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Abstract

Non-maximum suppression is an integral part of the ob-
Jject detection pipeline. First, it sorts all detection boxes on
the basis of their scores. The detection box M with the
maximum score is selected and all other detection boxes
with a significant overlap (using a pre-defined threshold)
with M are suppressed. This process is recursively applied
on the remaining boxes. As per the design of the algorithm,
if an object lies within the predefined overlap threshold, it
leads to a miss. To this end, we propose Soft-NMS, an algo-
rithm which decays the detection scores of all other objects
as a continuous function of their overlap with M. Hence,
no object is eliminated in this process. Soft-NMS obtains
consistent improvements for the coco-style mAP metric on
standard datasets like PASCAL VOC 2007 (1.7% for both R-
FCN and Faster-RCNN) and MS-COCO (1.3% for R-FCN
and 1.1% for Faster-RCNN) by just changing the NMS al-
gorithm without any additional hyper-parameters. Using
Deformable-RFCN, Soft-NMS improves state-of-the-art in
object detection from 39.8% to 40.9% with a single model.
Further, the computational complexity of Soft-NMS is the
same as traditional NMS and hence it can be efficiently
implemented. Since Soft-NMS does not require any extra
training and is simple to implement, it can be easily inte-
grated into any object detection pipeline. Code for Soft-
NMS is publicly available on GitHub http://bit.1ly/
2nJLNMu.

1. Introduction

Object detection is a fundamental problem in computer
vision in which an algorithm generates bounding boxes for
specified object categories and assigns them classification
scores. It has many practical applications in autonomous
driving [6, 9], video/image indexing [28, 22], surveillance
[2, 11] etc. Hence, any new component proposed for the
object detection pipeline should not create a computational

*The first two authors contributed equally to this paper.

Figure 1. This image has two confident horse detections (shown
in red and green) which have a score of 0.95 and 0.8 respectively.
The green detection box has a significant overlap with the red one.
Is it better to suppress the green box altogether and assign it a score
of 0 or a slightly lower score of 0.4?

bottleneck, otherwise it will be conveniently “ignored’ in
practical implementations. Moreover, if a complex module
is introduced which requires re-training of models which
leads to a little improvement in performance, it will also be
ignored. However, if a simple module can improve perfor-
mance without requiring any re-training of existing models,
it would be widely adopted. To this end, we present a soft
non-maximum suppression algorithm, as an alternative to
the traditional NMS algorithm in the current object detec-
tion pipeline.

Traditional object detection pipelines [4, 8] employ a
multi-scale sliding window based approach which assigns
foreground/background scores for each class on the basis
of features computed in each window. However, neighbor-
ing windows often have correlated scores (which increases
false positives), so non-maximum suppression is used as
a post-processing step to obtain final detections. With the
advent of deep learning, the sliding window approach was
replaced with category independent region proposals gen-
erated using a convolutional neural network. In state-of-
the-art detectors, these proposals are input to a classifica-
tion sub-network which assigns them class specific scores
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B is the list of initial detection boxes
S contains corresponding detection scores
Ny is the NMS threshold
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D« {}
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for b; in B do

if iou(M,b;) > N; then
| BB-b;S+—S—s;

end
return D, S

end

Figure 2. The pseudo code in red is replaced with the one in green
in Soft-NMS. We propose to revise the detection scores by scaling
them as a linear or Gaussian function of overlap.

[16, 24]. Another parallel regression sub-network refines
the position of these proposals. This refinement process im-
proves localization for objects, but also leads to cluttered
detections as multiple proposals often get regressed to the
same region of interest (Rol). Hence, even in state-of-the-art
detectors, non-maximum suppression is used to obtain the
final set of detections as it significantly reduces the number
of false positives.

Non-maximum suppression starts with a list of detection
boxes B with scores S. After selecting the detection with
the maximum score M, it removes it from the set B and
appends it to the set of final detections D. It also removes
any box which has an overlap greater than a threshold Vy
with M in the set B. This process is repeated for remain-
ing boxes 5. A major issue with non-maximum suppres-
sion is that it sets the score for neighboring detections to
zero. Thus, if an object was actually present in that overlap
threshold, it would be missed and this would lead to a drop
in average precision. However, if we lower the detection
scores as a function of its overlap with M, it would still
be in the ranked list, although with a lower confidence. We
show an illustration of the problem in Fig 1.

Using this intuition, we propose a single line modifica-
tion to the traditional greedy NMS algorithm in which we
decrease the detection scores as an increasing function of

overlap instead of setting the score to zero as in NMS. Intu-
itively, if a bounding box has a very high overlap with M,
it should be assigned a very low score, while if it has a low
overlap, it can maintain its original detection score. This
Soft-NMS algorithm is shown in Figure 2. Soft-NMS leads
to noticeable improvements in average precision measured
over multiple overlap thresholds for state-of-the-object de-
tectors on standard datasets like PASCAL VOC and MS-
COCO. Since Soft-NMS does not require any extra-training
and is simple to implement, it can be easily integrated in the
object detection pipeline.

2. Related Work

NMS has been an integral part of many detection algo-
rithms in computer vision for almost 50 years. It was first
employed in edge detection techniques [25]. Subsequently,
it has been applied to multiple tasks like feature point de-
tection [19, 12, 20], face detection [29] and object detection
[4, 8, 10]. In edge detection, NMS performs edge thinning
to remove spurious responses [25, |, 31]. In feature point
detectors [12], NMS is effective in performing local thresh-
olding to obtain unique feature point detections. In face de-
tection [29], NMS is performed by partitioning bounding-
boxes into disjoint subsets using an overlap criterion. The
final detections are obtained by averaging the co-ordinates
of the detection boxes in the set. For human detection, Dalal
and Triggs [4] demonstrated that a greedy NMS algorithm,
where a bounding box with the maximum detection score
is selected and its neighboring boxes are suppressed us-
ing a pre-defined overlap threshold improves performance
over the approach used for face detection [29]. Since then,
greedy NMS has been the de-facto algorithm used in object
detection [&, 10, 24, 16].

It is surprising that this component of the detection
pipeline has remained untouched for more than a decade.
Greedy NMS still obtains the best performance when av-
erage precision (AP) is used as an evaluation metric and is
therefore employed in state-of-the-art detectors [24, 16]. A
few learning-based methods have been proposed as an alter-
native to greedy NMS which obtain good performance for
object class detection [5, 26, 21]. For example, [26] first
computes overlap between each pair of detection boxes. It
then performs affinity propagation clustering to select ex-
emplars for each cluster which represent the final detection
boxes. A multi-class version of this algorithm is proposed in
[21]. However, object class detection is a different problem,
where object instances of all classes are evaluated simulta-
neously per image. Hence, we need to select a threshold for
all classes and generate a fixed set of boxes. Since differ-
ent thresholds may be suitable for different applications, in
generic object detection, average precision is computed us-
ing a ranked list of all object instances in a particular class.
Therefore, greedy NMS performs favourably to these algo-
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Figure 3. In object detection, first category independent region
proposals are generated. These region proposals are then assigned
a score for each class label using a classification network and their
positions are updated slightly using a regression network. Finally,
non-maximum-suppression is applied to obtain detections.

rithms on generic object detection metrics.

In another line of work, for detecting salient objects, a
proposal subset optimization algorithm was proposed [30]
as an alternative to greedy NMS. It performs a MAP-based
subset optimization to jointly optimize the number and loca-
tions of detection windows. In salient object detection, the
algorithm is expected to only find salient objects and not all
objects. So, this problem is also different from generic ob-
ject detection and again greedy NMS performs favourably
when performance on object detection metrics is measured.
For special cases like pedestrian detection, a quadratic un-
constrained binary optimization (QUBO) solution was pro-
posed which uses detection scores as a unary potential and
overlap between detections as a pairwise potential to ob-
tain the optimal subset of detection boxes [27]. Like greedy
NMS, QUBO also applies a hard threshold to suppress de-
tection boxes, which is different from Soft-NMS. In an-
other learning-based framework for pedestrian detection, a
determinantal point process was combined with individu-
alness prediction scores to optimally select final detections
[15]. To the best of our knowledge, for generic object de-
tection, greedy NMS is still the strongest baseline on chal-
lenging object detection datasets like PASCAL VOC and
MS-COCO.

3. Background

We briefly describe the object-detection pipeline used in
state-of-the-art object detectors in this section. During in-
ference, an object detection network performs a sequence
of convolution operations on an image using a deep con-
volutional neural network (CNN). The network bifurcates

into two branches at a layer L — one branch generates re-
gion proposals while the other performs classification and
regression by pooling convolutional features inside Rols
generated by the proposal network. The proposal network
generates classification scores and regression offsets for an-
chor boxes of multiple scales and aspect ratios placed at
each pixel in the convolutional feature map [24]. It then
ranks these anchor boxes and selects the top K (= 6000)
anchors to which the bounding box regression offsets are
added to obtain image level co-ordinates for each anchor.
Greedy non-maximum suppression is applied to top K an-
chors which eventually generates region proposals '.

The classification network generates classification and
regression scores for each proposal generated by the pro-
posal network. Since there is no constraint in the network
which forces it to generate a unique Rol for an object, mul-
tiple proposals may correspond to the same object. Hence,
other than the first correct bounding-box, all other boxes on
the same object would generate false positives. To alleviate
this problem, non-maximum-suppression is performed on
detection boxes of each class independently, with a spec-
ified overlap threshold. Since the number of detections is
typically small and can be further reduced by pruning de-
tections which fall below a very small threshold, applying
non-maximum suppression at this stage is not computation-
ally expensive. We present an alternative approach to this
non-maximum suppression algorithm in the object detec-
tion pipeline. An overview of the object detection pipeline
is shown in Fig 3.

4. Soft-NMS

Current detection evaluation criteria emphasise precise
localization and measure average precision of detection
boxes at multiple overlap thresholds (ranging from 0.5 to
0.95). Therefore, applying NMS with a low threshold like
0.3 could lead to a drop in average precision when the over-
lap criterion during evaluation for a true positive is 0.7 (we
refer to the detection evaluation threshold as O; from here
on). This is because, there could be a detection box b;
which is very close to an object (within 0.7 overlap), but
had a slightly lower score than M (M did not cover the
object), thus b; gets suppressed by a low N;. The likeli-
hood of such a case would increase as the overlap threshold
criterion is increased. Therefore, suppressing all nearby de-
tection boxes with a low IV; would increase the miss-rate.

Also, using a high NV, like 0.7 would increase false posi-
tives when O, is lower and would hence drop precision av-
eraged over multiple thresholds. The increase in false pos-
itives would be much higher than the increase in true posi-
tives for this case because the number of objects is typically

I'We do not replace this non-maximum suppression in the object detec-
tion pipeline.
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much smaller than the number of Rols generated by a de-
tector. Therefore, using a high NMS threshold is also not
optimal.

To overcome these difficulties, we revisit the NMS algo-
rithm in greater detail. The pruning step in the NMS algo-
rithm can be written as a re-scoring function as follows,

8i, dou(M,b;) < Ny
S; = )
0, iou(M,b;)> N,

Hence, NMS sets a hard threshold while deciding what
should be kept or removed from the neighborhood of M.
Suppose, instead, we decay the classification score of a box
b; which has a high overlap with M, rather than suppress-
ing it altogether. If b; contains an object not covered by
M, it won’t lead to a miss at a lower detection threshold.
However, if b; does not cover any other object (while M
covers an object), and even after decaying its score it ranks
above true detections, it would still generate a false positive.
Therefore, NMS should take the following conditions into
account,

e Score of neighboring detections should be decreased to
an extent that they have a smaller likelihood of increas-
ing the false positive rate, while being above obvious
false positives in the ranked list of detections.

e Removing neighboring detections altogether with a
low NMS threshold would be sub-optimal and would
increase the miss-rate when evaluation is performed at
high overlap thresholds.

e Average precision measured over a range of overlap
thresholds would drop when a high NMS threshold is
used.

We evaluate these conditions through experiments in
Section 6.3.

Rescoring Functions for Soft-NMS: Decaying the
scores of other detection boxes which have an overlap with
M seems to be a promising approach for improving NMS.
It is also clear that scores for detection boxes which have
a higher overlap with M should be decayed more, as they
have a higher likelihood of being false positives. Hence, we
propose to update the pruning step with the following rule,

8; = Sis iOU(M,bi) < Nt
" si(1 —iou(M, b)), iou(M,b;) > N,

The above function would decay the scores of detections
above a threshold NV, as a linear function of overlap with
M. Hence, detection boxes which are far away from M
would not be affected and those which are very close would
be assigned a greater penalty.

However, it is not continuous in terms of overlap and
a sudden penalty is applied when a NMS threshold of N;
is reached. It would be ideal if the penalty function was
continuous, otherwise it could lead to abrupt changes to
the ranked list of detections. A continuous penalty func-
tion should have no penalty when there is no overlap and
very high penalty at a high overlap. Also, when the over-
lap is low, it should increase the penalty gradually, as M
should not affect the scores of boxes which have a very low
overlap with it. However, when overlap of a box b; with
M becomes close to one, b; should be significantly penal-
ized. Taking this into consideration, we propose to update
the pruning step with a Gaussian penalty function as fol-
lows,

jou(M,b;)2

S Wby ¢ D

S; = §;¢e

This update rule is applied in each iteration and scores of
all remaining detection boxes are updated.

The Soft-NMS algorithm is formally described in Fig-
ure 2, where f(iou(M,b;))) is the overlap based weight-
ing function. The computational complexity of each step
in Soft-NMS is O(N), where N is the number of detec-
tion boxes. This is because scores for all detection boxes
which have an overlap with M are updated. So, for NV de-
tection boxes, the computational complexity for Soft-NMS
is O(N?), which is the same as traditional greedy-NMS.
Since NMS is not applied on all detection boxes (boxes with
a minimum threshold are pruned in each iteration), this step
is not computationally expensive and hence does not affect
the running time of current detectors.

Note that Soft-NMS is also a greedy algorithm and does
not find the globally optimal re-scoring of detection boxes.
Re-scoring of detection boxes is performed in a greedy fash-
ion and hence those detections which have a high local score
are not suppressed. However, Soft-NMS is a generalized
version of non-maximum suppression and traditional NMS
is a special case of it with a discontinuous binary weight-
ing function. Apart from the two proposed functions, other
functions with more parameters can also be explored with
Soft-NMS which take overlap and detection scores into ac-
count. For example, instances of the generalized logistic
function like the Gompertz function can be used, but such
functions would increase the number of hyper-parameters.

5. Datasets and Evaluation

We perform experiments on two datasets, PASCAL VOC
[7] and MS-COCO [17]. The Pascal dataset has 20 object
categories, while the MS-COCO dataset has 80 object cate-
gories. We choose the VOC 2007 test partition to measure
performance. For the MS-COCO dataset, sensitivity analy-
sis is conducted on a publicly available minival set of 5,000
images. We also show results on the test-dev partition on
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Method

Training data | Testing data | AP 0.5:0.95 [ AP @ 0.5 | AP small | AP medium | AP large [ Recall @ 10 | Recall @ 100 |

R-FCN [16] train+val35k test-dev 31.1 52.5 14.4 34.9 43.0 42.1 43.6

R-FCN + S-NMS G train+val35k test-dev 324 534 15.2 36.1 44.3 46.9 52.0
R-FCN + S-NMS L train+val35k test-dev 322 534 15.1 36.0 44.1 46.0 51.0
F-RCNN [24] train+val35k test-dev 244 45.7 7.9 26.6 37.2 36.1 37.1
F-RCNN + S-NMS G train+val35k test-dev 25.5 46.6 8.8 27.9 38.5 41.2 453
F-RCNN + S-NMS L train+val35k test-dev 25.5 46.7 8.8 27.9 38.3 40.9 45.5
D-RFCN [3] trainval test-dev 37.4 59.6 17.8 40.6 51.4 46.9 48.3
D-RFCN S-NMS G trainval test-dev 384 60.1 18.5 41.6 52.5 50.5 53.8
D-RFCN + MST trainval test-dev 39.8 62.4 22.6 423 52.2 50.5 529
D-RFCN + MST + S-NMS G trainval test-dev 40.9 62.8 233 43.6 53.3 54.7 60.4

Table 1. Results on MS-COCO test-dev set for R-FCN, D-RFCN and Faster-RCNN (F-RCNN) which use NMS as baseline and our
proposed Soft-NMS method. G denotes Gaussian weighting and L denotes linear weighting. MST denotes multi-scale testing.

\ Method [ AP [ AP@0s [ a0 bike  bird  boat  botle  bus  car cat  chair  cow  table  dog  horse  mbike person  plant  sheep  sofa train v
[24]+NMS 37.7 700 | 37.8 44.6 347 244 234 506 50.1 451 251 426 365 40.7 468 398 382 17.0 37.8 364 437 389
[24]+S-NMS G | 394 | 71.2 | 402 46.6 367 259 249 519 51.6 48.0 253 445 373 426 490 422 416 177 392 393 459 375
[24]4S-NMSL | 394 | 71.2 | 40.3 46.6 363 27.0 242 512 52.0 472 253 44.6 372 451 483 423 423 18.0 394 37.1 450 387
[16]+NMS 498 | 794 | 528 544 47.1 376 381 634 594 620 353 560 389 59.0 545 505 47.6 248 533 522 574 527
[16]4S-NMS G | 51.4 | 80.0 | 53.8 56.0 483 399 394 647 613 647 363 570 402 606 555 521 50.7 265 538 535 593 538
[16]+4S-NMSL | 51.5 | 80.0 | 532 558 489 40.0 39.6 646 61.5 650 363 565 40.2 613 556 529 503 262 543 536 59.5 539

Table 2. Results on Pascal VOC 2007 test set for off-the-shelf standard object detectors which use NMS as baseline and our proposed

Soft-NMS method. Note that COCO-style evaluation is used.

the MS-COCO dataset which consists of 20,288 images.

To evaluate our method, we experimented with three
state-of-the-art detectors, namely, Faster-RCNN [24], R-
FCN [16] and Deformable-RFCN. For the PASCAL
dataset, we selected publicly available pre-trained mod-
els provided by the authors. The Faster-RCNN detec-
tor was trained on VOC 2007 train set while the R-FCN
detector was trained on VOC 2007 and 2012. For MS-
COCO also, we use the publicly available model for Faster-
RCNN. However, since there was no publicly available
model trained on MS-COCO for R-FCN, we trained our
own model in Caffe [14] starting from a ResNet-101 CNN
architecture [13]. Simple modifications like 5 scales for
RPN anchors, a minimum image size of 800, 16 images
per minibatch and 256 ROIs per image were used. Training
was done on 8 GPUs in parallel. Note that our implementa-
tion obtains 1.9% better accuracy than that reported in [16]
without using multi-scale training or testing. Hence, this is
a strong baseline for R-FCN on MS-COCO. Both these de-
tectors use a default NMS threshold of 0.3. In the sensitivity
analysis section, we also vary this parameter and show re-
sults. We also trained deformable R-FCN with the same set-
tings. At a threshold of 10e-4, using 4 CPU threads, it takes
0.01s per image for 80 classes. After each iteration, de-
tections which fall below the threshold are discarded. This
reduces computation time. At 10e-2, run time is 0.005 sec-
onds on a single core. We set maximum detections per im-
age to 400 on MS-COCO and the evaluation server selects
the top 100 detections per class for generating metrics (we
confirmed that the coco evaluation server was not selecting
top 100 scoring detections per image till June 2017). Set-
ting maximum detections to 100 reduces coco-style AP by

0.1.

6. Experiments

In this section, we show comparative results and perform
sensitivity analysis to show robustness of Soft-NMS com-
pared to traditional NMS. We also conduct specific exper-
iments to understand why and where does Soft-NMS per-
form better compared to traditional NMS.

6.1. Results

In Table 1 we compare R-FCN and Faster-RCNN with
traditional non-maximum suppression and Soft-NMS on
MS-COCO. We set N, to 0.3 when using the linear weight-
ing function and o to 0.5 with the Gaussian weighting
function. It is clear that Soft-NMS (using both Gaussian
and linear weighting function) improves performance in all
cases, especially when AP is computed at multiple over-
lap thresholds and averaged. For example, we obtain an
improvement of 1.3% and 1.1% respectively for R-FCN
and Faster-RCNN, which is significant for the MS-COCO
dataset. Note that we obtain this improvement by just
changing the NMS algorithm and hence it can be applied
easily on multiple detectors with minimal changes. We per-
form the same experiments on the PASCAL VOC 2007 test
set, shown in Table 1. We also report average precision
averaged over multiple overlap thresholds like MS-COCO.
Even on PASCAL VOC 2007, Soft-NMS obtains an im-
provement of 1.7% for both Faster-RCNN and R-FCN. For
detectors like SSD [18] and YOLOV2 [23] which are not
proposal based, with the linear function, Soft-NMS only
obtains an improvement of 0.5%. This is because proposal
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N, | AP@0S5 | AP@0.6 | AP@O0.7 | AP@O08 | 0 | AP@05 | AP@0.6 | AP@0.7 | AP @0.8
0.3 0.5193 0.4629 0.3823 0.2521 0.1 0.5202 0.4655 0.3846 0.2533
0.4 0.5238 0.4680 0.3840 0.2524 0.3 0.5293 0.4765 0.3960 0.2619
0.5 0.5227 0.4708 0.3869 0.2526 0.5 0.5274 0.4777 0.3997 0.2669
0.6 0.5127 0.4690 0.3895 0.2527 0.7 0.5232 0.4757 0.4001 0.2695
0.7 0.4894 0.4535 0.3860 0.2535 0.9 0.5186 0.4727 0.3992 0.2710
0.8 0.4323 0.4048 0.3569 0.2520 1.1 0.5136 0.4691 0.3976 0.2713

Table 3. Sensitivity Analysis across multiple overlap thresholds N; and parameters o for NMS and Soft-NMS using R-FCN on coco
minival. Best performance at each O; is marked in bold for each method.

Sensitivity to hyper parameter

—— R-FCN o
0.36- — Faster-RCNN o 4
— R-FCN N,
0.34 — Faster-RCNN N, [|
7y 0.32f o/@_’e-’v —$
a
o 0.30f : :
p%
O o0.28¢
o
<C 0.26}
Q/O"’Q"V
0.24} @/9_—-6—_‘9_9\\
0.22}

0206061 02 03 04 05 06 07 08
N, oro

Figure 4. R-FCN Sensitivity to hyper parameters o (Soft-NMS)
and NV; (NMS)

based detectors have higher recall and hence Soft-NMS has
more potential to improve recall at higher O;.

From here on, in all experiments, when we refer to Soft-
NMS, it uses the Gaussian weighting function. In Fig 6,
we also show per-class improvement on MS-COCO. It is
interesting to observe that Soft-NMS when applied on R-
FCN improves maximum performance for animals which
are found in a herd like zebra, giraffe, sheep, elephant, horse
by 3-6%, while there is little gain for objects like toaster,
sports ball, hair drier which are less likely to co-occur in
the same image.

6.2. Sensitivity Analysis

Soft-NMS has a o parameter and traditional NMS has
an overlap threshold parameter N;. We vary these param-
eters and measure average precision on the minival set of
MS-COCO set for each detector, see Fig 4. Note that AP is
stable between 0.3 to 0.6 and drops significantly outside this
range for both detectors. The variation in AP in this range is
around 0.25% for traditional NMS. Soft-NMS obtains bet-
ter performance than NMS from a range between 0.1 to 0.7.
Its performance is stable from 0.4 to 0.7 and better by ~1%
for each detector even on the best NMS threshold selected

by us on the coco-minival set. In all our experiments, we set
o to 0.5, even though a o value of 0.6 seems to give better
performance on the coco minival set. This is because we
conducted the sensitivity analysis experiments later on and
a difference of 0.1% was not significant.

6.3. When does Soft-NMS work better?

Localization Performance Average precision alone
does not explain us clearly when Soft-NMS obtains sig-
nificant gains in performance. Hence, we present average
precision of NMS and Soft-NMS when measured at differ-
ent overlap thresholds. We also vary the NMS and Soft-
NMS hyper-parameters to understand the characteristics of
both these algorithms. From Table 3, we can infer that av-
erage precision decreases as NMS threshold is increased.
Although it is the case that for a large O;, a high V; obtains
slightly better performance compared to a lower N; — AP
does not drop significantly when a lower N, is used. On
the other hand, using a high /V; leads to significant drop in
AP at lower O, and hence when AP is averaged at multiple
thresholds, we observe a performance drop. Therefore, a
better performance using a higher V; does not generalize to
lower values of O, for traditional NMS.

However, when we vary o for Soft-NMS, we observe
a different characteristic. Table 3 shows that even when
we obtain better performance at higher Oy, performance at
lower O; does not drop. Further, we observe that Soft-NMS
performs significantly better (~2%) than traditional NMS
irrespective of the value of the selected N, at higher O,.
Also, the best AP for any hyper-parameter (/V; or o) for a
selected Oy is always better for Soft-NMS. This compari-
son makes it very clear that across all parameter settings,
the best o parameter for Soft-NMS performs better than
a hard threshold N, selected in traditional NMS. Further,
when performance across all thresholds is averaged, since a
single parameter setting in Soft-NMS works well at multi-
ple values of Oy, overall performance gain is amplified. As
expected, low values of ¢ perform better at lower O; and
higher values of sigma perform better at higher O,. Unlike
NMS, where higher values of NV, lead to very little improve-
ment in AP, higher values of ¢ lead to significant improve-
ment in AP at a higher O,. Therefore, a larger o can be used
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Precision vs Recall at O, = 0.6

Precision vs Recall at O, = 0.7

Precision vs Recall at O, = 0.8
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Figure 5. R-FCN : Precision vs Recall at multiple overlap thresholds O;

to improve performance of the detector for better localiza-
tion which is not the case with NMS, as a larger IV, obtains
very little improvement.

Precision vs Recall Finally, we would like to also know
at what recall values is Soft-NMS performing better than
NMS at different O;. Note that we re-score the detection
scores and assign them lower scores, so we do not expect
precision to improve at a lower recall. However, as O; and
recall is increased, Soft-NMS obtains significant gains in
precision. This is because, traditional NMS assigns a zero
score to all boxes which have an overlap greater than Vy
with M. Hence, many boxes are missed and therefore pre-
cision does not increase at higher values of recall. Soft-
NMS re-scores neighboring boxes instead of suppressing
them altogether which leads to improvement in precision at
higher values of recall. Also, Soft-NMS obtains significant
improvement even for lower values of recall at higher val-
ues of O, because near misses are more likely to happen in
this setting.

6.4. Qualitative Results

We show a few qualitative results in Fig 7 using a detec-
tion threshold of 0.45 for images from the COCO-validation
set. The R-FCN detector was used to generate detections. It
is interesting to observe that Soft-NMS helps in cases when
bad detections (false positives) have a small overlap with a
good detection (true positive) and also when they have a low
overlap with a good detection. For example, in the street
image (No.8), a large wide bounding box spanning multi-
ple people is suppressed because it had a small overlap with
multiple detection boxes with a higher score than it. Hence,
its score was reduced multiple times because of which it
was suppressed. We observe a similar behaviour in image
No.9. In the beach image (No.1), the score for the larger
bounding box near the woman’s handbag is suppressed be-
low 0.45. We also see that a false positive near the bowl in
the kitchen image (No.4) is suppressed. In other cases, like
for zebra, horse and giraffe images (images 2,5,7 and 13),
the detection boxes get suppressed with NMS while Soft-
NMS assigns a slightly lower score for neighboring boxes
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Figure 6. Per class improvement in AP for MS-COCO using Soft-
NMS for R-FCN is shown in the left and for Faster-RCNN is
shown on the right. Green bars indicate improvements beyond
3%
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because of which we are able to detect true positives above References
a detection threshold of 0.45.
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Figure 7. Qualitative results: Image pairs are shown in which the left image with blue bounding boxes is for traditional NMS, while the
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