process. We do this intentionally, to use

them as a verification tool. Following registration, we check

the surface consistency between the scene and the model.

Figure 5: Pose graph computation. See text for details.

To do so for each scene point, the surface normal of the

closest model point is retrieved. A scan is only accepted if

a majority of the normals agree with the model. While this

procedure can result in potentially good detections being

removed (due to scene deviations), it does not allow false

positives to survive as shown in Sec. 4.

3.2. Computing Pose Graph A and Live Feedback

Any global optimization algorithm requires an adjacency

graph G = (V,E), which encodes the existence of overlap

between camera views. The nodes of this sparse graph con-

tain the cameras V = {C1..CN}, whereas an edge Eij is

only created between nodes (Ci, Cj) if they share signif-

icant overlap. An absolute pose Ti is associated to each

node and a relative pose Tij is to each edge. Tradition-

ally, this requires pair-wise overlap computation between

all cameras. While a naive approach would involve link-

ing the cameras, whose centers are found to be close, this

is by no means a guarantee for shared overlap. Therefore,

we present a more accurate approach, without sacrificing

efficiency, thanks to the availability of the CAD model.

Consider the voxel grid index D of model M as in Fig.

5(a). Each segmented scene point s′i ∈ T
−1

i ◦Si is mapped

to a voxel Dk, which stores a set of cameras {Ci} observing

it. Whenever the point mk belonging to the voxel Dk is

visible in the camera Cj , this camera is added to the list of

cameras seeing that model point. Each list stores unique

camera indices. From that, we compute the histogram of

pairwise overlaps (HPO) as shown in Fig. 5(b).

While all the possible edges are now generated (as the

bins in HPO), it is not recommended to use all these in the

multiview alignment i.e. the overlap might be little, causing

a negative impact. Instead, we adopt an iterative algorithm,

similar to hysteresis thresholding. First, HPO is sorted with

decreasing overlap (Fig. 5(c)). Next, two thresholds αl and

αh are defined. All pairs with overlap less than αl are dis-

carded. All cameras with overlap larger than αh are imme-

diately linked and edges are constructed in the graph. If,

at this stage, the graph is not connected, we start inserting

edges from the remaining bins of HPO into A until either

the connectivity or the threshold αl is reached. This is il-

lustrated in Figures 5(c) and 5(d). If the final graph is still

not connected, we use the largest connected sub-graph, to

ensure optimize-ability. For efficient online update, a mod-
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(a) Scenes of  Mian (b) T-Rex (Gnd. Truth vs Ours)

(c) Chef  (Gnd. Truth vs Ours) (d) Parasaurolophus (Gnd. Truth vs Ours)

Figure 6: Results on Mian Dataset. (a) Subset of scenes from the

dataset. (b, c, d) The ground truth models (left) and our recon-

struction (right) for three objects.

ified union-find data structure is used to store the graph and

dynamically insert edges when new views are encountered.

Unlike quadratic complexity of the standard pose graph cre-

ation methods, ours has linear complexity.

Live Feedback Due to the connected-ness of pose graph,

our method is able to keep track of the overlap between all

the point clouds, at all times, informing the user whenever

graph disconnects or overlap is small. The complement of

the already reconstructed part reveals the unscanned region,

which is also fed back to the operator. Incoming scans di-

rectly propagate and form links in the pose graph, allowing

online response to the user’s actions.

4. Experimental Evaluation

We evaluate our method against a set of real datasets ac-

quired by laser scanners and structured light sensors. The

CAD models we work with might contain uneven distribu-

tion of vertices or inner geometry. We always eliminate the

inner structure by thresholding the ambient occlusion val-

ues [29] before the models are re-meshed [25]. At detec-

tion time, a relative model and scene sampling distance of

d = τdiam(M) is used, where 0.05 ≥ τ ≥ 0.025 depend-

ing on the object. We also adjust another threshold on the

distance to consider a scene point to be on the model based

on the sensor quality. For accurate scanners we use 1.5mm,

while for less accurate ones 0.5cm. This does not affect the

segmentation, but the hypothesis verification.

Table 1: Reconstruction results on Mian Dataset (in mm). Each

object is compared to the model provided by [28] using [1].

Model w/o Opt. with Opt. # Scans Clutter

Chef 2.90 ± 2.40 1.07 ± 0.65 22 0.58±0.11

Chicken 1.71 ± 1.60 0.33 ± 0.24 29 0.61±0.12

Para. 2.52 ± 2.00 0.41 ± 0.30 12 0.24±0.20

T-rex 2.36 ± 2.08 0.88 ± 0.62 27 0.14±0.22

Mian Dataset We first compare the reconstruction qual-

ity on Mian Dataset [28]. This dataset includes 50 laser

scanned point clouds of 4 complete 3D objects, with vary-

ing occlusion and clutter. The objects change locations from

scan to scan, creating dynamic scenes. The clutter and back-

ground also varies as the objects appear together with other

different ones in each scene. We quantify this dynamic clut-

ter by relating it to the provided occlusion values:

Clutter = 1−
(Model Surface Area)*(1-Occlusion)

(Scene Surface Area)
(12)

and provide it in Table 1 for each object. The models

present in the scenes are provided by [28] to act as ground

truth. We do not perform any prior operation to the scenes

such as segmentation or post-processing except meshing via

SSD [39]. For Parasaurolophus and Chicken objects, the

pose graph becomes disconnected and therefore, we opti-

mize individually the two sub-components and record the

mean. We also report the number of scans in which the

model is detected and verified. Not every model is visible

in every scan. In the end, our mean accuracy is well below a

millimeter, where the used sensor, Minolta Vivid 910 scan-

ner, reports an ideal accuracy of ∼ 0.5mm. We are also not

aware of any other works, reporting reconstruction results

on such datasets. Fig. 6 visualizes our outcome, and Table

1 shows our reconstruction accuracy both prior to and after

the optimization. While our error is quantitatively small, the

qualitative comparison also yields a pleasing result, some-

times being superior even to the original model.

The detection performance of a basic variant of our

method has already been proven to be robust on this dataset

[11]. Figures 7(a) and 7(b) provide PR-curves for LISM

and the hypothesis verification. Note that although LISM

already performs well, our verification clearly improves the

distinction between a match vs false positive. Using a sim-

ple threshold, we could obtain 100% precision without sac-

rificing the recall. Thus, our score threshold, combined with

the normal consistency check manages to reject all false hy-

potheses, at the expense of rejecting a small amount of TP.

Toy Objects Dataset Since our objective is to assess the

fidelity of the reconstruction to the CAD model, we opt to

use the objects from the 3D printed dataset [37]: Leopard,

Teddy and Bunny and Tank (See Fig. 8). The diameters of

objects vary in the range of 15− 30cm. The print accuracy
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Figure 7: Performance of LISM and verification on Mian dataset.

is up to 50µ (micro-meters), well sufficient for considera-

tion as ground truth. To capture the real scenes, a home-

brew, high accuracy phase-shift sensor, delivering <0.4mm

point accuracy is chosen. We sample up to 10 scans per ob-

ject, taken out of a 100 frame sequence. To disrupt the ac-

quisition order, we randomly shuffle this subset and apply

our reconstruction algorithm. Next, we compute the CAD-

to-reconstruction distances in CloudCompare [1]. We do

not explicitly register our reconstruction to CAD model, be-

cause we already end up on model coordinate frame (Hav-

ing the result in the CAD space is a side benefit of our ap-

proach). Moreover, we use the original 100-frame, ordered

sequence as an input to standard reconstruction pipelines

such as Kinect Fusion [35], Kehl et. al. [21] (also uses

color) and Slavcheva et. al. [37] all of which require a

temporally ordered set of frames, with a large inter-frame

overlap. All of these algorithms take depth image as input,

whereas ours uses the unstructured 3D data and the model.

Our results on this dataset are shown in Tab. 2 (Ours)

when original CAD is used. We also report the results when

KinectFusion (KF) prior is used (Ours-KF). The individ-

ual error distribution of the objects are shown in Fig. 7(c).

Table 2: Reconstruction errors on toy objects dataset (mm).

Leo Teddy Bunny Tank

KinFU 1.785±1.299 0.998±0.807 0.664±0.654 1.390 ± 1.315

Kehl 1.018±1.378 1.028±0.892 0.838±0.860 1.573±2.250

Sdf2Sdf 0.652±0.614 0.910±0.584 0.541±0.436 0.466 ± 0.416

Ours 0.481±0.519 0.517±0.572 0.415±0.501 0.451±0.322

Ours-KF. 0.536±0.411 0.519±0.582 0.502±0.529 0.468±0.474

Ours-CO. 0.651±0.628 0.544±0.601 0.698±0.506 0.475±0.433
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Figure 8: Qualitative results on toy objects. First row: Real im-

ages of objects; Second row: A sample scene and detections visu-

alized; Third Row: Our results.

Because our method does not suffer from drift and com-

putes absolute poses all the time, although we use 10 times

less scans, we are still 2-4 times more accurate then con-

ventional methods. This also shows that our method could

retain the good accuracy of the sensor.

Next, we augment this dataset with further scenes of the

same objects, such that clutter and occlusions are present.

Some shots are shown in Fig. 8 (mid-row). Our recon-

struction accuracy (Ours-CO) is shown in Tab. 2 for dif-

ferent objects. These results are still better than or close to

Sdf2Sdf [37]. Due to inclusion of some outliers, our results

get slightly worse than the one in no clutter, yet they are still

acceptable. However, none of the other approaches can run

on this new set due to the existence of significant outliers.

In a further experiment, we gradually decimate the toy

models down to a mesh of ≈500 vertices. We exclude tank

as the decimation has little effect on the planarities. As

shown in Fig. 7(d), even though the CAD prior gets very

crude, we are still able to achieve a reasonable reconstruc-

tion, as long as the CAD model is still detectable in the

scenes. Note that, results of KF prior is plotted in dashes as

it is also a form of rough mesh approximation. Furthermore,

Fig. 9 visually compares our reconstruction to the state of

the art on the tank object. Because we do not use smoothing

voxel representations (such as SDF), our method is much

better at preserving sharp features at the model edges.

(a) Tank Object (b) Kehl et. al. (c) Slavcheva et. al. (d) Ours

Figure 9: Visual comparisons on Tank object. Note the ability of

our method in preserving sharp features.
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(a) Turbine Object (c) Final 3D Reconstructions of Turbine

~ 60cm

~ 5m

(b) Laser Scans

(d) CAD Model of Sofa (left), A Scan (right)

(e) Reconstructions of Sofa

Figure 10: The reconstruction of Turbine(a) in captured cluttered scans(b) is presented in (c). Results in Sofa are shown in (d,e).

Table 3: Object Information, Average reconstruction errors w.r.t. Photogrammetry (in mm) and Timings.

Object Scanner Scan Res. Obj. Size No Scans No PG Images PG vs CAD Surphaser Our Accuracy Detect Verify Refine

Ventil Surph. 0.3 mm 8m3 8 180 1.3cm 3.6±3.3 2.2±0.4 3.10s 0.27s 112.94s

Turbine Surph. 0.4mm 125m3 10 180 3.4cm - 2.5±1.3 3.72s 0.54s 126.13s

Sofa Str.Light 1mm 1.7m3 6 68 0.85mm - 1.4±1.2 1.44s 0.31s 68.82s

Dataset of Large Objects Finally, we apply our pipeline

to quality inspection of real gas turbine casings and large

objects. In this real scenario, CAD models come directly

from the manufacturer. Due to space constraints, we sum-

marize the data modality in Tab.3. The manufactured parts

deviate significantly from the ideal model due to manu-

facturing and we scan them in the production environment

within clutter and occlusions. With such large objects and

little resemblance of the CAD prior, obtaining ground truth

becomes a challenging task. Thus, we use a photogram-

metry (PG) system [5, 4] to collect a sparse set of scene

points, by attaching markers on the objects. We capture

many images (see Tab.3) from different angles and run Lin-

earis 3D software for bundle adjustment to obtain sparse

ground truth. For Ventil object, we also use Surphaser soft-

ware for reconstruction using external markers. Both Sur-

phaser and our outputs are compared to the PG data in Tab.

3. The mean errors are obtained by CloudCompare [1].

We also provide running times of the individual stages. As

seen, our accuracy outperforms an industry standard solu-

tion, Surphaser Software, by a margin of 38% on Ventil ob-

ject. The performance in objects of varying sizes indicate

that our reconstruction method is applicable from small to

large scale while maintaining repeatability. Fig. 10 presents

further qualitative results on our reconstruction of the Tur-

bine and Sofa objects. Please consult the supplementary

material for more evaluations.

Limitations Due to the nature of PPF matching, our ap-

proach requires objects with rich geometry. Symmetric ob-

jects are also problematic due to ambiguity in pose estima-

tion. Last but not least, currently, there is no mechanism

to handle mis-detections. Yet, mis-detections are hardly a

problem when the score threshold is reasonably high. This

way, we detect in less scenes but avoid mistakes.

5. Conclusions

We proposed reconstruction-via-detection framework,

as an alternative perspective to robust 3D instance recon-

struction from unconstrained point cloud scans. Our frame-

work integrates probabilistic object detection, hypothesis

verification, pose graph construction and multi-view opti-

mization. Such a scheme allowed us to deal with prob-

lems of dynamic clutter, occlusion and object segmentation.

Moreover, the computational cost is reduced, due to model-

to-scan alignment. To the best of our knowledge, this is

the first method, capable of reconstructing instances within

clutter and occlusions, without explicit segmentation.

As a future direction, we like to take care of confusions

stemming from rotational symmetries by optimizing over

possible global alignments of the scans. We also plan to ex-

tend our method to robotics via next-best view prediction.
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