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Figure 1: We construct a 1-D video of an obscured scene using RGB video taken with a consumer camera. The stylized diagram in (a) shows a typical

scenario: two people—one wearing red and the other blue—are hidden from the camera’s view by a wall. Only the region shaded in yellow is visible to the

camera. To an observer walking around the occluding edge (along the magenta arrow), light from different parts of the hidden scene becomes visible at

different angles (see sequence (b)). Ultimately, this scene information is captured in the intensity and color of light reflected from the corresponding patch of

ground near the corner. Although these subtle irradiance variations are invisible to the naked eye (c), they can be extracted and interpreted from a camera

position from which the entire obscured scene is hidden from view. Image (d) visualizes these subtle variations in the highlighted corner region. We use

temporal frames of these radiance variations on the ground to construct a 1-D video of motion evolution in the hidden scene. Specifically, (e) shows the

trajectories over time that specify the angular position of hidden red and blue subjects illuminated by a diffuse light.

Abstract

We show that walls, and other obstructions with edges,

can be exploited as naturally-occurring “cameras” that

reveal the hidden scenes beyond them. In particular, we

demonstrate methods for using the subtle spatio-temporal

radiance variations that arise on the ground at the base of

a wall’s edge to construct a one-dimensional video of the

hidden scene behind the wall. The resulting technique can be

used for a variety of applications in diverse physical settings.

From standard RGB video recordings, we use edge cameras

to recover 1-D videos that reveal the number and trajectories

of people moving in an occluded scene. We further show

that adjacent wall edges, such as those that arise in the case

of an open doorway, yield a stereo camera from which the

2-D location of hidden, moving objects can be recovered.

We demonstrate our technique in a number of indoor and

outdoor environments involving varied floor surfaces and

illumination conditions.

1. Introduction

The ability to see around obstructions would prove valu-

able in a wide range of applications. As just two examples,

remotely sensing occupants in a room would be valuable in

search and rescue operations, and the ability to detect hidden,

oncoming vehicles and/or pedestrians would be valuable in

collision avoidance systems [2]. Although often not visible

to the naked eye, in many environments, light from obscured

portions of a scene is scattered over many of the observable

surfaces. This reflected light can be used to recover informa-

tion about the hidden scene (see Fig. 1). In this work, we

exploit the vertical edge at the corner of a wall to construct

a “camera” that sees beyond the wall. Since vertical wall

edges are ubiquitous, such cameras can be found in many

environments.

The radiance emanating from the ground in front of a

corner, e.g., at the base of a building, is influenced by many

factors: the albedo, shape, and BRDF of its surface, as

well as the light coming from the full hemisphere above it.

Assuming the ground has a significant diffuse component, a

majority of the reflected light comes from the surroundings
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that are easily seen from the observer’s position next to the

occluding wall (the visible region is shaded in yellow in

Fig. 1(a)). However, emitted and reflected light from behind

the corner, hidden from the observer, also has a small effect

on the ground’s radiance in the form of a subtle gradient of

light encircling the corner; this is not a shadow, but is instead

what is referred to as a penumbra.

The faint penumbra on the ground is caused by the reflec-

tion of an increasing amount of light from the hidden scene.

To illustrate this, imagine standing with your shoulder up

against the building’s wall (refer to the leftmost picture of

Fig. 1(b)). At this position you are unable to see any of the

scene behind the corner. However, as you slowly move away

from the wall, walking along the magenta circle shown in

Fig. 1(a), you see an increasing amount of the scene. Even-

tually, the hidden scene comes fully into view. Similarly,

different points on the ground reflect light integrated from

differently-sized fractions of the hidden scene.

Now imagine someone has entered the hidden portion of

the scene. This person would introduce a small change to

the light coming from an angular slice of the room. From

behind the corner this change would often not be perceptible

to the naked eye. However, it would result in a subtle change

to the penumbra; see Fig. 1(c) and (d). We use these subtle

changes, recorded from standard video cameras, to construct

a 1-D version of how the hidden scene beyond the corner

evolves with time; see Fig. 1(e).

Section 2 summarizes related work that puts the present

contribution in context. Section 3 shows how, using our

proposed methods, it is possible to identify the number and

location of people in a hidden scene. Section 4 shows how

parallax created by a pair of adjacent edges, such as in a

doorway, can be used to triangulate the 2D position of mov-

ing people over time. Experimental results (in the paper and

supplemental material) are shown for a number of indoor

and outdoor environments with varied flooring, including

carpet, tile, hardwood, concrete, and brick.

2. Related Work

In this section we describe previous non-line-of-sight

(NLoS) methods. Previous methods used to see past or

through occluders have ranged from using WiFi signals [1] to

exploiting random specular surfaces [21, 4]. In this summary,

we emphasize a few active and passive approaches that have

previously been used to see past occluders and image hidden

scenes.

Recovery under Active Illumination: Past approaches

to see around corners have largely involved using time-of-

flight (ToF) cameras [14, 20, 10, 6]. These methods involve

using a laser to illuminate a point that is visible to both

the observable and hidden scene, and measuring how long

it takes for the light to return [20, 15]. By measuring the

light’s time of flight, one can infer the distance to objects

in the hidden scene, and by measuring the light’s intensity,

one can often learn about the reflectance and curvature of

the objects [13]. Past work has used ToF methods to infer

the location [7], size and motion [12, 5], and shape [17] of

objects in the hidden scene. These methods have also been

used to count hidden people [19].

ToF cameras work well in estimating the depths of hidden

objects, however, they have some limitations. First, they

require specialized and comparatively expensive detectors

with fine temporal resolution. Second, they are limited in

how much light they can introduce in the scene to support

imaging. Third, they are vulnerable to interference from

ambient outdoor illumination. By contrast, our proposed real-

time passive technique operates in unpredictable indoor and

outdoor environments with inexpensive consumer cameras,

without additional illumination.

In [9] a laser is used to indirectly illuminate an object

behind an occluder. Using a standard camera the authors are

then able to identify the position of the hidden object. Similar

to our proposed work, [9] uses a standard camera; however,

their proposed system has a number of limitations. Namely,

they require controlled conditions where the geometry of the

unknown moving object is rigid, and its shape and material

are either known or can be closely modeled by a single

oriented surface element. In contrast, our method requires

minimal prior information, is completely passive, and has

been shown to work in many natural settings.

Passive Recovery: Other work has previously considered

the possibility of using structures naturally present in the

real world as cameras. Naturally occurring pinholes (such

as windows) or pinspecks have been previously used for

non-line-of-sight imaging [16, 3]. In addition, specular re-

flections off of human eyes have been used to image hidden

scenes [11]. Although these accidental cameras can be used

to reconstruct 2-D images, they require a more specialized

accidental camera scenario than the simple edges we propose

to use in this work.

The technique presented in [18] also detects and visu-

alizes small, often imperceptible, color changes in video.

However, in this work, rather than just visualize these tiny

color changes, we interpret them in order to reconstruct a

video of a hidden scene.

3. Edge Cameras

An edge camera system consists of four components:

the visible and hidden scenes, the occluding edge, and the

ground, which reflects light from both scenes. We refer to

the (ground) plane perpendicular to the occluding edge as

the observation plane. By analyzing subtle variations in the

penumbra at the base of an edge, we are able to deduce a

hidden subject’s pattern of motion.
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The reflected light from a surface at point p, with normal

n̂, is a function of the incoming light L′

i as well as the

surface’s albedo a and BRDF β. Specifically,

L′

o(p, v̂o) = a(p)

∫
L′

i(p, v̂i)β(v̂i, v̂o, n̂) γ(v̂i, n̂) dv̂i,

(1)

where v̂i and v̂o denote the incoming and outgoing unit

vectors of light at position p = (r, θ), respectively, and

γ(v̂i, n̂) = v̂i · n̂. We parameterize p in polar coordinates,

with the origin centered at the occluding edge and θ =
0 corresponding to the angle parallel to the wall coming

from the corner (refer to Fig. 2). For simplicity, we assume

the observation plane is Lambertian, and that the visible

and hidden scene are modeled as light emitted from a large

celestial sphere, parameterized by right ascension α and

declination δ. Under these assumptions, we simplify (1):

L′

o(r, θ) = a(r, θ)

∫ 2π

α=0

∫ π/2

δ=0

Li(α, δ) dα dδ (2)

where Li = L′

iγ. Furthermore, since the occluding edge

blocks light from [π + θ, 2π] at the radial line θ,

L′

o(r, θ) = a(r, θ)

[
Lv +

∫ θ

φ=0

Lh(φ) dφ

]
(3)

for Lv =
∫ π

α=0

∫ π/2

δ=0
Li(α, δ) dα dδ and Lh(φ) =

∫ π/2

δ=0
Li(π +

φ, δ) dδ. By inspecting (3) we can see that the intensity

of light on the penumbra is explained by a constant term,

Lv, which is the contribution due to light visible to the

observer (shaded in yellow in Fig. 1(a)), and a varying angle

dependent term which integrates the light in the hidden scene,

Lh. For instance, a radial line at θ = 0 only integrates the

light from the scene visible to the observer, while the radial

line θ = π/2 reflects the integral of light over the entire

visible and hidden scenes.

Then, if we assume that d
dθa(r, θ) ≈ 01, the derivative of

the observed penumbra recovers the 1-D angular projection

of the hidden scene:

d

dθ
L′

o(r, θ) ≈ a(r, θ)Lh(θ). (4)

But what happens if someone walks into the hidden scene

at time t, changing L0
h(θ) to Lt

h(θ)? In this case, the spatial

derivative of the temporal difference encodes the angular

change in lighting:

d

dθ

[
L′t
o (r, θ)− L′0

o (r, θ)
]
= a(r, θ)

[
Lt
h(θ)− L0

h(θ)
]

(5)

1In practice, we subtract a background frame to substantially remove

per-pixel albedo variations. Refer to Section 3.1.1
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Figure 2: In (a), the transfer matrix, A, is shown for a toy situation

in which observations lie along circles around the edge. In this case, A

would simply be a repeated lower triangular matrix. (b) contains an example

estimation gain image, which describes the matrix operation performed on

observations y(t) to estimate x(t). As predicted, the image indicates that

we are essentially performing an angular derivative in recovering a frame of

the 1-D video.

In other words, the angular derivative of the penumbra’s dif-

ference from the reference frame is a signal that indicates the

angular change in the hidden scene over time. In practice, we

obtain good results assuming a(r, θ) = 1 and using the cam-

eras’ native encoded intensity values while subtracting the

temporal mean as a background frame (see Section 3.1.1).

3.1. Method

Using a video recording of the observation plane, we

generate a 1-D video indicating the changes in a hidden

scene over time. These 1-D angular projections of the hidden

scene, viewed over many time-steps, reveal the trajectory of

a moving object behind the occluding edge.

Likelihood: At each time t, we relate the observed M -

pixels on the projection plane, y(t), to the 1-D angular pro-

jection of the hidden scene, L
(t)
h (θ). We formulate a discrete

approximation to our edge camera system by describing the

continuous image L
(t)
h (θ) using N terms, x(t). The obser-

vations y(t) then relate to the unknown parameters x(t) and

L
(t)
v by a linear matrix operation:

y(t) = L(t)
v +Ax(t) +w(t), w(t) ∼ N (0, λ2I),

where the M ×N matrix A is defined by the geometry of

the system. More explicitly, each row m of A integrates

the portion of the hidden scene visible from observation m,

y
(t)
m . In the simplified case of observations that lie on a circle

around the occluding edge, A would simply be a constant

lower-triangular matrix; see Fig. 2(a).

Let Ã be the column augmented matrix [1 A]. We can

then express the likelihood of an observation given x(t) and

L
(t)
v as:

p(y(t)|x(t), L(t)
v ) = N

(
Ã
[
L(t)
v x(t)T

]T
, λ2

1

)
. (6)
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Prior: The signal we are trying to extract is very small

relative to the total light intensity on the observation plane.

Therefore, to improve the quality of results, we enforce spa-

tial smoothness of x(t). We use a simple L2 smoothness

regularization over adjacent parameters in x(t). This corre-

sponds, for a gradient matrix G, to using the prior

p(x(t)) ∝
N−1∏

n=1

exp

[
−

1

2σ2
1

‖x(t)[n]− x(t)[n− 1]‖22

]

N∏

n=1

exp

[
−

1

2σ2
2

‖x(t)[n]‖22

]
(7)

= N (0, σ2
1(G

TG)−1 + σ2
21). (8)

Inference: We seek a maximum a posteriori (MAP) es-

timate of the hidden image coefficients, x(t), given M ob-

servations, y(t), measured by the camera. By combining

the defined Gaussian likelihood and prior distributions, we

obtain a Gaussian posterior distribution of x(t) and L
(t)
v ,

p(x(t), L(t)
v |y(t)) = N

([
L̂(t)
v x̂(t)T

]T
,Σ(t)

)

Σ(t) =

[
λ−2ÃT Ã+

(
0 0

0 G
T
G

σ2

1

+ 1

σ2

2

)]
−1

[
L̂(t)
v x̂(t)T

]T
= Σ(t)λ−2ÃTy(t) (9)

where the maximum a posteriori estimate is given by x̂(t).

To better understand the operation that is being performed

to obtain the 1-D reconstruction, we visualize each row

of the matrix Σ(t)λ−2ÃT . We refer to each reshaped row

of this matrix as the estimation gain image. An example

estimation gain image is shown in Fig. 2b. As expected, the

matrix operation is computing an angular derivative over the

observation plane. Note that although earlier we assumed
d
dθa(r, θ) ≈ 0, in reality the albedo simply needs to be

orthogonal to the zero-mean pie-wedges in each estimation

gain image. We expect violations from this assumption to be

small.

3.1.1 Implementation Details

Rectification: All of our analysis thus far has assumed

we are observing the floor parallel to the occluding edge.

However, in most situations, the camera will be observing

the projection plane at an angle. In order to make the con-

struction of the matrix A easier, we begin by rectifying our

images using a homography. In these results, we assume the

ground is perpendicular to the occluding edge, and estimate

the homography using either a calibration grid or regular

patterns, such as tiles, that naturally appear on the ground.

Alternatively, a known camera calibration could be used.

Background Subtraction: Since we are interested in

identifying temporal differences in a hidden scene due to a

moving subject, we must remove the effect of the scene’s

background illumination. Although this could be accom-

plished by first subtracting a background frame, L0
o, taken

without the subject, we avoid requiring the availability of

such a frame. Instead, we assume the subject’s motion is

roughly uniform over the video, and use the video’s mean

image in lieu of a true background frame. We found that in

sequences containing people moving naturally, background

subtraction using the average video frame worked well.

Temporal Smoothness: In addition to spatial smoothness

we could also impose temporal smoothness on our MAP es-

timate. x̂(t). This helps to further regularize our result, at

the cost of some temporal blurring. However, to empha-

size the coherence among results, we do not impose this

additional constraint. Each 1-D image, x(t), that we show

is independently computed. Results obtained with tempo-

ral smoothness constraints are shown in the supplemental

material.

Parameter Selection: The noise parameter λ2 is set for

each video as the median variance of estimated sensor noise.

The regularization parameters σ1 and σ2 are empirically set

to 0.1 for all results.

3.2. Experiments and Results

Our algorithm reconstructs a 1-D video of a hidden scene

from behind an occluding edge, allowing users to track the

motions of obscured, moving objects. In all results shown,

the subject was not visible to an observer at the camera.

We present results as space-time images. These images

contain curves that indicate the angular trajectories of mov-

ing people. All results, unless specified otherwise, were

generated from standard, compressed video taken with a

SLR camera. Please refer to the supplemental video for full

sequences and additional results.

3.2.1 Environments

We show several applications of our algorithm in various

indoor and outdoor environments. For each environment, we

show the reconstructions obtained when one or two people

were moving in the hidden scene.

Indoor: In Fig. 1(e) we show a result obtained from a

video recorded in a mostly dark room. A large diffuse light

illuminated two hidden subjects wearing red and blue cloth-

ing. As the subjects walked around the room, their clothing

reflected light, allowing us to reconstruct a 1-D video of col-

ored trajectories. As correctly reflected in our reconstructed

video, the subject in blue occludes the subject in red three

times before the subject in red becomes the occluder.

Fig. 3 shows additional examples of 1-D videos recovered

from indoor edge cameras. In these sequences, the environ-

ment was well-lit. The subjects occluded the bright ambient
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Figure 3: One-dimensional reconstructed videos of indoor, hidden scenes. Results are shown as space-time images for sequences where one or two people

were walking behind the corner. In these reconstructions, the angular position of a person, as well as the number of people, can be clearly identified. Bright

vertical line artifacts are caused by additional shadows appearing on the penumbra. We believe horizontal line artifacts result from sampling on a square grid.
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Figure 4: 1-D reconstructed videos of a common outdoor, hidden scene under various weather conditions. Results are shown as space-time images. The last

row shows results from sequences taken while it was beginning to rain. Although artifacts appear due to the appearing raindrops, motion trajectories can be

identified in all reconstructions.

light, resulting in the reconstruction’s dark trajectory. Note

that in all the reconstructions, it is possible to count the num-

ber of people in the hidden scene, and to recover important

information such as their angular position and speed, and the

characteristics of their motion.

Outdoor: In Fig. 4 we show the results of a number of

videos taken at a common outdoor location, but in differ-

ent weather conditions. The top sequences were recorded

during a sunny day, while the bottom two sequences were

recorded while it was cloudy. Additionally, in the bottom se-

quence, raindrops appeared on the ground during recording,

while in the middle sequence the ground was fully saturated

with water. Although the raindrops cause artifacts in the

reconstructed space-time images, you can still discern the

trajectory of people hidden behind the wall.

3.2.2 Video Quality:

In all experiments shown thus far we have used standard,

compressed video captured using a consumer camera. How-

ever, video compression can create large, correlated noise

that may affect our signal. We have explored the effect video

quality has on results. To do this, we filmed a common

scene using 3 different cameras: an iPhone 5s, a Sony Alpha

7s, and a uncompressed RGB Point Grey. Fig. 5 shows the

results of this experiment assuming different levels of i.i.d.

noise. Each resulting 1-D image was reconstructed from a

single frame. The cell phone camera’s compressed videos

resulted in the noisiest reconstructions, but even those results

still capture key features of the subject’s path.

3.2.3 Velocity Estimation

The derivative of a person’s trajectory over time, θ(t), in-

dicates their angular velocity. Fig. 6 shows an example of

the estimated angular velocity obtained from a single edge

camera when the hidden subject was walking roughly in a

circle. Note that the person’s angular size and speed are both

larger when the person is closer to the corner. Such cues can

help approximate the subject’s 2-D position over time.

3.3. Estimated Signal Strength

In all of our presented reconstructions we show images

with an intensity range of 0.1. As these results were obtained

from 8-bit videos, our target signal is less than 0.1% of the

video’s original pixel intensities.

To better understand the signal measurement require-

ments, we have developed a simple model of the edge cam-

era system that both explains experimental performance and

enables the study of asymptotic limits.

We consider three sources of emitted or reflected light: a

cylinder (proxying for a person), a hemisphere of ambient

light (the surrounding scene), and an infinitely tall half-plane

(the occluding wall). If all surfaces are Lambertian, the

2274



iP
h
o
n
e

S
o
n
y

α
	7
s

P
o
in
t	

G
re
y

(c)	Walking	from	2	to	16	feet	at	a	45° Angle	 (d)	Walking	Randomly

Sony	α	7s

Point	Grey

iPhone

time2	ft 16	ft

(a)	Setup (b)	Noise

λ = 5.2

λ = 2.3

λ = 0.8

θ

Figure 5: The result of using different cameras on the reconstruction of the same sequence in an indoor setting. Three different 8-bit cameras (an iPhone 5s,

a Sony Alpha 7s, and an uncompressed RGB Point Grey) simultaneously recorded the carpeted floor. Each camera introduced a different level of sensor

noise. The estimated standard deviation of per-pixel sensor noise, λ, is shown in (b). We compare the quality of two sequences in (c) and (d). In (c), we have

reconstructed a video from a sequence of a single person walking directly away from the corner from 2 to 16 feet at a 45 degree angle from the occluded wall.

This experiment helps to illustrate how signal strength varies with distance from the corner. In (d), we have done a reconstruction of a single person walking

in a random pattern. In (c) the hidden person does not change in angular position. Thus, for these results, we subtract an average background frame computed

from a different portion of the video sequence.
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Figure 6: A subject’s reconstructed angular velocity relative to the corner

as a function of time. In this sequence, a person was walking in circles far

from the corner.

brightness change of the observation plane due the pres-

ence of the cylinder around the corner can be computed

analytically for this simple system. See the supplementary

document.

For reasonable assumed brightnesses of the cylinder,

hemisphere, and half-plane (150, 300, and 100, respectively,

in arbitrary linear units), the brightness change on the ob-

servation plane due to the cylinder will be an extremum of

-1.7 out of a background of 1070 units. This is commensu-

rate with our experimental observations of ∼ 0.1% change

of brightness over the penumbra region. Our model shows

novel asymptotic behavior of the edge camera. Namely, at

large distances from the corner, brightness changes in the

penumbra decrease faster than would otherwise be expected

from a 1-D camera. This is because the arrival angle of the

rays from a distant cylinder are close to grazing with the

ground, lessening their influence on the penumbra. However,

within 10 meters of the corner, such effects are small.

4. Stereo Edge Cameras

Although the width of a track recovered in the method of

the previous section can give some indication of a hidden

person’s relative range, more accurate methods are possible

by exploiting adjacent walls. For example, when a hidden

scene is behind a doorway, the pair of vertical doorway

Left	Wall Right	Wall

1
2 3

4

Left	Wall Right	Wall

2 3

tim
e1 4

θL θR

Hidden	Scene

Figure 7: The four edges of a doorway contain penumbras that can be used

to reconstruct a 180
◦ view of a hidden scene. The top diagram indicates

the penumbras and the corresponding region they describe. Parallax occurs

in the reconstructions from the left and right wall. This can be seen in

the bottom reconstruction of two people hidden behind a doorway. Num-

bers/colors indicate the penumbras used for each 90
◦ space-time image.

wall edges yield a pair of corner cameras. By treating the

observation plane at the base of each edge as a camera,

we can obtain stereo 1-D images that we can then use to

triangulate the absolute position of a subject over time.

4.1. Method

A single edge camera allows us to reconstruct a 90◦ angu-

lar image of an occluded scene. We now consider a system

composed of four edge cameras, such as an open doorway,

as illustrated in Fig. 7. Each side of the doorway contains

two adjacent edge cameras, whose reconstructions together

create a 180◦ view of the hidden scene.

The two sides of the doorway provide two views of the

same hidden scene, but from different positions. This causes
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Figure 8: A hidden person will introduce an intensity change on the left

and right wall penumbras at angles of θ
(t)
L and θ

(t)
R , respectively. Once

these angles have been identified, we can recover the hidden person’s two-

dimensional location using Eq. 11.

an offset in the projected angular position of the same person

(see Fig. 8). Our aim is to use this angular parallax to trian-

gulate the location of a hidden person over time. Assume we

are observing the base of a doorway, with walls of width w

separated by a distance B. A hidden person will introduce an

intensity change on the left and right wall penumbras at an-

gles of θ
(t)
L and θ

(t)
R , respectively. From this correspondence,

we can triangulate their 2-D location.

P (t)
z =

B − η(t)

cot θ
(t)
L + cot θ

(t)
R

(10)

P (t)
x = P (t)

z cot θ
(t)
L (11)

η(t) =





w cot(θR) Px ≤ 0

0 0 ≤ Px ≤ B

w cot(θL) Px ≥ B

(12)

where (Px, Pz) are the x- and z-coordinate of the person.

We define the top corner of the left doorway, corner 1 in

Fig. 7, as (Px, Pz) = (0, 0).
Assuming the wall is sufficiently thin compared to the

depth of moving objects in the hidden scene, the η(t) term

can be ignored. In this case, the relative position of the

person can be reconstructed without any knowledge of the

absolute geometry of the doorway (e.g. B or w). In all

results shown in this paper, we have made this assumption.

Identifying Trajectories: While automatic contour trac-

ing methods exist [8], for simplicity, in our stereo results,

we identify the trajectories of objects in the hidden scene

manually by tracing a path on the reconstructed space-time

images.

4.2. Experiments and Results

We demonstrate the ability of our method to localize

the two-dimensional position of a hidden object using four

edge cameras, such as in a doorway. We present a series

of experiments in both controlled and uncontrolled settings.

Full sequences, indicating the ground truth motions, and

additional results can be found in the supplemental material.

Controlled Environment: To demonstrate the ability to

infer depth from stereo edge cameras we constructed a con-

trolled experiment. A monitor displaying a slowly moving
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Figure 9: The results of our stereo experiments in a natural setting. Each

sequence consists of a single person walking in a roughly circular pattern

behind a doorway. The 2-D inferred locations over time are shown as a line

from blue to red. Error bars indicating one standard deviation of error have

been drawn around a subset of the points. Our inferred depths capture the

hidden subject’s cyclic motion, but are currently subject to large error. A

subset of B’s inferred 2-D locations have been cut out of this figure, but can

be seen in full in the supplemental material.

green line was placed behind two walls, separated by a base-

line of 20 cm, at a distance of roughly 23, 40, 60, and 84

cm. Fig. 10(b) shows sample space-time reconstructions of

each 180◦ edge camera. The depth of the green line was

then estimated from manually identified trajectories obtained

from these space-time images. Empirically estimated error

ellipses are shown in red for a subset of the depth estimates.

Natural Environment: Fig. 9 shows the results of esti-

mating 2-D positions from doorways in natural environments.

The hidden scene consists of a single person walking in a cir-

cular pattern behind the doorway. Although our reconstruc-

tions capture the cyclic nature of the subject’s movements,

they are sensitive to error in the estimated trajectories. Re-

fer to Section 4.3. Ellipses indicating empirically estimated

error have been drawn around a subset of the points.

4.3. Error Analysis

There are multiple sources of error that can introduce

biases into location estimates. Namely, inaccuracy in local-

izing the projected trajectories, and mis-calibration of the

scene cause error in the estimates. We discuss the effects of

some of these errors below. Further derivations and analysis

can be seen in our supplemental material.

Trajectory Localization: Because Pz scales inversely

with cot(θL) + cot(θR), small errors in the estimated pro-

jected angles of the person in the left and right may cause
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Figure 10: Controlled experiments were performed to demonstrate the ability to infer depth from stereo edge cameras. A monitor displaying a moving

green line was placed behind an artificial doorway (a) at four locations corresponding to 23, 40, 60, and 84 cm, respectively. (b) shows sample reconstructions

done of the edge cameras for the left and right wall when the monitor was placed at 23 and 84 cm. Using tracks obtained from these reconstructions, the 2-D

position of the green line in each sequence was estimated over time (c). The inferred position is plotted with empirically computed error ellipses (indicating

one standard deviation of noise).

large errors in the estimated position of the hidden person,

particularly at larger depths. Assuming Gaussian uncertainty

in the left and right angular trajectories, σθL and σθR , the

uncertainty in the estimated position of the hidden person

will not be Gaussian. However, the standard deviation of

empirical distributions through sampling, as seen in Figs. 9

and 10, can be informative. Additionally, by using standard

error propagation of independent variables, we can compute

a first order approximation of the uncertainty. For instance,

the uncertainty in the z position, σPz
, is

σPz
= B

√
σ2
θL

csc4 θL + σ2
θR

csc4 θR

(cot θL + cot θR)4
(13)
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Figure 11: The empirical means plus or minus one standard deviation of

the estimated Pz as a function of its x-coordinate, assuming true Pz of 20,

40, 60, and 80. Here, the two corner location errors at each of the boundaries

of the doorway are independent and subject to σ2
∆x = σ2

∆z = 0.04.

Corner Identification: Misidentifying the corner of each

occluding edge will cause systematic error to the estimated

2-D position. To determine how erroneously identifying a

corner affects our results, we consider the following situation:

a doorway of baseline B = 20 obscuring a bright object at

angular position θ in an otherwise dark scene.

Assuming the offset from the true corner location is drawn

from an independent Gaussian distribution, we can calculate

the error between the estimated and true angular position,

and then subsequently use these offsets to calculate the error

in depth. Fig. 11 shows the error as a function of depth for

a stereo camera setup in which the corner offset has been

drawn from a Gaussian distribution with variance 0.04.

5. Conclusion
We show how to turn corners into cameras, exploiting a

common, but overlooked, visual signal. The vertical edge

of a corner’s wall selectively blocks light to let the ground

nearby display an angular integral of light from around the

corner. The resulting penumbras from people and objects

are invisible to the eye – typical contrasts are 0.1% above

background – but are easy to measure using consumer-grade

cameras. We produce 1-D videos of activity around the cor-

ner, measured indoors, outdoors, in both sunlight and shade,

from brick, tile, wood, and asphalt floors. The resulting

1-D videos reveal the number of people moving around the

corner, their angular sizes and speeds, and a temporal sum-

mary of activity. Open doorways, with two vertical edges,

offer stereo views inside a room, viewable even away from

the doorway. Since nearly every corner now offers a 1-D

view around the corner, this opens potential applications for

automotive pedestrian safety, search and rescue, and public

safety. This ever-present, but previously unnoticed, 0.1%
signal may invite other novel camera measurement methods.
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