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Abstract

This paper investigates how far a very deep neural net-

work is from attaining close to saturating performance on

existing 2D and 3D face alignment datasets. To this end,

we make the following 5 contributions: (a) we construct,

for the first time, a very strong baseline by combining a

state-of-the-art architecture for landmark localization with

a state-of-the-art residual block, train it on a very large yet

synthetically expanded 2D facial landmark dataset and fi-

nally evaluate it on all other 2D facial landmark datasets.

(b) We create a guided by 2D landmarks network which con-

verts 2D landmark annotations to 3D and unifies all exist-

ing datasets, leading to the creation of LS3D-W, the largest

and most challenging 3D facial landmark dataset to date

(~230,000 images). (c) Following that, we train a neural

network for 3D face alignment and evaluate it on the newly

introduced LS3D-W. (d) We further look into the effect of all

“traditional” factors affecting face alignment performance

like large pose, initialization and resolution, and introduce

a “new” one, namely the size of the network. (e) We show

that both 2D and 3D face alignment networks achieve per-

formance of remarkable accuracy which is probably close

to saturating the datasets used. Training and testing code

as well as the dataset can be downloaded from https:

//www.adrianbulat.com/face-alignment/

1. Introduction

With the advent of Deep Learning and the development

of large annotated datasets, recent work has shown results

of unprecedented accuracy even on the most challenging

computer vision tasks. In this work, we focus on land-

mark localization, in particular, on facial landmark local-

ization, also known as face alignment, arguably one of the

most heavily researched topics in computer vision over the

last decades. Very recent work on landmark localization

using Convolutional Neural Networks (CNNs) has pushed

the boundaries in other domains like human pose estimation

[39, 38, 24, 17, 27, 42, 23, 5], yet it remains unclear what

has been achieved so far for the case of face alignment. The

aim of this work is to address this gap in literature.

Historically, different techniques have been used for

landmark localization depending on the task in hand. For

example, work in human pose estimation, prior to the ad-

vent of neural networks, was primarily based on picto-

rial structures [12] and sophisticated extensions [44, 25,

36, 32, 26] due to their ability to model large appear-

ance changes and accommodate a wide spectrum of human

poses. Such methods though have not been shown capa-

ble of achieving the high degree of accuracy exhibited by

cascaded regression methods for the task of face alignment

[11, 8, 43, 50, 41]. On the other hand, the performance

of cascaded regression methods is known to deteriorate for

cases of inaccurate initialisation, and large (and unfamil-

iar) facial poses when there is a significant number of self-

occluded landmarks or large in-plane rotations.

More recently, fully Convolutional Neural Network ar-

chitectures based on heatmap regression have revolution-

ized human pose estimation [39, 38, 24, 17, 27, 42, 23, 5]

producing results of remarkable accuracy even for the most

challenging datasets [1]. Thanks to their end-to-end training

and little need for hand engineering, such methods can be

readily applied to the problem of face alignment. Follow-

ing this path, our main contribution is to construct and train

such a powerful network for face alignment and investigate

for the first time how far it is from attaining close to saturat-

ing performance on all existing 2D face alignment datasets

and a newly introduced large scale 3D dataset. More specif-

ically, our contributions are:

1. We construct, for the first time, a very strong baseline

by combining a state-of-the-art architecture for land-

mark localization with a state-of-the-art residual block

and train it on a very large yet synthetically expanded

2D facial landmark dataset. Then, we evaluate it on all

other 2D datasets (~230,000 images), investigating how
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Figure 1: The Face Alignment Network (FAN) constructed by stacking four HGs in which all bottleneck blocks (depicted as

rectangles) were replaced with the hierarchical, parallel and multi-scale block proposed of [7].

far are we from solving 2D face alignment.

2. In order to overcome the scarcity of 3D face alignment

datasets, we further propose a guided-by-2D landmarks

CNN which converts 2D annotations to 3D 1 and use it

to create LS3D-W, the largest and most challenging 3D

facial landmark dataset to date (~230,000 images), ob-

tained from unifying almost all existing datasets to date.

3. Following that, we train a 3D face alignment network

and then evaluate it on the newly introduced large scale

3D facial landmark dataset, investigating how far are we

from solving 3D face alignment.

4. We further look into the effect of all “traditional” factors

affecting face alignment performance like large poses,

initialization and resolution, and introduce a “new” one,

namely the size of the network.

5. We show that both 2D and 3D face alignment networks

achieve performance of remarkable accuracy which is

probably close to saturating the datasets used.

2. Closely related work

This Section reviews related work on face alignment and

landmark localization. Datasets are described in detail in

the next Section.

2D face alignment. Prior to the advent of Deep Learn-

ing, methods based on cascaded regression had emerged as

the state-of-the-art in 2D face alignment, see for example

[8, 43, 50, 41]. Such methods are now considered to have

largely “solved” the 2D face alignment problem for faces

with controlled pose variation like the ones of LFPW [2],

Helen [22] and 300-W [30].

We will keep the main result from these works, namely

their performance on the frontal dataset of LFPW [2]. This

performance will be used as a measure of comparison of

how well the methods described in this paper perform as-

suming that a method achieving a similar error curve on a

different dataset is close to saturating that dataset.

CNNs for face alignment. By no means we are the first

1The 3D annotations are actually the 2D projections of the 3D facial

landmarks but for simplicity we will just call them 3D. In the supplemen-

tary material, we present a method for extending them to full 3D.

to use CNNs for face alignment. The method of [35] uses

a CNN cascade to regress the facial landmark locations.

The work in [47] proposes multi-task learning for joint fa-

cial landmark localization and attribute classification. More

recently, the method of [40] extends [43] within recur-

rent neural networks. All these methods have been mainly

shown effective for the near-frontal faces of 300-W [30].

Recent works on large pose and 3D face alignment in-

cludes [20, 50] which perform face alignment by fitting a

3D Morphable Model (3DMM) to a 2D facial image. The

work in [20] proposes to fit a dense 3DMM using a cascade

of CNNs. The approach of [50] fits a 3DMM in an itera-

tive manner through a single CNN which is augmented by

additional input channels (besides RGB) representing shape

features at each iteration. More recent works that are closer

to the methods presented in this paper are [4] and [6]. Nev-

ertheless, [4] is evaluated on [20] which is a relatively small

dataset (3900 images for training and 1200 for testing) and

[6] on [19] which is of moderate size (16,2000 images for

training and 4,900 for testing), includes mainly images col-

lected in the lab and does not cover the full spectrum of

facial poses. Hence, the results of [4] and [6] are not con-

clusive in regards to the main questions posed in our paper.

Landmark localization. A detailed review of state-of-

the-art methods on landmark localization for human pose

estimation is beyond the scope of this work, please see

[39, 38, 24, 17, 27, 42, 23, 5]. For the needs of this work,

we built a powerful CNN for 2D and 3D face alignment

based on two components: (a) the state-of-the-art Hour-

Glass (HG) network of [23], and (b) the hierarchical, par-

allel & multi-scale block recently proposed in [7]. In par-

ticular, we replaced the bottleneck block [15] used in [23]

with the block proposed in [7].

Transferring landmark annotations. There are a few

works that have attempted to unify facial alignment datasets

by transferring landmark annotations, typically through ex-

ploiting common landmarks across datasets [49, 34, 46].

Such methods have been primarily shown to be success-

ful when landmarks are transferred from more challenging

to less challenging images, for example in [49] the target
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dataset is LFW [16] or [34] provides annotations only for

the relatively easy images of AFLW [21]. Hence, the com-

munity primarily relies on the unification performed manu-

ally by the 300-W challenge [29] which contains less than

5,000 near frontal images annotated from a 2D perspective.

Using 300-W-LP [50] as a basis, this paper presents the

first attempt to provide 3D annotations for all other datasets,

namely AFLW-2000 [50] (2,000 images), 300-W test set

[28] (600 images), 300-VW [33] (218,595 frames), and

Menpo training set (9,000 images). To this end, we pro-

pose a guided-by-2D landmarks CNN which converts 2D

annotations to 3D and unifies all aforementioned datasets.

3. Datasets

In this Section, we provide a description of how existing

2D and 3D datasets were used for training and testing for

the purposes of our experiments. We note that the 3D an-

notations preserve correspondence across pose as opposed

to the 2D ones and, in general, they should be preferred.

We emphasize that the 3D annotations are actually the 2D

projections of the 3D facial landmark coordinates but for

simplicity we will just call them 3D. In the supplementary

material, we present a method for extending these annota-

tions to full 3D. Finally, we emphasize that we performed

cross-database experiments only.

Dataset Size pose annot. synt.

300-W 4,000 [−45o, 45o] 2D No

300W-LP-2D 61,225 [−90o, 90o] 2D Yes

300W-LP-3D 61,225 [−90o, 90o] 3D Yes

AFLW2000-3D 2,000 [−90o, 90o] 3D No

300-VW 218,595 [−45o, 45o] 2D No

LS3D-W (ours) 230,000 [−90o, 90o] 3D No

Table 1: Summary of the most popular face alignment

datasets and their main characteristics.

3.1. Training datasets

For training and validation, we used 300-W-LP [50], a

synthetically expanded version of 300-W [29]. 300-W-LP

provides both 2D and 3D landmarks allowing for training

models and conducting experiments using both types of an-

notations. For some 2D experiments, we also used the origi-

nal 300-W dataset [29] for fine tuning, only. This is because

the 2D landmarks of 300-W-LP are not entirely compatible

with the 2D landmarks of the test sets used in our experi-

ments (i.e. 300-W test set, [28], 300-VW [33] and Menpo

[45]), but the original annotations from 300-W are.

300-W. 300-W [29] is currently the most widely-used in-

the-wild dataset for 2D face alignment. The dataset itself is

a concatenation of a series of smaller datasets: LFPW [3],

HELEN [22], AFW [51] and iBUG [30], where each im-

age was re-annotated in a consistent manner using the 68

2D landmark configuration of Multi-PIE [13]. The dataset

contains in total ~4,000 near frontal facial images.

300W-LP-2D and 300W-LP-3D. 300-W-LP is a syntheti-

cally generated dataset obtained by rendering the faces of

300-W into larger poses, ranging from −900 to 900, using

the profiling method of [50]. The dataset contains 61,225

images providing both 2D (300W-LP-2D) and 3D landmark

annotations (300W-LP-3D).

3.2. Test datasets

This Section describes the test sets used for our 2D

and 3D experiments. Observe that there is a large num-

ber of 2D datasets/annotations which are however problem-

atic for moderately large poses (2D landmarks lose cor-

respondence) and that the only in-the-wild 3D test set is

AFLW2000-3D [50] 2. We address this significant gap in

3D face alignment datasets in Section 6.

3.2.1 2D datasets

300-W test set. The 300-W test set consists of the 600 im-

ages used for the evaluation purposes of the 300-W Chal-

lenge [28]. The images are split in two categories: Indoor

and Outdoor. All images were annotated with the same 68

2D landmarks as the ones used in the 300-W data set.

300-VW. 300-VW[33] is a large-scale face tracking dataset,

containing 114 videos and in total 218,595 frames. From

the total of 114 videos, 64 are used for testing and 50 for

training. The test videos are further separated into three

categories (A, B, and C) with the last one being the most

challenging. It is worth noting that some videos (especially

from category C) contain very low resolution/poor quality

faces. Due to the semi-automatic annotation approach (see

[33] for more details), in some cases, the annotations for

these videos are not so accurate (see Fig. 3). Another source

of annotation error is caused by facial pose, i.e. large poses

are also not accurately annotated (see Fig. 3).

Menpo. Menpo is a recently introduced dataset [45] con-

taining landmark annotations for about 9,000 faces from

FDDB [18] and ALFW. Frontal faces were annotated in

terms of 68 landmarks using the same annotation policy as

the one of 300-W but profile faces in terms of 39 different

landmarks which are not in correspondence with the land-

marks from the 68-point mark-up.

3.2.2 3D datasets

AFLW2000-3D. AFLW2000-3D [50] is a dataset con-

structed by re-annotating the first 2000 images from AFLW

[21] using 68 3D landmarks in a consistent manner with the

2The data from [19] includes mainly images collected in the lab and do

not cover the full spectrum of facial poses.
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ones from 300W-LP-3D. The faces of this dataset contain

large-pose variations (yaw from −90o to 90o), with various

expressions and illumination conditions. However, some

annotations, especially for larger poses or occluded faces

are not so accurate (see Fig. 6).

3.3. Metrics

Traditionally, the metric used for face alignment is the

point-to-point Euclidean distance normalized by the inte-

rocular distance [10, 29, 33]. However, as noted in [51],

this error metric is biased for profile faces for which the in-

terocular distance can be very small. Hence, we normalize

by the bounding box size. In particular, we used the Nor-

malized Mean Error defined as:

NME =
1

N

N∑

k=1

‖xk − yk‖2
d

, (1)

where x denotes the ground truth landmarks for a given

face, y the corresponding prediction and d is the square-

root of the ground truth bounding box, computed as d =√
wbbox ∗ hbbox. Although we conducted both 2D and 3D

experiments, we opted to use the same bounding box defini-

tion for both experiments; in particular we used the bound-

ing box calculated from the 2D landmarks. This way, we

can readily compare the accuracy achieved in 2D and 3D.

4. Method

This Section describes FAN, the network used for 2D

and 3D face alignment. It also describes 2D-to-3D FAN, the

network used for constructing the very large scale 3D face

alignment dataset (LS3D-W) containing more than 230,000

3D landmark annotations.

4.1. 2D and 3D Face Alignment Networks

We coin the network used for our experiments simply

Face Alignment Network (FAN). To our knowledge, it is the

first time that such a powerful network is trained and evalu-

ated for large scale 2D/3D face alignment experiments.

We construct FAN based on one of the state-of-the-art

architectures for human pose estimation, namely the Hour-

Glass (HG) network of [23]. In particularly, we used a

stack of four HG networks (see Fig. 1). While [23] uses

the bottleneck block of [14] as the main building block for

the HG, we go one step further and replace the bottleneck

block with the recently introduced hierarchical, parallel and

multi-scale block of [7]. As it was shown in [7], this block

outperforms the original bottleneck of [14] when the same

number of network parameter were used. Finally, we used

300W-LP-2D and 300W-LP-3D to train 2D-FAN and 3D-

FAN, respectively.

4

3D Heatmaps

2D Heatmaps
c

Figure 2: The 2D-to-3D-FAN network used for the creation

of the LS3D-W dataset. The network takes as input the

RGB image and the 2D landmarks and outputs the corre-

sponding 2D projections of the 3D landmarks.

4.2. 2D­to­3D Face Alignment Network

Our aim is to create the very first very large scale dataset

of 3D facial landmarks for which annotations are scarce.

To this end, we followed a guided-based approach in which

a FAN for predicting 3D landmarks is guided by 2D land-

marks. In particular, we created a 3D-FAN in which the in-

put RGB channels have been augmented with 68 additional

channels, one for each 2D landmark, containing a 2D Gaus-

sian with std = 1px centered at each landmark’s location.

We call this network 2D-to-3D FAN. Given the 2D facial

landmarks for an image, 2D-to-3D FAN converts them to

3D. To train 2D-to-3D FAN, we used 300-W-LP which pro-

vides both 2D and 3D annotations for the same image. We

emphasize again that the 3D annotations are actually the 2D

projections of the 3D coordinates but for simplicity we call

them 3D. Please see supplementary material for extending

these annotations to full 3D.

4.3. Training

For all of our experiments, we independently trained

three distinct networks: 2D-FAN, 3D-FAN, and 2D-to-3D-

FAN. For the first two networks, we set the initial learning

rate to 10−4 and used a minibatch of 10. During the process,

we dropped the learning rate to 10−5 after 15 epochs and

to 10−6 after another 15, training for a total of 40 epochs.

We also applied random augmentation: flipping, rotation

(from −50o to 50o), color jittering, scale noise (from 0.8

to 1.2) and random occlusion. The 2D-to-3D-FAN model

was trained by following a similar procedure increasing the

amount of augmentation even further: rotation (from −70o

to 70o) and scale (from 0.7 to 1.3). Additionally, the learn-

ing rate initially was set to 10−3. All networks were imple-

mented in Torch7 [9] and trained using rmsprop [37].

5. 2D face alignment

This Section evaluates 2D-FAN (trained on 300-W-LP-

2D), on 300-W test set, 300-VW (both training and test

sets), and Menpo (frontal subset). Overall, 2D-FAN is eval-

uated on more than 220,000 images. Prior to reporting our

results, the following points need to be emphasized:
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1. 300-W-LP-2D contains a wide range of poses (yaw an-

gles in [−90◦, 90◦], yet it is still a synthetically generated

dataset as this wide spectrum of poses were produced by

warping the nearly frontal images of the 300-W dataset.

It is evident that this lack of real data largely increases

the difficulty of the experiment.

2. The 2D landmarks of 300-W-LP-2D that 2D-FAN was

trained on are slightly different from the 2D landmarks

of the 300-W test set, 300-VW and Menpo. To allevi-

ate this, the 2D-FAN was further fine-tuned on the orig-

inal 300-W training set for a few epochs. Although this

seems to resolve the issue, this discrepancy obviously

increases the difficulty of the experiment.

3. We compare the performance of 2D-FAN on all the

aforementioned datasets with that of an unconventional

baseline: the performance of a recent state-of-the-art

method, namely MDM [40] on LFPW test set, initialized

with the ground truth bounding boxes. We call this re-

sult MDM-on-LFPW. As there is very little performance

progress made on the frontal dataset of LFPW over the

past years, we assume that a state-of-the-art method like

MDM (nearly) saturates it. Hence, we use the produced

error curve to compare how well our method does on the

much more challenging aforementioned test sets.

Figure 3: Fittings with the highest error from 300-VW

(NME 6.8-7%). Red: ground truth. White: our predictions.

In most cases, our predictions are more accurate than the

ground truth.

The cumulative error curves for our 2D experiments on

300-VW, 300-W test set and Menpo are shown in Fig. 8. We

additionally report the performance of MDM on all datasets

initialized by ground truth bounding boxes, ICCR, the state-

of-the-art face tracker of [31], on 300-VW (the only track-

ing dataset), and our unconventional baseline (called MDM-

on-LFPW). Comparison with a number of methods in terms

of AUC are also provided in Table 2.

With the exception of Category C of 300-VW, it is evi-

dent that 2D-FAN achieves literally the same performance

on all datasets, outperforming MDM and ICCR, and, no-

tably, matching the performance of MDM-on-LFPW. Out

of 7,200 images (from Menpo and 300-W test set), there are

in total only 18 failure cases, which represent 0.25% of the

images (we consider a failure a fitting with NME > 7%).

After removing these cases, the 8 fittings with the highest

error for each dataset are shown in Fig. 4.

Figure 4: Fittings with the highest error from 300-W test set

(first row) and Menpo (second row) (NME 6.5-7%). Red:

ground truth. White: our predictions. In most cases, our

predictions are more accurate than the ground truth.

Regarding the Category C of 300-VW, we found that the

main reason for this performance drop is the quality of the

annotations which were obtained in a semi-automatic man-

ner. After removing all failure cases (101 frames represent-

ing 0.38% of the total number of frames), Fig. 3 shows the

quality of our predictions vs the ground truth landmarks for

the 8 fittings with the highest error for this dataset. It is ev-

ident that in most cases our predictions are more accurate.

Conclusion: Given that 2D-FAN matches the performance

of MDM-on-LFPW, we conclude that 2D-FAN achieves

near saturating performance on the above 2D datasets. No-

tably, this result was obtained by training 2D-FAN primarily

on synthetic data, and there was a mismatch between train-

ing and testing landmark annotations.

6. Large Scale 3D Faces in-the-Wild dataset

Motivated by the scarcity of 3D face alignment annota-

tions and the remarkable performance of 2D-FAN, we opted

to create a large scale 3D face alignment dataset by convert-

ing all existing 2D face alignment annotations to 3D. To this

end, we trained a 2D-to-3D FAN as described in Subsection

4.2 and guided it using the predictions of 2D-FAN, creating

3D landmarks for: 300-W test set, 300-VW (both training

and all 3 testing datasets), Menpo (the whole dataset).

Evaluating 2D-to-3D is difficult: the only available 3D

face alignment in-the-wild dataset (not used for training)

is AFLW2000-3D [50]. Hence, we applied our pipeline

(consisting of applying 2D-FAN for producing the 2D land-

marks and then 2D-to-3D FAN for converting them to 3D)

on AFLW2000-3D and then calculated the error, shown in

Fig. 5 (note that for normalization purposes, 2D bounding
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Dataset 2D-FAN(Ours) MDM[40] iCCR[31] TCDCN[47] CFSS[48]

300VW-A 72.1% 70.2 % 65.9% - -

300VW-B 71.2% 67.9 % 65.5% - -

300VW-C 64.1% 54.6% 58.1% - -

Menpo 67.5% 67.1% - 47.9% 60.5%

300W 66.9% 58.1% - 41.7% 55.9%

Table 2: AUC (calculated for a threshold of 7%) on all major 2D face alignment datasets. MDM, CFSS and TCDCN were

evaluated using ground truth bounding boxes and the openly available code.

Figure 5: NME on AFLW2000-3D, between the original

annotations of [50] and the ones generated by 2D-to-3D-

FAN. The error is mainly introduced by the automatic an-

notation process of [50]. See Fig. 6 for visual examples.

box annotations are still used). The results show that there

is discrepancy between our 3D landmarks and the ones pro-

vided by [50]. After removing a few failure cases (19 in

total, which represent 0.9% of the data), Fig. 6 shows 8 im-

ages with the highest error between our 3D landmarks and

the ones of [50]. It is evident, that this discrepancy is mainly

caused from the semi-automatic annotation pipeline of [50]

which does not produce accurate landmarks especially for

images with difficult poses.

Figure 6: Fittings with the highest error from AFLW2000-

3D (NME 7-8%). Red: ground truth from [50]. White: pre-

dictions of 2D-to-3D-FAN. In most cases, our predictions

are more accurate than the ground truth.

By additionally including AFLW2000-3D into the afore-

mentioned datasets, overall, ~230,000 images were anno-

tated in terms of 3D landmarks leading to the creation of

the Large Scale 3D Faces in-the-Wild dataset (LS3D-W),

the largest 3D face alignment dataset to date.

7. 3D face alignment

This Section evaluates 3D-FAN trained on 300-W-LP-

3D, on LS3D-W (described in the previous Section) i.e.

on the 3D landmarks of the 300-W test set, 300-VW (both

training and test sets), and Menpo (the whole dataset) and

AFLW2000-3D (re-annotated). Overall, 3D-FAN is evalu-

ated on ~230,000 images. Note that compared to the 2D

experiments reported in Section 5, more images in large

poses have been used as our 3D experiments also include

AFLW2000-3D and the profile images of Menpo (~2000

more images in total).

The results of our 3D face alignment experiments on

300-W test set, 300-VW, Menpo and AFLW2000-3D are

shown in Fig. 9. We additionally report the performance of

the state-of-the-art method of 3DDFA (trained on the same

dataset as 3D-FAN) on all datasets.

Conclusion: 3D-FAN essentially produces the same accu-

racy on all datasets largely outperforming 3DDFA. This ac-

curacy is slightly increased compared to the one achieved by

2D-FAN, especially for the part of the error curve for which

the error is less than 2% something which is not surprising

as now the training and testing datasets are annotated using

the same mark-up.

8. Ablation studies

To further investigate the performance of 3D-FAN under

challenging conditions, we firstly created a dataset of 7,200

images from LS3D-W so that there is an equal number of

images in yaw angles [0o − 30o], [30o − 60o] and [60o −
90o]. We call this dataset LS3D-W Balanced. Then, we

conducted the following experiments:

Performance across pose. We report the performance

of 3D-FAN on LS3D-W Balanced for each pose sepa-

rately in terms of the Area Under the Curve (AUC) (calcu-

lated for a threshold of 7%) in Table 3. We observe only

a slight degradation of performance for very large poses

([60o − 90o]). We believe that this is to some extent to be

expected as 3D-FAN was largely trained with synthetic data

1026



Yaw #images 3D-FAN (Ours)

[0o − 30o] 2400 73.5%

[30o − 60o] 2400 74.6%

[60o − 90o] 2400 68.8%

Table 3: AUC (calculated for a threshold of 7%) on the

LS3D-W Balanced for different yaw angles.

for these poses (300-W-LP-3D). This data was produced by

warping frontal images (i.e. the ones of 300-W) to very

large poses which causes face distortion especially for the

face region close to the ears.

Conclusion: Facial pose is not a major issue for 3D-FAN.

Performance across resolution. We repeated the previous

Figure 7: AUC on the LS3D-W Balanced for different face

resolutions. Up to 30px, performance remains high.

experiment but for different face resolutions (resolution is

reduced relative to the face size defined by the tight bound-

ing box) and report the performance of 3D-FAN in terms

of AUC in Fig. 7. Note that we did not retrain 3D-FAN to

particularly work for such low resolutions. We observe sig-

nificant performance drop for all poses only when the face

size is as low as 30 pixels.

Conclusion: Resolution is not a major issue for 3D-FAN.

Noise [0o − 30o] [30o − 60o] [60o − 90o]

0% 74.5% 75.2% 69.8%

10% 73.5% 74.6% 68.8%

20% 70.8% 71.7% 66.1%

30% 63.8% 63.5% 57.2%

Table 4: AUC on the LS3D-W Balanced for different levels

of initialization noise. The network was trained with a noise

level of up to 20%.

Performance across noisy initializations. For all re-

ported results so far, we used 10% of noise added to the

ground truth bounding boxes. Note that 3D-FAN was

trained with noise level of 20% percent. Herein, we re-

peated the previous experiment but for different noise levels

and report the performance of 3D-FAN in terms of AUC in

Table 4. We observe only small performance decrease for

noise level equal to 30% which is greater than the level of

noise that the network was trained with.

Conclusion: Initialization is not a major issue for 3D-FAN.

#params [0o − 30o] [30o − 60o] [60o − 90o]

2M 70.9% 69.9% 55.8%

4M 71.0% 70.5% 57.0%

6M 71.5% 71.1% 58.3%

12M 72.7% 72.7% 67.1%

18M 73.4% 74.2% 68.3%

24M 73.5% 74.6% 68.8%

Table 5: AUC on the LS3D-W Balanced for various net-

work sizes. Between 12-24M parameters, performance re-

mains almost the same.

Performance across different network sizes. For all re-

ported results so far, we used a very powerful 3D-FAN with

24M parameters. Herein, we repeated the previous experi-

ment varying the number of network parameters and report

the performance of 3D-FAN in terms of AUC in Table 5.

The number of parameters is varied by firstly reducing the

number of HG networks used from 4 to 1. Then, the number

of parameters was dropped further by reducing the number

of channels inside the building block. It is important to note

that even then biggest network is able to run on 28-30 fps on

a TitanX GPU while the smallest one can reach 150 fps. We

observe that up to 12M, there is only a small performance

drop and that the network’s performance starts to drop sig-

nificantly only when the number of parameters becomes as

low as 6M.

Conclusion: There is a moderate performance drop vs the

number of parameters of 3D-FAN. We believe that this is an

interesting direction for future work.

9. Conclusions

We constructed a state-of-the-art neural network for

landmark localization, trained it for 2D and 3D face align-

ment, and evaluate it on hundreds of thousands of images.

Our result show that our network nearly saturates these

datasets, showing also remarkable resilience to pose, reso-

lution, initialization, and even to the number of the network

parameters used. Although some very unfamiliar poses

were not explored in these datasets, there is no reason to be-

lieve, that given sufficient data, the network does not have

the learning capacity to accommodate them, too.
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(a) 300VW-Category A (b) 300VW-Category B (c) 300VW-Category C

(d) 300-W Testset (Indoor and Outdoor subset). (e) Menpo (on faces annotated with 68 points).

Figure 8: 2D face alignment experiments: NME (all 68 points used) on 300-VW (a-c), 300-W Testset (d) and Menpo (e). Our

model is called 2D-FAN. MDM is initialized with ground truth bounding boxes. Note: MDM-on-LFPW is not a method

but the curved produced by running MDM on LFPW test set, initialized with the ground truth bounding boxes.

(a) 300-W-3D Test set (b) AFLW2000-3D, re-annotated using

2D-to-3D FAN.

(c) Menpo-3D

(d) 300VW-3D Category A (e) 300VW-3D Category B (f) 300VW-3D Category C

Figure 9: 3D face alignment experiments: NME (all 68 points used) on the newly introduced LS3D-W dataset.
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