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Abstract

Pedestrian detection is a critical problem in computer vi-

sion with significant impact on safety in urban autonomous

driving. In this work, we explore how semantic segmen-

tation can be used to boost pedestrian detection accuracy

while having little to no impact on network efficiency. We

propose a segmentation infusion network to enable joint

supervision on semantic segmentation and pedestrian de-

tection. When placed properly, the additional supervision

helps guide features in shared layers to become more so-

phisticated and helpful for the downstream pedestrian de-

tector. Using this approach, we find weakly annotated boxes

to be sufficient for considerable performance gains. We pro-

vide an in-depth analysis to demonstrate how shared layers

are shaped by the segmentation supervision. In doing so, we

show that the resulting feature maps become more semanti-

cally meaningful and robust to shape and occlusion. Over-

all, our simultaneous detection and segmentation frame-

work achieves a considerable gain over the state-of-the-art

on the Caltech pedestrian dataset, competitive performance

on KITTI, and executes 2× faster than competitive methods.

1. Introduction

Pedestrian detection from an image is a core capability of

computer vision, due to its applications such as autonomous

driving and robotics [14]. It is also a long-standing vision

problem because of its distinct challenges including low

resolution, occlusion, cloth variations, etc [30]. There are

two central approaches for detecting pedestrians: object de-

tection [2, 29] and semantic segmentation [4, 5]. The two

approaches are highly related by nature but have their own

strengths and weaknesses. For instance, object detection is

designed to perform well at localizing distinct objects but

typically provides little information on object boundaries.

In contrast, semantic segmentation does well at distinguish-

ing pixel-wise boundaries among classes but struggles to

separate objects within the same class.

Intuitively, we expect that knowledge from either task

will make the other substantially easier. This has been

Figure 1. Detection results on the Caltech test set (left), feature

map visualization from the RPN of conventional Faster R-CNN

(middle), and feature map visualization of SDS-RCNN (right).

Notice that our feature map substantially illuminates the pedes-

trian shape while suppressing the background region, both of

which make positive impact to downstream pedestrian detection.

demonstrated for generic object detection, since having seg-

mentation masks of objects would clearly facilitate detec-

tion. For example, Fidler et al. [13] utilize predicted seg-

mentation masks to boost object detection performance via

a deformable part-based model. Hariharan et al. [18] show

how segmentation masks generated from MCG [1] can be

used to mask background regions and thus simplify detec-

tion. Dai et al. [6] utilize the two tasks in a 3-stage cascaded

network consisting of box regression, foreground segmenta-

tion, and classification. Their architecture allows each task

to share features and feed into one another.

In contrast, the pairing of these two tasks is rarely studied

in pedestrian detection, despite the recent advances [2, 21,

29]. This is due in part to the lack of pixel-wise annotations

available in classic pedestrian datasets such as Caltech [8]

and KITTI [14], unlike the detailed segmentation labels in

the COCO [22] dataset for generic object detection. With

the release of Cityscapes [5], a high quality dataset for ur-

ban semantic segmentation, it is expected that substantial

research efforts will be on how to leverage semantic seg-

mentation to boost the performance of pedestrian detection,

which is the core problem to be studied in this paper.

Given this objective, we start by presenting a competi-

tive two-stage baseline framework of pedestrian detection

deriving from RPN+BF [29] and Faster R-CNN [23]. We

contribute a number of key changes to enable the second-

stage classifier to specialize in stricter supervision and ad-

ditionally fuse the refined scores with the first stage RPN.

These changes alone lead to state-of-the-art performance on
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the Caltech benchmark. We further present a simple, but

surprisingly powerful, scheme to utilize multi-task learning

on pedestrian detection and semantic segmentation. Specifi-

cally, we infuse the semantic segmentation mask into shared

layers using a segmentation infusion layer in both stages of

our network. We term our approach as “simultaneous detec-

tion and segmentation R-CNN (SDS-RCNN)”. We provide

an in-depth analysis on the effects of joint training by ex-

amining the shared feature maps, e.g., Fig. 1. Through infu-

sion, the shared feature maps begin to illuminate pedestrian

regions. Further, since we infuse the semantic features dur-

ing training only, the network efficiency at inference is un-

affected. We demonstrate the effectiveness of SDS-RCNN

by reporting considerable improvement (23% relative re-

duction of the error) over the published state-of-the-art on

Caltech [8], competitive performance on KITTI [14], and a

runtime roughly 2× faster than competitive methods.

In summary our contributions are as follows:

⋄ Improved baseline derived from [23, 29] by enforcing

stricter supervision in the second-stage classification

network, and further fusing scores between stages.

⋄ A multi-task infusion framework for joint supervision

on pedestrian detection and semantic segmentation,

with the goal of illuminating pedestrians in shared fea-

ture maps and easing downstream classification.

⋄ We achieve the new state-of-the-art performance on

Caltech pedestrian dataset, competitive performance

on KITTI, and obtain 2× faster runtime.

2. Prior work

Object Detection: Deep convolution neural networks have

had extensive success in the domain of object detection.

Notably, derivations of Fast [16] and Faster R-CNN [23] are

widely used in both generic object detection [2, 15, 28] and

pedestrian detection [21, 26, 29]. Faster R-CNN consists of

two key components: a region proposal network (RPN) and

a classification sub-network. The RPN works as a sliding

window detector by determining the objectness across a set

of predefined anchors (box shapes defined by aspect ratio

and scale) at each spatial location of an image. After object

proposals are generated, the second stage classifier deter-

mines the precise class each object belongs to. Faster R-

CNN has been shown to reach state-of-the-art performance

on the PASCAL VOC 2012 [12] dataset for generic ob-

ject detection and continues to serve as a frequent baseline

framework for a variety of related problems [15, 18, 19, 30].

Pedestrian Detection: Pedestrian detection is one of the

most extensively studied problems in object detection due to

its real-world significance. The most notable challenges are

caused by small scale, pose variations, cyclists, and occlu-

sion [30]. For instance, in the Caltech pedestrian dataset [8]

70% of pedestrians are occluded in at least one frame.

The top performing approaches on the Caltech pedes-

trian benchmark are variations of Fast or Faster R-CNN.

SA-FastRCNN [16] and MS-CNN [2] reach competitive

performance by directly addressing the scale problem using

specialized multi-scale networks integrated into Fast and

Faster R-CNN respectively. Furthermore, RPN+BF [29]

shows that the RPN of Faster R-CNN performs well as

a standalone detector while the downstream classifier de-

grades performance due to collapsing bins of small-scale

pedestrians. By using higher resolution features and re-

placing the downstream classifier with a boosted forest,

RPN+BF is able to alleviate the problem and achieve 9.58%
miss rate on the Caltech reasonable [9] setting. F-DNN [10]

also uses a derivation of the Faster R-CNN framework.

Rather then using a single downstream classifier, F-DNN

fuses multiple parallel classifiers including ResNet [19] and

GoogLeNet [25] using soft-reject and further incorporates

multiple training datasets to achieve 8.65% miss rate on the

Caltech reasonable setting. The majority of top performing

approaches utilize some form of a RPN, whose scores are

typically discarded after selecting the proposals. In contrast,

our work shows that fusing the score with the second stage

network can lead to substantial performance improvement.

Simultaneous Detection & Segmentation: There are two

lines of research on simultaneous detection and segmen-

tation. The first aims to improve the performance of

both tasks, and formulates a problem commonly known as

instance-aware semantic segmentation [5]. Hariharan et

al. [18] predict segmentation masks using MCG [1] then get

object instances using “slow” R-CNN [17] on masked im-

age proposals. Dai et al. [6] achieve high performance on

instance segmentation using an extension of Faster R-CNN

in a 3-stage cascaded network including mask supervision.

The second aims to explicitly improve object detection

by using segmentation as a strong cue. Early work on

the topic by Fidler et al. [13] demonstrates how semantic

segmentation masks can be used to extract strong features

for improved object detection via a deformable part-based

model. Du et al. [10] use segmentation as a strong cue in

their F-DNN+SS framework. Given the segmentation mask

predicted by a third parallel network, their ensemble net-

work uses the mask in a post-processing manner to sup-

press background proposals, and pushes performance on

the Caltech pedestrian dataset from 8.65% to 8.18% miss

rate. However, the segmentation network degrades the effi-

ciency of F-DNN+SS from 0.30 to 2.48 seconds per image,

and requires multiple GPUs at inference. In contrast, our

novel framework infuses the semantic segmentation masks

into shared feature maps and thus does not require a sepa-

rate segmentation network, which outperforms [10] in both

accuracy and network efficiency. Furthermore, our use of

weak box-based segmentation masks addresses the issue of

lacking pixel-wise segmentation annotations in [8, 14].
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Figure 2. Overview of the proposed SDS-RCNN framework. The segmentation layer infuses semantic features into shared conv1-5 layers

of each stage, thus illuminating pedestrians and easing downstream pedestrian detection (proposal layers in RPN, and FC1-2 in BCN).

3. Proposed method

Our proposed architecture consists of two key stages:

a region proposal network (RPN) to generate candidate

bounding boxes and corresponding scores, and a binary

classification network (BCN) to refine their scores. In both

stages, we propose a semantic segmentation infusion layer

with the objective of making downstream classification a

substantially easier task. The infusion layer aims to encode

semantic masks into shared feature maps which naturally

serve as strong cues for pedestrian classification. Due to the

impressive performance of the RPN as a standalone detec-

tor, we elect to fuse the scores between stages rather than

discarding them as done in prior work [2, 10, 27, 29]. An

overview of the SDS-RCNN framework is depicted in Fig. 2

3.1. Region Proposal Network

The RPN aims to propose a set of bounding boxes with

associated confidence scores around potential pedestrians.

We adopt the RPN of Faster R-CNN [23] following the set-

tings in [29]. We tailor the RPN for pedestrain detection

by configuring Na = 9 anchors with a fixed aspect ratio of

0.41 and spanning a scale range from 25 – 350 pixels, cor-

responding to the pedestrain statistics of Caltech [8]. Since

each anchor box acts as a sliding window detector across a

pooled image space, there are Np = Na × W
fs

× H
fs

total

pedestrian proposals, where fs corresponds to the feature

stride of the network. Hence, each proposal box i corre-

sponds to an anchor and a spatial location of image I.

The RPN architecture uses conv1-5 from VGG-16 [24]

as the backbone. Following [23], we attach a proposal fea-

ture extraction layer to the end of the network with two sib-

ling output layers for box classification (cls) and bounding

box regression (bbox). We further add a segmentation infu-

sion layer to conv5 as detailed in Sec. 3.3.

For every proposal box i, the RPN aims to minimize the

following joint loss function with three terms:

L = λc

∑

i

Lc(ci, ĉi) + λr

∑

i

Lr(ti, t̂i) + λsLs. (1)

The first term is the classification loss Lc, which is a soft-

max logistic loss over two classes (pedestrian vs. back-

ground). We use the standard labeling policy which consid-

ers a proposal box at location i to be pedestrian (ci = 1) if it

has at least 0.5 Intersection over Union (IoU) with a ground

truth pedestrian box, and otherwise background (ci = 0).

The second term seeks to improve localization via bound-

ing box regression, which learns a transformation for each

proposal box to the nearest pedestrian ground truth. Specif-

ically, we use Lr(ti, t̂i) = R(ti − t̂i) where R is the robust

(smooth L1) loss defined in [16]. The bounding box trans-

formation is defined as a 4-tuple consisting of shifts in x, y

and scales in w, h denoted as t = [tx, ty, tw, th]. The third

term Ls is the segmentation loss presented in Sec. 3.3.

In order to reduce multiple detections of the same pedes-

trian, we apply non-maximum suppression (NMS) greedily

to all pairs of proposals after the transformations have been

applied. We use an IoU threshold of 0.5 for NMS.

We train the RPN in the Caffe [20] framework using

SGD with a learning rate of 0.001, momentum of 0.9, and

mini-batch of 1 full-image. During training, we randomly

sample 120 proposals per image at a ratio of 1:5 for pedes-

trian and background proposals to help alleviate the class

imbalance. All other proposals are treated as ignore. We

initialize conv1-5 from a VGG-16 model pretrained on Im-

ageNet [7], and all remaining layers randomly. Our net-

work has four max-pooling layers (within conv1-5), hence

fs = 16. In our experiments, we regularize our multi-task

loss terms by setting λc = λs = 1, λr = 5.
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Figure 3. Example proposal masks with and without padding.

There is no discernible difference between the non-padded masks

of well-localized (a) and poorly localized (b) proposals.

3.2. Binary Classification Network

The BCN aims to perform pedestrian classification over

the proposals of the RPN. For generic object detection, the

BCN usually uses the downstream classifier of Faster R-

CNN by sharing conv1-5 with the RPN, but was shown

by [29] to degrade pedestrian detection accuracy. Thus,

we choose to construct a separate network using VGG-16.

The primary advantage of a separate network is to allow the

BCN freedom to specialize in the types of “harder” sam-

ples left over from the RPN. While sharing computation is

highly desirable for the sake of efficiency, the shared net-

works are more predestined to predict similar scores which

are redundant when fused. Therefore, rather than cropping

and warping a shared feature space, our BCN directly crops

the top Nb proposals from the RGB input image.

For each proposal image i, the BCN aims to minimize

the following joint loss function with two terms:

L = λc

∑

i

wiLc(ci, ĉi) + λsLs. (2)

Similar to RPN, the first term is the classification loss Lc

where ci is the class label for the ith proposal. A cost-

sensitive weight wi is used to give precedence to detect

large pedestrians over small pedestrians. There are two key

motivations for this weighting policy. First, large pedes-

trians typically imply close proximity and are thus signifi-

cantly more important to detect. Secondly, we presume that

features of large pedestrians may be more helpful for de-

tecting small pedestrians. We define the weighting function

given the ith proposal with height hi and a pre-computed

mean height h̄ as wi = 1 + hi

h̄
. The second term is the

segmentation loss presented in Sec. 3.3.

We make a number of significant contributions to the

BCN. First, we change the labeling policy to encourage

higher precision and further diversification from the RPN.

We enforce a stricter labeling policy, requiring a proposal

to have IoU > 0.7 with a ground truth pedestrian box to be

considered pedestrian (ci = 1), and otherwise background

(ci = 0). This encourages the network to suppress poorly

localized proposals and reduces false positives in the form

of double detections. Secondly, we choose to fuse the scores

of the BCN with the confidence scores of the RPN at test

time. Since our design explicitly encourages the two stages

conv5 

RPN Baseline 

conv_proposal RGB conv5 

RPN + Weak Segmentation 

conv_proposal 

Figure 4. Feature map visualizations of conv5 and the proposal

layer for the baseline RPN (left) and the RPN infused with weak

segmentation supervision (right).

to diversify, we expect the classification characteristics of

each network to be complementary when fused. We fuse

the scores at the feature level prior to softmax. Formally,

the fused score for the ith proposal, given the predicted 2-

class scores from the RPN = {ĉri0, ĉri1} and BCN = {ĉbi0,

ĉbi1} is computed via the following softmax function:

ĉi =
e(ĉ

r

i1
+ĉb

i1
)

e(ĉ
r

i1
+ĉb

i1
) + e(ĉ

r

i0
+ĉb

i0
)
. (3)

In effect, the fused scores become more confident when

the stages agree, and otherwise lean towards the dominant

score. Thus, it is ideal for each network to diversify in its

classification capabilities such that at least one network may

be very confident for each proposal.

For a modest improvement to efficiency, we remove the

pool5 layer from the VGG-16 architecture then adjust the

input size to 112 × 112 to keep the fully-connected layers

intact. This is a fair trade-off since most pedestrian heights

fall in the range of 30− 80 pixels [8]. Hence, small pedes-

trian proposals are upscaled by a factor of ∼2×, allowing

space for finer discrimination. We further propose to pad

each proposal by 20% on all sides to provide background

context and avoid partial detections, as shown in Fig. 3.

We train the BCN in the Caffe [20] framework using

the same settings as the RPN. We initialize conv1-5 from

the trained RPN model, and all remaining layers randomly.

During training, we set Nb = 20. During inference, we set

Nb = 15 for a moderate improvement to efficiency. We

regularize the multi-task loss by setting λc = λs = 1.
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Figure 5. Visualization of the similarity between pixel-wise seg-

mentation masks (from Cityscapes [5]) and weak box-based masks

when downsampled in both the BCN (top) and RPN (bottom).

3.3. Simultaneous Detection & Segmentation

We approach simultaneous detection and segmentation

with the motivation to make our downstream pedestrian de-

tection task easier. We propose a segmentation infusion

layer trained on weakly annotated pedestrian boxes which

illuminate pedestrians in the shared feature maps preceding

the classification layers. We integrate the infusion layer into

both stages of our SDS-RCNN framework.

Segmentation Infusion Layer: The segmentation infusion

layer aims to output two masks indicating the likelihood of

residing on pedestrian or background segments. We choose

to use only a single layer and a 1 × 1 kernel so the im-

pact on the shared layers will be as high as possible. This

forces the network to directly infuse semantic features into

shared feature maps, as visualized in Fig. 4. A deeper net-

work could achieve higher segmentation accuracy but will

infer less from shared layers and diminish the overall im-

pact on the downstream pedestrian classification. Further,

we choose to attach the infusion layer to conv5 since it is

the deepest layer which precedes both the proposal layers

of the RPN and the fully connected layers of the BCN.

Formally, the final loss term Ls of both the RPN and

BCN is a softmax logistic loss over two classes (pedestrian

vs. background), applied to each location i, where wi is the

cost-sensitive weight introduced in 3.2:

λs

∑

i

wiLs(Si, Ŝi). (4)

We choose to levereage the abundance of bounding box

annotations available in popular pedestrian datasets (e.g.,

Caltech [8], KITTI [14]) by forming weak segmentation

ground truth masks. Each mask S ∈ R
W×H is generated

by labeling all pedestrian box regions as Si = 1, and oth-

erwise background Si = 0. In most cases, box-based an-

notations would be considered too noisy for semantic seg-

mentation. However, since we place the infusion layer at

conv5, which has been pooled significantly, the differences

between box-based annotations and pixel-wise annotations

diminish rapidly w.r.t. the pedestrian height (Fig. 5). For

example, in the Caltech dataset 68% of pedestrians are less

than 80 pixels tall, which corresponds to 3 × 5 pixels at

conv5 of the RPN. Further, each of the BCN proposals are

pooled to 7 × 7 at conv5. Hence, pixel-wise annotations

may not offer a significant advantage over boxes at the high

levels of pooling our networks undertake.

Benefits Over Detection: A significant advantage of seg-

mentation supervision over detection is its simplicity. For

detection, sensitive hyperparamters must be set, such as

anchor selection and IoU thresholds used for labeling and

NMS. If the chosen anchor scales are too sparse or the IoU

threshold is too high, certain ground truths that fall near the

midpoint of two anchors could be missed or receive low

supervision. In contrast, semantic segmentation treats all

ground truths indiscriminate of how well the pedestrian’s

shape or occlusion-level matches the chosen set of anchors.

In theory, the incorporation of semantic segmentation infu-

sion may help reduce the sensitivity of conv1-5 to such hy-

perparamters. Furthermore, the segmentation supervision

is especially beneficial for the second stage BCN, which on

its own would only know if a pedestrian is present. The in-

fusion of semantic segmentation features inform the BCN

where the pedestrian is, which is critical for differentiating

poorly vs. well-localized proposals.

4. Experiments

We evaluate our proposed SDS-RCNN on popular

datasets including Caltech [8] and KITTI [14]. We perform

comprehensive analysis and ablation experiments using the

Caltech dataset. We refer to our collective method as SDS-

RCNN and our region proposal network as SDS-RPN. We

show the performance curves compared to the state-of-the-

art pedestrian detectors on Caltech in Fig. 6. We further

report a comprehensive overview across datasets in Table 1.

4.1. Benchmark Comparison

Caltech: The Caltech dataset [8] contains ∼350K pedes-

trian bounding box annotations across 10 hours of urban

driving. The log average miss rate sampled against a false

positive per image (FPPI) range of [10−2, 100] is used for

measuring performance. A minimum IoU threshold of 0.5
is required for a detected box to match with a ground truth

box. For training, we sample from the standard training set

according to Caltech10×[31], which contains 42,782 train-

ing images. We evaluate on the standard 4,024 images in the

Caltech 1× test set using the reasonable [9] setting, which

only considers pedestrians with at least 50 pixels in height

and with less than 35% occlusion.
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Figure 6. Comparison of SDS-RCNN with the state-of-the-art

methods on the Caltech dataset using the reasonable setting.

SDS-RCNN achieves an impressive 7.36% miss rate.

The performance gain is a relative improvement of 23%
compared to the best published method RPN+BF (9.58%).

In Fig. 6, we show the ROC plot of miss rate against FPPI

for the current top performing methods reported on Caltech.

We further report our performance using just SDS-RPN

(without cost-sensitive weighting, Sec. 4.2) on Caltech as

shown in Table 1. The RPN performs quite well by it-

self, reaching 9.63% miss rate while processing images at

roughly 3× the speed of competitive methods. Our RPN is

already on par with other top detectors, which themselves

contain a RPN. Moreover, the network significantly out-

performs other standalone RPNs such as in [29] (14.9%).

Hence, the RPN can be leveraged by other researchers to

build better detectors in the future.

KITTI: The KITTI dataset [14] contains ∼80K annotations

of cars, pedestrians, and cyclists. Since our focus is on

pedestrian detection, we continue to use only the pedestrian

class for training and evaluation. The mean Average Pre-

cision (mAP) [11] sampled across a recall range of [0, 1] is

used to measure performance. We use the standard training

set of 7,481 images and evaluate on the designated test set of

7,518 images. Our method reaches a score of 63.05 mAP on

the moderate setting for the pedestrian class. Surprisingly,

we observe that many models which perform well on Cal-

tech do not generalize well to KITTI, as detailed in Table 1.

We expect this is due to both sensitivity to hyperparameters

and the smaller training set of KITTI (∼6× smaller than

Caltech10×). MS-CNN [2] is the current top performing

method for pedestrian detection on KITTI. Aside from the

novelty as a multi-scale object detector, MS-CNN augments

the KITTI dataset by random cropping and scaling. Thus,

incorporating data augmentation could alleviate the smaller

Method Caltech KITTI Runtime

DeepParts [26] 11.89 58.67 1s

CompACT-Deep [3] 11.75 58.74 1s

MS-CNN [2] 9.95 73.70 0.4s

SA-FastRCNN [21] 9.68 65.01 0.59s

RPN+BF [29] 9.58 61.29 0.60s

F-DNN [10] 8.65 - 0.30s

F-DNN+SS [10] 8.18 - 2.48s

SDS-RPN (ours) 9.63 - 0.13s

SDS-RCNN (ours) 7.36 63.05 0.21s

Table 1. Comprehensive comparison of SDS-RCNN with other

state-of-the-art methods showing the Caltech miss rate, KITTI

mAP score, and runtime performance.

training set and lead to better generalization across datasets.

Furthermore, as described in the ablation study of Sec. 4.2,

our weak segmentation supervision primarily improves the

detection of unusual shapes and poses (e.g., cyclists, people

sitting, bent over). However, in the KITTI evaluation, the

person sitting class is ignored and cyclists are counted as

false positives, hence such advantages are less helpful.

Efficiency: The runtime performance of SDS-RCNN takes

∼0.21s/image. We use images of size 720× 960 pixels and

a single Titan X GPU for computation. The efficiency of

SDS-RCNN surpasses the current state-of-the-art methods

for pedestrian detection, often by a factor of 2×. Compared

to F-DNN+SS [10], which also utilizes segmentation cues,

our method executes ∼10× faster. The next fastest runtime

is F-DNN, which takes 0.30s/image with the caveat of re-

quiring multiple GPUs to process networks in parallel. Fur-

ther, our SDS-RPN method achieves very competitive accu-

racy while only taking 0.13s/image (frequently ∼3× faster

than competitive methods using a single GPU).

4.2. Ablation Study

In this section, we evaluate how each significant compo-

nent of our network contributes to performance using the

reasonable set of Caltech [8]. First, we examine the im-

pact of four components: weak segmentation supervision,

proposal padding, cost-sensitive weighting, and stricter su-

pervision. For each experiment, we start with SDS-RCNN

and disable one component at a time as summarized in Ta-

ble 2. For simplicity, we disable components globally when

applicable. Then we provide detailed discussion on the ben-

efits of stage-wise fusion and comprehensively report the

RPN, BCN, and fused performances for all experiments. Fi-

nally, since our BCN is designed to not share features with

the RPN, we closely examine how sharing weights between

stages impacts network diversification and efficiency.

Weak Segmentation: The infusion of semantic features

into shared layers is the most critical component of SDS-

RCNN. The fused miss rate degrades by a full 3.05% when
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Figure 7. Example error sources which are corrected by infusing semantic segmentation into shared layers. Row 1 shows the test images

from Caltech1×. Row 2 shows a visualization of the RPN proposal layer using the baseline network which fails on these examples. Row

3 shows a visualization of the proposal layer from SDS-RCNN, which corrects the errors. Collectively, occlusion and unusual poses of

pedestrians (sitting, cyclist, bent over) make up for 75% of the corrections, suggesting that the the segmentation supervision naturally

informs the shared features on robust pedestrian parts and shape information.

Component Disabled RPN BCN Fusion

proposal padding 10.67 13.09 7.69
cost-sensitive 9.63 14.87 7.89
strict supervision 10.67 17.41 8.71
weak segmentation 13.84 18.76 10.41

SDS-RCNN 10.67 10.98 7.36

Table 2. Ablation experiments evaluated using the Caltech test set.

Each ablation experiment reports the miss rate for the RPN, BCN,

and fused score with one component disabled at a time.

the segmentation supervision is disabled, while both indi-

vidual stages degrade similarly. To better understand the

types of improvements gained by weak segmentation, we

perform a failure analysis between SDS-RCNN and the

“baseline” (non-weak segmentation) network. For analy-

sis, we examine the 43 pedestrian cases which are missed

when weak segmentation is disabled, but corrected other-

wise. Example error corrections are shown in Fig. 7. We

find that ∼48% of corrected pedestrians are at least par-

tially occluded. Further, we find that ∼28% are pedestri-

ans in unusual poses (e.g., sitting, cycling, or bent over).

Hence, the feature maps infused with semantic features be-

come more robust to atypical pedestrian shapes. These ben-

efits are likely gained by semantic segmentation having in-

discriminant coverage of all pedestrians, unlike object de-

tection which requires specific alignment between pedestri-

ans and anchor shapes. A similar advantage could be gained

for object detection by expanding the coverage of anchors,

but at the cost of computational complexity.

Proposal Padding: While padding proposals is an intu-

itive design choice to provide background context (Fig. 3),

the benefit in practice is minor. Specifically, when pro-

posal padding is disabled, the fused performance only wors-

ens from 7.36% to 7.69% miss rate. Interestingly, pro-

posal padding remains critical for the individual BCN per-

formance, which degrades heavily from 10.98% to 13.09%
without padding. The low sensitivty of the fused score to

padding suggests that the RPN is already capable of localiz-

ing and differentiating between partial and full-pedestrians,

thus improving the BCN in this respect is less significant.

Cost-sensitive: The cost-sensitive weighting scheme used

to regularize the importance of large pedestrians over small

pedestrians has an interesting effect on SDS-RCNN. When

the cost-sensitive weighting is disabled, the RPN perfor-

mance actually improves to an impressive 9.63% miss rate.

In contrast, without cost-sensitive weighting the BCN de-

grades heavily, while the fused score degrades mildly. A

logical explanation is that imposing a precedence on a sin-

gle scale is counter-intuitive to the RPN achieving high

recall across all scales. Further, the RPN has the free-

dom to learn scale-dependent features, unlike the BCN

which warps to a fixed size for every proposal. Hence,

the BCN can gain significant boost when encouraged to fo-

cus on large pedestrian features, which may be more scale-

independent than features of small pedestrians.

Strict Supervision: Using a stricter labeling policy while

training the BCN has a substantial impact on the perfor-

mance of both the BCN and fused scores. Recall that the

strict labeling policy requires a box to have IoU > 0.7 to be

considered foreground, while the standard policy requires

IoU > 0.5. When the stricter labeling policy is reduced

to the standard policy, the fused performance degrades by

1.35%. Further, the individual BCN degrades by 6.43%,

which is on par with the degradation observed when weak

4956



Figure 8. Visualization of the diversification between the RPN and

BCN classification characteristics. We plot only boxes which the

RPN and BCN of SDS-RCNN disagree on using a threshold of

0.5. The BCN drastically reduces false positives of the RPN, while

the RPN corrects many missed detections by the BCN.

segmentation is disabled. We examine the failure cases of

the strict versus non-strict BCN and observe that the false

positives caused by double detections reduce by ∼22%.

Hence, the stricter policy enables more aggressive suppres-

sion of poorly localized boxes and therefore reduces double

detections produced as localization errors of the RPN.

Stage Fusion: The power of stage-wise fusion relies on the

assumption that the each network will diversify in their clas-

sification characteristics. Our design explicitly encourages

this diversification by using separate labeling policies and

training distributions for the RPN and BCN. Table 2 shows

that although fusion is useful in every case, it is difficult to

anticipate how well any two stages will perform when fused

without examining their specific strengths and weaknesses.

To better understand this effect, we visualize how fu-

sion behaves when the RPN and BCN disagree (Fig. 8).

We consider only boxes for which the RPN and BCN dis-

agree using a decision threshold of 0.5. We notice that both

networks agree on the majority of boxes (∼80K), but ob-

serve an interesting trend when they disagree. The visual-

ization clearly shows that the RPN tends to predict a sig-

nificant amount of background proposals with high scores,

which are corrected after being fused with the BCN scores.

The inverse is true for disagreements among the foreground,

where fusion is able to correct the majority of pedestrians

boxes given low scores by the BCN. It is clear that whenever

the two networks disagree, the fused result tends toward the

true score for more than ∼80% of the conflicts.

Sharing Features: Since we choose to train a separate RPN

and BCN, without sharing features, we conduct comprehen-

sive experiments using different levels of stage-wise sharing

in order to understand the value of diversification as a trade-

off to efficiency. We adopt the Faster R-CNN feature shar-

ing scheme with five variations differing at the point of shar-

ing (conv1-5) as detailed in Table 3. In each experiment, we

keep all layers of the BCN except those before and includ-

ing the shared layer. Doing so keeps the effective depth of

the BCN unchanged. For example, if the shared layer is

Shared Layer BCN MR Fused MR Runtime

conv5 16.24 10.87 0.15s

conv4 15.53 10.42 0.16s

conv3 14.28 8.66 0.18s

conv2 13.71 8.33 0.21s

conv1 14.02 8.28 0.25s

RGB 10.98 7.36 0.21s

Table 3. Stage-wise sharing experiments which demonstrate the

trade-off of runtime efficiency and accuracy, using the Caltech

dataset. As sharing is increased from RGB (no sharing) to conv5,

both the BCN and Fused miss rate (MR) become less effective.

conv4 then we replace conv1-4 of the BCN with a RoIPool-

ing layer connected to conv4 of the RPN. We configure the

RoIPooling layer to pool to the resolution of the BCN at the

shared layer (e.g., conv4 → 14× 14, conv5→ 7× 7).

We observe that as the amount of sharing is increased,

the overall fused performance degrades quickly. Overall,

the results suggest that forcing the networks to share fea-

ture maps lowers their freedom to diversify and comple-

ment in fusion. In other words, the more the networks share

the more susceptible they become to redundancies. Further,

sharing features up to conv1 becomes slower than no stage-

wise sharing (e.g., RGB). This is caused by the increased

number of channels and higher resolution feature map of

conv1 (e.g., 720 × 960 × 64), which need to be cropped

and warped. Compared to sharing feature maps with conv3,

using no sharing results in a very minor slow down of 0.03
seconds while providing a 1.30% improvement to miss rate.

Hence, our network design favors maximum precision for a

reasonable trade-off in efficiency, and obtains speeds gener-

ally 2× faster than competitive methods.

5. Conclusion

We present a multi-task infusion framework for joint su-

pervision on pedestrian detection and semantic segmenta-

tion. The segmentation infusion layer results in more so-

phisticated shared feature maps which tend to illuminate

pedestrians and make downstream pedestrian detection eas-

ier. We analyze how infusing segmentation masks into

feature maps helps correct pedestrian detection errors. In

doing so, we observe that the network becomes more ro-

bust to pedestrian poses and occlusion compared to with-

out. We further demonstrate the effectiveness of fusing

stage-wise scores and encouraging network diversification

between stages, such that the second stage classifier can

learn a stricter filter to suppress background proposals and

become more robust to poorly localized boxes. In our SDS-

RCNN framework, we report new state-of-the-art perfor-

mance on the Caltech pedestrian dataset (23% relative re-

duction in error), achieve competitive results on the KITTI

dataset, and obtain an impressive runtime approximately

2× faster than competitive methods.
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