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Abstract

Advancements in deep learning have ignited an ex-
plosion of research on efficient hardware for embedded
computer vision. Hardware vision acceleration, however,
does not address the cost of capturing and processing
the image data that feeds these algorithms. We examine
the role of the image signal processing (ISP) pipeline
i computer vision to identify opportunities to reduce
computation and save energy. The key insight is that
imaging pipelines should be be configurable: to switch
between a traditional photography mode and a low-
power vision mode that produces lower-quality image
data suitable only for computer vision. We use eight
computer vision algorithms and a reversible pipeline
stmulation tool to study the imaging system’s impact
on vision performance. For both CNN-based and clas-
sical vision algorithms, we observe that only two ISP
stages, demosaicing and gamma compression, are crit-
ical for task performance. We propose a new image
sensor design that can compensate for these stages. The
sensor design features an adjustable resolution and tun-
able analog-to-digital converters (ADCs). Our proposed
imaging system’s vision mode disables the ISP entirely
and configures the sensor to produce subsampled, lower-
precision image data. This vision mode can save ~75%
of the average energy of a baseline photography mode
with only a small impact on vision task accuracy.

1. Introduction

The deep learning revolution has accelerated progress
in a plethora of computer vision tasks. To bring these
vision capabilities within the battery budget of a smart-
phone, a wave of recent work has designed custom hard-
ware for inference in deep neural networks [15, 19, 30].
This work, however, only addresses part of the whole
cost: embedded vision involves the entire imaging
pipeline, from photons to task result. As hardware
acceleration reduces the energy cost of inference, the
cost to capture and process images will consume a larger
share of total system power [9, 31].
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We study the potential for co-design between camera
systems and vision algorithms to improve their end-to-
end efficiency. Existing imaging pipelines are designed
for photography: they produce high-quality images for
human consumption. An imaging pipeline consists of
the image sensor itself and an image signal processor
(ISP) chip, both of which are hard-wired to produce
high-resolution, low-noise, color-corrected photographs.
Modern computer vision algorithms, however, do not re-
quire the same level of quality that humans do. Our key
observation is that mainstream, photography-oriented
imaging hardware wastes time and energy to provide
quality that computer vision algorithms do not need.

We propose to make imaging pipelines configurable.
The pipeline should support both a traditional photog-
raphy mode and an additional, low-power wvision mode.
In vision mode, the sensor can save energy by producing
lower-resolution, lower-precision image data, and the
ISP can skip stages or disable itself altogether. We
examine the potential for a vision mode in imaging
systems by measuring its impact on the hardware effi-
ciency and vision accuracy. We study vision algorithms’
sensitivity to sensor parameters and to individual ISP
stages, and we use the results to propose an end-to-end
design for an imaging pipeline’s vision mode.

Contributions: This paper proposes a set of mod-
ifications to a traditional camera sensor to support a
vision mode. The design uses variable-accuracy analog-
to-digital converters (ADCs) to reduce the cost of pixel
capture and power-gated selective readout to adjust
sensor resolution. The sensor’s subsampling and quan-
tization hardware approximates the effects of two tradi-
tional ISP stages, demosaicing and gamma compression.
With this augmented sensor, we propose to disable the
ISP altogether in vision mode.

We also describe a methodology for studying the
imaging system’s role in computer vision performance.
We have developed a tool that simulates a configurable
imaging pipeline and its inverse to convert plain im-
ages to approximate raw signals. This tool is critical
for generating training data for learning-based vision
algorithms that need examples of images produced by
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a hypothetical imaging pipeline. Section 3.2 describes
the open-source simulation infrastructure.

We use our methodology to examine eight vision
applications, including classical algorithms for stereo,
optical flow, and structure-from-motion; and convolu-
tional neural networks (CNNs) for object recognition
and detection. For these applications, we find that:

e Most traditional ISP stages are unnecessary when
targeting computer vision. For all but one appli-
cation we tested, only two stages had significant
effects on vision accuracy: demosaicing and gamma
compression.

e Our image sensor can approximate the effects of
demosaicing and gamma compression in the mixed-
signal domain. Using these in-sensor techniques
eliminates the need for a separate ISP for most
vision applications.

e Our image sensor can reduce its bitwidth from 12
to 5 by replacing linear ADC quantization with log-
arithmic quantization while maintaining the same
level of task performance.

Altogether, the proposed vision mode can use roughly a
quarter of the imaging-pipeline energy of a traditional
photography mode without significantly affecting the
performance of most vision algorithms we studied.

2. Related Work

Energy-efficient Deep Learning: Recent re-
search has focused on dedicated ASICs for deep learn-
ing [10, 15, 19, 30, 38?7 | to reduce the cost of forward
inference compared to a GPU or CPU. Our work com-
plements this agenda by focusing on energy efficiency in
the rest of the system: we propose to pair low-power vi-
sion implementations with low-power sensing circuitry.

ISPs for Vision: While most ISPs are fixed-
function designs, Vasilyev et al. [45] propose to use
a programmable CGRA architecture to make them
more flexible, and other work has synthesized custom
ISPs onto FPGAs [22, 23]. Mainstream cameras, in-
cluding smartphones [2], can bypass the ISP to produce
RAW images, but the associated impact on vision is not
known. Liu et al. [32] propose an ISP that selectively
disables stages depending on application needs. We
also explore sensitivity to ISP stages, and we propose
changes to the image sensor hardware that subsume
critical stages in a traditional ISP.

Image Sensors for Vision: In industry, some cam-
eras are marketed with vision-specific designs. For
example, Centeye [5] offers image sensors based on a
logarithmic-response pixel circuit [16] for high dynamic
range. Omid-Zohoor et al. [35] propose logarithmic, low-
bitwidth ADCs and on-sensor processing for efficient

featurization using the histogram of oriented gradients.
Focal-plane processing can compute basic functions such
as edge detection in analog on the sensor [11, 33]. Red-
Eye [30] computes initial convolutions for a CNN using
a custom sensor ADC, and Chen et al. [8] approxi-
mate the first layer optically using angle-sensitive pixels.
Event-based vision sensors detect temporal motion with
custom pixels [3, 25]. Chakrabarti [7] proposes to learn
novel, non-Bayer sensor layouts using backpropagation.
We focus instead on minimally invasive changes to ex-
isting camera pipelines. To our knowledge, this is the
first work to measure vision applications’ sensitivity
to design decisions in a traditional ISP pipeline. Our
proposed pipeline can support both computer vision
and traditional photography.

Other work has measured the energy of image sensing;:
there are potential energy savings when adjusting a
sensor’s frame rate and resolution [31]. Lower-powered
image sensors have been used to decide when to activate
traditional cameras and full vision computations [20].

Compressive sensing shares our goal of reducing sens-
ing cost, but it relies on complex computations to re-
cover images [14]. In contrast, our proposed pipeline lets
vision algorithms work directly on sensor data without
additional image reconstruction.

Error Tolerance in CNNs: Recent work by Dia-
mond et al. [13] studies the impact of sensor noise and
blurring on CNN accuracy and develops strategies to
tolerate it. Our focus is broader: we consider a range of
sensor and ISP stages, and we measure both CNN-based
and “classical” computer vision algorithms.

3. Background & Experimental Setup
3.1. The Imaging Pipeline

Figure 1a depicts a traditional imaging pipeline that
feeds a vision application. The main components are
an image sensor, which reacts to light and produces
a RAW image; an image signal processor (ISP) unit,
which transforms, enhances, and compresses the signal
to produce a complete image, usually in JPEG format;
and the vision application itself.

ISPs consist of a series of signal processing stages.
While the precise makeup of an ISP pipeline varies,
we consider a typical set of stages common to all ISP
pipelines: denoising, demosaicing, color transforma-
tions, gamut mapping, tone mapping, and image com-
pression. This simple pipeline is idealized: modern
ISPs can comprise hundreds of proprietary stages. For
example, tone mapping and denoising can use complex,
adaptive operations that are customized for specific
camera hardware. In this paper, we consider a simple
form of global tone mapping that performs gamma com-
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pression. We also omit analyses that control the sensor,
such as autoexposure and autofocus, and specialized
stages such as burst photography or high dynamic range
(HDR) modes. We select these simple, essential ISP
stages because we believe they represent the common
functionality that may impact computer vision.

3.2. Pipeline Simulation Tool

Many computer vision algorithms rely on machine
learning. Deep learning techniques in particular require
vast bodies of training images. To make learning-based
vision work on our proposed imaging pipelines, we need
a way to generate labeled images that look as if they

were captured by the hypothetical hardware. Instead of
capturing this data from scratch, we develop a toolchain
that can convert existing image datasets.

The tool, called the Configurable & Reversible Imag-
ing Pipeline (CRIP), simulates an imaging pipeline in
“forward” operation and inverts the function in “reverse’
mode. CRIP takes as input a standard image file, runs
the inverse conversion to approximate a RAW image,
and then simulates a specific sensor/ISP configuration
to produce a final RGB image. The result recreates
the image’s color, resolution and quantization as if it
had been captured and processed by a specific image
sensor and ISP design. Figure 2 depicts the workflow
and shows the result of simulating a pipeline with only
gamma compression and demosaicing. Skipping color
transformations leads to a green hue in the output.

The inverse conversion uses an implementation of
Kim et al.’s reversible ISP model [27] augmented with
new stages for reverse denoising and demosaicing as
well as re-quantization. To restore noise to a denoised
image, we use Chehdi et al.’s sensor noise model [43].
To reverse the demosaicing process, we remove channel
data from the image according to the Bayer filter. The
resulting RAW image approximates the unprocessed
output of a camera sensor, but some aspects cannot be
reversed: namely, sensors typically digitize 12 bits per
pixel, but ordinary 8-bit images have lost this detail
after compression. For this reason, we only report
results for quantization levels with 8 bits or fewer.

CRIP implements the reverse stages from
Kim et al. [27], so its model linearization error
is the same as in that work: namely, less than 1%.
To quantify CRIP’s error when reconstructing RAW
images, we used it to convert a Macbeth color chart
photograph and compared the result with its original
RAW version. The average pixel error was 1.064%
and the PSNR was 28.81 dB. Qualitatively, our tool
produces simulated RAW images that are visually
indistinguishable from their real RAW counterparts.

CRIP’s reverse pipeline implementation can use any
camera model specified by Kim et al. [27], but for con-
sistency, this paper uses the Nikon D7000 pipeline. We
have implemented the entire tool in the domain-specific
language Halide [37] for speed. For example, CRIP can
convert the entire CIFAR-10 dataset [28] in one hour
on an 8-core machine. CRIP is available as open source:
https://github.com/cucapra/approx-vision

)

3.3. Benchmarks

Table 1 lists the computer vision algorithms we study.
It also shows the data sets used for evaluation and,
where applicable, training. Our suite consists of 5
CNN-based algorithms and 3 “classical,” non-learning
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