
A Joint Intrinsic-Extrinsic Prior Model for Retinex

Bolun Cai1 Xianming Xu1∗ Kailing Guo1 Kui Jia1 Bin Hu2 Dacheng Tao3

1School of Electronic and Information Engineering, South China University of Technology, China
2Ubiquitous Awareness and Intelligent Solutions Lab, Lanzhou University, China

3UBTECH Sydney AI Centre, School of IT, FEIT, The University of Sydney, Australia

Abstract

We propose a joint intrinsic-extrinsic prior model to

estimate both illumination and reflectance from an observed

image. The 2D image formed from 3D object in the scene

is affected by the intrinsic properties (shape and texture)

and the extrinsic property (illumination). Based on a

novel structure-preserving measure called local variation

deviation, a joint intrinsic-extrinsic prior model is proposed

for better representation. Better than conventional Retinex

models, the proposed model can preserve the structure in-

formation by shape prior, estimate the reflectance with fine

details by texture prior, and capture the luminous source

by illumination prior. Experimental results demonstrate

the effectiveness of the proposed method on simulated and

real data. Compared with the other Retinex algorithms

and state-of-the-art algorithms, the proposed model yields

better results on both subjective and objective assessments.

1. Introduction

Retinex theory is a color perception model of human

vision and is used to remove illumination effects in images.

The primary goal of Retinex is to decompose the observed

images into illumination and reflectance. In such a de-

composition, the illumination represents the light intensity

on the objects, and the reflectance represents the physical

characteristics of objects. There are many applications

derived from Retinex, such as backlit enhancement [13],

low-light enhancement [14], and color correction [15].

It is an ill-posed problem to estimate illumination and

reflectance from a single observed image. Based on the

Retinex theory [28, 27], many algorithms have been pro-

posed to handle this problem. Among them, path-based

algorithms, PDE-based algorithms, and center/surround

algorithms are three kinds of classical Retinex algorithms.

Path-based algorithms [26, 4] consider that the reflectance

depends on the multiplication of the ratios along random
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walks, which bring along high computational complexity.

In [12, 16], the path computation is replaced by a recursive

matrix calculation to make the algorithm more efficient,

but the number of iterations is not clearly defined and

can strongly influence the final result. In the PDE-based

algorithms [21, 29], a partial differential equation (PDE)

is adopted to obtain the reflectance, which can be solved

efficiently by fast fourier transformation (FFT). However,

the non-sparse divergence free vector field results in the

gradient without the expected piece-wise continuity. The

center/surround algorithms, including single-scale Retinex

(SSR) [23], multi-scale Retinex (MSR) [22] and multi-scale

Retinex with color restoration (MSRCR) [33], constrain the

illumination component to be smooth, and the constraint is

contrary for the reflectance. Because Gaussian filter without

structure-preserving is used to estimate the illumination,

they are prone to have halo artifacts near structural edges.

Recently, several variational methods are introduced to

estimate illumination and reflectance. The first variational

framework (VF) for Retinex is introduced by Kimmel et al.

[24], and its objective function is established based on the

smooth illumination assumption. But the consideration of

reflectance assumption is lacking in the variational frame-

work. In [30], a total variation model (TVM) for reflectance

decomposition is proposed by adopting Bregman iteration.

However, the restored reflectance is over-smoothed and fine

details are lost due to the side effect of the logarithmic trans-

formation. Fu et al. [13] propose a probabilistic method

for simultaneous reflectance and illumination estimation

(SRIE) in the linear domain, which can better preserve the

details than the logarithmic domain does. Furthermore, the

most recent work in [15] proposes a weighted variational

model (WVM) to reinforce the regularization of bright

regions in the logarithmic domain. Both SRIE and WVM

are based on the simplified assumption that illumination

tends to change smoothly. However, different surfaces

in different directions is faced with different illumination,

which may result in incorrect estimation of illumination

near edges. Moreover, the information of luminous source

in the scene may be damaged due to the unconstrained
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isotropic smoothness assumption.

According to [11, 31], the photograph appearance of

3D object in the world is affected by intrinsic-extrinsic

properties including shape, texture, and illumination. In this

paper, a joint intrinsic-extrinsic prior model for Retinex is

proposed to decompose both illumination and reflectance in

the linear domain. To the best of our knowledge, this is

the first time that shape prior information is incorporated in

Retinex model. First, a novel structure-preserving measure

called local variation deviation is proposed as a shape prior

to preserve the structure. A texture prior is used to keep

the reflectance with fine details and piece-wise continuity.

Then a bright channel prior captures the luminous source

based on illumination assumption. Finally, a block co-

ordinate descent method based on iteratively re-weighted

least square is adopted to optimize the illumination and

reflectance simultaneously. Moreover, a fast solver called

preconditioned conjugate gradient [2] is used to reduce the

complexity from O(N3) to O(N) in each iteration.

2. Local Variation Deviation

The illumination is piece-wisely smooth due to the

shape of objects, which can be decomposed by a structure-

preserving image smoothing. In this section, we first

review some existing edge/structure-preserving smoothing

method, and then propose a novel texture/structure selection

measure for shape prior.

2.1. Existing Edge/Structure­Preserving Smoothing

Depending on the application, the edge/structure-

preserving smoothing operators (in Fig. 1) may be ma-

nipulated separately in various ways, which can be di-

vided into edge-aware filter, statistics-based method, and

optimization-based method.

• Edge-aware filters, e.g. bilateral filter (BLF) [37] and

rolling guidance filter (RGF) [44], are developed in differ-

ent strategies. These edge-aware filters trade-off between

details flattening and edge preservation in neighboring pix-

els. However, Gibbs phenomenon of local filters will result

in ringing-effect near the edge.

• Statistics-based smoothing method, such as median

filter (MED) [32] and local extrema filter (LEF)[36], can

remove high-contrast details. Statistics-based methods cal-

culate distribution mode rather than numerical methods in

local patches, which can perfectly remove salt and pepper

noise. But for high-frequency signals, local statistics still

produce oscillating results.

• Weighted least squares (WLS) [9] and relative total

variation (RTV) [42] are two representative optimization-

based methods. These methods restore images by opti-

mizing functions containing weighted L2 norm or total

variation norm. However, they all focus on relatively small

variance suppression and vulnerable to textures.

2.2. Our Approach

We address above problems in the mentioned existing

methods by a novel texture/structure selection measure. A

local statistical magnitude called local variation deviation

(LVD) is proposed for structure-preserving smoothing by a

global optimization function.

In statistics, the standard deviation is a measure that is

used to quantify the consistency of a set of data. The local

variation deviation provides a compact and natural way to

identify different type of the variation with its statistical

property. The local variation represents the gradient feature

and its deviation represents the variation correlation in the

local patch. Therefore, local variation deviation provides

surprisingly strong discriminative power in distinguishing

texture (weak correlation) and structure (strong correlation).

In mathematical terms, let Dx/y denote the local hori-

zontal/vertical variation deviation extracted from I:

Dx/y =

∣

∣

∣

∣

∇x/yI −
1

|Ω|

∑

Ω
∇x/yI

∣

∣

∣

∣

, (1)

where ∇x/y is the gradient operator, and Ω is a local patch

with the size of r×r (r is set to 3 in this paper). To enhance

the discrimination between the texture and structure, a

relative deviation replaces the general deviation to amplify

the distinction, which is rewritten as

Rx/y =

∣
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∣

∣

∇x/yI
1
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∑
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∇x/yI + ǫ

∣

∣

∣
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, (2)

where ǫ is a small number to avoid division by zero. As

illustrated in Fig. 2, the local patches with texture and

structure are described by significantly difference of local

variation deviation. To remove the textures, the smoothing

result I is expressed by an objective function with the LVD

measure: argminI ‖I − S‖
2

2
+ α‖Rx‖1 + α‖Ry‖1. The

first term ‖I − S‖
2

2
is to minimize the distance between the

smoothing result I and the input S. As demonstrated in

Fig. 1(h), the proposed approach can effectively eliminate

the texture without distorting the structure.

2.3. Analysis

The structure-preserving smoothing property of the local

variation deviation can be explained intuitively as following

(let the mean local variation value be∇I = 1

|Ω|

∑

Ω
∇I for

terse expression):

– Case 1: Flat. If the patch I is almost constant, we have

∇I ≈ 0 and ∇I ≈ 0, so D ≈ 0 andR ≈ 0.

– Case 2: Texture. If the patch I changes frequently, ∇I
fluctuates more rapidly than ∇I , so D > 0 andR ≫ 1.

– Case 3: Structure. If the patch I changes in accordance,

the deviation of ∇I is vary small, so D ≈ 0 andR ≈ 1.

To quantitativelly analyze the effectiveness of the LVD

measure, we generate an 1D signal containing both texture
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(a) Input (b) BLF [37] (c) RGF [44] (d) MED [32] (e) LEF [36] (f) WLS [9] (g) RTV [42] (h) LVD

Figure 1: Comparison of different struct-preserving smoothing on a noisy image and a line of pixels extracted from it. (a)

Input. (b) BLF (σs = 12, σr = 0.45). (c) RGF (σs = 9, σr = 0.05). (d) MED (r = 10). (e) LEF (r = 3). (f) WLS

(λ = 0.35, α = 1.8). (g) RTV (λ = 0.015, εs = 0.02). (h) LVD (α = 0.001).

A B C D E F

D 0.073 0.079 0.043 0.013 0.007 0.013

R 3.672 3.971 2.168 0.572 0.336 0.637

Figure 2: Local variation deviation for different patch-

es. D and R are the averages of variation deviation in

the local patches. The local variation deviation provides

strong discriminative power in distinguishing texture (in

blue bounding box) and structure (in green bounding box).

and structure in Fig. 3 – that is, the absolute variation |∇I|
contains full gradients including textures and structures; the

mean variation
∣

∣∇I
∣

∣ only contains obvious structures; the

relative deviation R captures the textures from the most

prominent structures. In Fig. 4, the local variation deviation

R is analyzed on the noisy input. As shown in Fig. 4(a)

and Fig. 4(b), the local mean filter inhibits the textural

response, so the texture produces smaller values of
∣

∣∇I
∣

∣

than |∇I|. Another intuitive explanation is that the structure

in neighbor contributes more similar direction gradients

than the texture with complex patterns.

3. A Joint Intrinsic-Extrinsic Prior Model

The physical model of Retinex can be described as S =
I · R, which means to decompose the observed image S

into the illumination I and the reflectance R. According to

Figure 3: The analysis of LVD on an 1D simulated signal.

(a) |∇I| (b)
∣

∣∇I
∣

∣ (c) R

Figure 4: The LVD on the noisy input as in Fig. 1(a).

[11, 31], the appearance of objects is affected by intrinsic

and extrinsic properties. The intrinsic properties of objects

including shape and texture are independent of illumination,

and they not only influence the reflectance but also the

illumination conditions. The illumination in the scene is

a extrinsic property, which causes the color appearance

changes. In this section, an intrinsic-extrinsic prior model

for Retinex is developed as an energy minimization problem

with “shape, texture, and illumination” constraints.
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3.1. Intrinsic Prior on Shape & Texture

Since illumination is unknown, a shape prior is proposed

to seek the structure of illumination conditions. The prior

on shape is motivated by the observation that the object

shape tends to be oriented isotopically in the scene. That is,

the different surfaces face different illumination with equal

probability. This assumption is valid in many real-world

environments, such as floors, walls, ground-plane, and sky

(as Fig. 5). Thanks to the performance of local variation

Figure 5: The structure of illumination in the real-world

environments. The different colored masks represent ex-

presses the surfaces with different illumination conditions.

deviation, the prior on shape is simple and yet very effective

to make structures stand out. We combine Rx and Ry to

form an effective prior for structure decomposition. The

energy function is finally expressed as

Es (I) =

∥

∥

∥

∥

∥

∇xI
1

|Ω|

∑

Ω
∇xI + ǫ

∥

∥

∥

∥

∥

1

+

∥

∥

∥

∥

∥

∇yI
1

|Ω|

∑

Ω
∇yI + ǫ

∥

∥

∥

∥

∥

1

(3)

Since possible noise previously hiding for the low-light

regions is amplified simultaneously, an important problem

of reflectance estimation is how to suppress noise in dark

areas. Based on the well-known assumption that the re-

flectance contains fine texture and is piece-wise continuous

[40], the distribution of gradients of reflectance is formu-

lated with a Laplacian distribution, which corresponds to

total variance sparsity. The texture prior enforces piece-

wise continuous on the reflectance R is given as:

Et (R) = ‖∇xR‖1 + ‖∇yR‖1 (4)

3.2. Extrinsic Prior on Illumination

If illumination is only restrained to piece-wise smooth,

the illumination of luminous sources and white objects

cannot be accurately estimated. In this paper, we introduce

a prior on illumination for Retinex. The illumination prior

is based on the visual effect of inverted observed images

1 − S, which is intuitively similar to haze images [8] as in

Fig. 6:

(1− S) = 1− I ·R = (1−R) · I + (1− I) (5)

Let H = 1 − S, J = 1 − R, T = I and a = 1, it

is easy to explain the physical meaning of Eq. (5) as the

Figure 6: The inverted image of those shown in Fig. 5.

atmospheric scattering model H = J ·T+a (1− T ), where

H is the observed hazy image, J is the real scene to be

recovered, T is the medium transmission, and a is the global

atmospheric light. In most of haze-free patches, at least one

color channel has some pixels whose intensity values are

very low and even close to zero. A dark channel prior [20]

is discovered to estimate the transmission map for dehazing:

T = 1−min
Ω

(

min
c∈{r,g,b}

Hc

a

)

(6)

During inference, the prior tries to capture the illumination

by the local maximum value of three color channels:

I = 1−min
Ω

(

min
c∈{r,g,b}

(1− S)
c

)

= max
Ω

(

max
c∈{r,g,b}

Sc

)

(7)

We define bright channel as B = maxΩ (maxcS
c), and

minimize the L2 distance between estimated illumination

and bright channel prior:

El (I) = ‖I −B‖
2

2
(8)

3.3. Joint Optimization

To efficiently estimate illumination and reflectance, the

objective function is established by taking joint intrinsic-

extrinsic prior into consideration:

E (I, R) = ‖I ·R− S‖
2

2
+αEs (I)+βEt (R)+λEl (I) ,

(9)

where α, β and λ are three positive parameters. The first

term ‖I ·R− S‖
2

2
, which corresponds to L2 data fidelity,

is to minimize the distance between estimated I · R and

observed image S.

In this paper, a block coordinate descent [38] is adopted

to find the optimal solution to the non-convex objective

function (9). Since L1-norms in the shape prior Es and tex-

ture prior Et cause non-smooth optimization, an iteratively

re-weighted least square [6] method is introduced and Eq.

(3) and Eq. (4) are rewritten as:

{

Es (I) = ux‖∇xI‖
2

2
+ uy‖∇yI‖

2

2

Et (R) = vx‖∇xR‖
2

2
+ vy‖∇yR‖

2

2

, (10)

where

{

ux/y =
(
∣

∣

1

Ω

∑

Ω
∇x/yI

∣

∣

∣

∣∇x/yI
∣

∣+ ǫ
)−1

vx/y =
(∣

∣∇x/yR
∣

∣+ ǫ
)−1 .

(11)
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Therefore, two separated sub-problems are iteratively

cycled through. In particular, for the k-th iteration:

(P1) Ik = argmin
I
‖I ·Rk−1 − S‖

2

2

+α
(

ux‖∇xI‖
2

2
+ uy‖∇yI‖

2

2

)

+ λ‖I −B‖
2

2

(P2) Rk = argmin
R

‖Ik ·R− S‖
2

2

+β
(

vx‖∇xR‖
2

2
+ vy‖∇yR‖

2

2

)

As can be seen, the problem now only involves quadratic

terms. The two sub-problems have closed form global

optimal solutions, and the algorithm is detailed as follows:

1) Algorithm for P1: Initializing I0 = S, we use matrix

notation to rewrite the loss function: (I ·Rk−1−S)T(I ·
Rk−1 − S) + α(ITDT

xUxDxI + I
T
D

T
y UyDyI) +

λ(I−B)
T
(I−B). Here Ux and Uy are diagonal

matrices containing the weights ux and uy , respectively,

and Dx and Dy are the Toeplitz matrices from the

discrete gradient operators with forward difference. The

vector I that minimizes (P1) is uniquely defined as the

solution of the linear system:

Ik =
(

R
T

k−1Rk−1 + αMk + λ1
)−1 (

R
T

k−1S+ λB
)

,

(12)

where 1 is an identity matrix and M = D
T
xUxDx +

D
T
y UyDy is the weight matrix, which is a five-point

positive definite Laplacian matrix [25].

2) Algorithm for P2: Since P2 is also a least squares

problem, we initialize R0 = S/I1 and update Rk

similarly to Ik:

Rk =
(

I
T

k Ik + βNk

)−1 (

I
T

k S
)

, (13)

where N = D
T
xVxDx +D

T
y VyDy .

I and R is updated until ‖Ik − Ik−1‖/‖Ik−1‖ ≤ ε or

‖Rk −Rk−1‖/‖Rk−1‖ ≤ ε. To reach O(N) complex-

ity, a fast solver called preconditioned conjugate gradient

(PCG) [2] is used for speed up. The whole optimization

process is summarized in Algorithm 1.

4. Experiments

In this section, we qualitatively and quantitatively com-

pare the proposed model for Retinex. In our experiments,

the empirical parameters α, β , λ and ε are set at 0.001,

0.0001, 0.25, and 10−2, respectively.

4.1. Retinex Decomposition

To verify the effectiveness of joint intrinsic-extrinsic

prior model for Retinex, the comparisons of Retinex decom-

position are shown in Fig. 7. We compare the proposed

Algorithm 1 A Joint Intrinsic-Extrinsic Prior Model

Input: observed image S, parameters α, β and λ,

maximum iterations K and stopping parameters ε.

Output: illumination I and reflectance R.

1: initialize I0 ← S

2: for k = 1 to K do

3: compute weights ux/y in Eq. (11)

4: update Ik using (12)

5: if k = 1 then

6: R0 = S/I1
7: end if

8: compute weights vx/y in Eq. (11)

9: update Rk using (13)

10: if ‖Ik − Ik−1‖/‖Ik−1‖ ≤ ε or

‖Rk −Rk−1‖/‖Rk−1‖ ≤ ε then

11: break

12: end if

13: end for

model with two classical methods variational framework

(VF) [24] and total variation model (TVM) [30], and two

state-of-the-art methods simultaneous reflection & illumi-

nation estimation (SRIE) [13] and weighted variation model

(WVM) [15]. The decomposition is applied for the V-

channel in the HSV (Hue, Saturation and Value) space, and

then transform it back to the RGB domain.

The illumination estimated by our model does not distort

the structure and is smoother than the others. In other

words, our result is more conform with the shape and

illumination prior. The shading region on the statue’s cheek

is a challenge for illumination decomposition, because

the changes of illumination are similar to the texture of

reflectance. The illumination of VF and WVM are over

smoothed and break the illumination information. Though

TVM and SRIE both consider the reflectance sparse into

the model to preserve illumination structure indirectly, the

estimated reflectance lose fine details and look more blurry.

Meanwhile, since the illumination is removed, details and

noise in dark areas are revealed simultaneously in the

reflectance, i.e. the background in Fig. 7(b) and Fig. 7(e).

For our model, the prior on texture enforces piece-wise

continuous and thus can suppress noise.

4.2. Illumination Adjustment

The illumination contains the lightness information, so

removing or adjusting the illumination can generate visu-

ally pleasing results for dark/backlit images. Therefore,

the Gamma correction operation is adopted to modify the

estimated illumination. Following [13, 15], the Gamma

correction of I with an adjusting parameter is defined by:

I
′ = I

1

γ , where the empirical parameter γ is set as 2.2. The

enhanced image of the proposed method is computed by:

4004



(a) Input

(b) VF [24] (c) TVM [30] (d) SRIE [13] (e) WVM [15] (f) Ours

Figure 7: Comparison of Retinex decomposition. The illumination is shown in the first row, and the reflectance in the second.

S
′ = I · R. To preserve color information, the Gamma

correction is processed in the HSV domain.

Among the competitors, single-scale retinex (SSR)

[23], multi-scale Retinex with color restore (MSRCR)

[33], simultaneous reflection & illumination estimation

(SRIE) [13] and weighted variation model (WVM) [15]

are Retinex-based methods; naturalness preserved enhance-

ment (NPE) [41], globally optimized linear windowed

method (GOLW) [34], multi-deviation fusion method (MF)

[14], low-light image enhancement (LIME) [19] are recent

state-of-the-art image enhancement methods; histogram

equalization (HE) [7] and brightness preserving dynamic

fuzzy histogram equalization (BPDFHE) [35] are two clas-

sical histogram equalization methods used as baselines.

Fig. 8 shows some examples (collected in [41, 19, 13,

15]) of illumination adjustment by five state-of-art methods.

The lightness is indeed increased, but the visual artifacts

appear in the results obtained from HE and NPE, i.e. the

sky of HE’s and the roadbed of NPE’s in the second image.

The primary reason is that the nonlinear Gamma correction

is carried out on each pixel individually without considering

the relationship in the neighbor. Although our method also

employs the Gamma correction, the illumination estimated

by the joint prior is shape-aware to avoid artifacts. LIME

can effectively enhance details, but it has over-enhancement

and noise-amplification since the estimated illumination is

directly removed (see the third image for an example).

Since all of the illumination adjustment algorithms can

obtain effective brightness enhancement on general outdoor

images, and the ground truth of the enhanced image is

unknown. Following [13, 15], a blind image quality as-

sessment called natural image quality evaluator (NIQE) is

used to evaluate the enhanced results. The lower NIQE

value represents a higher image quality. As shown in

Fig. 8, our method has a lower value in agreement with

our subjective experience. In addition, we focus on 35

identified challenging images with different illumination

conditions collected from [41, 34, 14, 19, 13, 15], which

are identified can be enhanced effectively by those methods.

Since NIQE is just for gray image assessment, we add a

color image assessment called autoregressive-based image

sharpness metric (ARISM) [18] for supplement. In Table 1,

the proposed model has a lower average on NIQE/ARISM

than the other state-of-art methods, which indicates that our

model has a consistent good performance in most cases.

4.3. Color Correction

When the illumination is decomposed in the RGB-color

space separately, the reflectance retains the original color

information of the object, which means that the Retinex al-

gorithms has the effect to correct color distortion. The color

correction performance is shown in Fig. 9 to demonstrate

the effect of the estimated illumination and reflectance.

Compared with four other Retinex algorithms, the color

correction effect of our model is more obvious in subjective

view (i.e. the orange bottle in first image and the blue region

of the book in the second).

The S-CIELAB color metric [45] based on spatial pro-

cessing to measure color errors is adopted to verify the

accuracy of color correction. The second and fourth rows

in Fig. 9 are the spatial location of the errors between the

ground truth and corrected results. As can be seen from the

spatial locations of the errors, the green areas of our results

are smaller than the others, which indicates that our result

is more similar to the ground truth. In addition, we add

a quantitative comparison with some state-of-the-art color

constancy algorithms on Color-Checker dataset [17]. The

global average of illumination is calculated simply in the

RGB space separately as the estimated illumination. As is

standard, we show the mean angle error in Table 2.

4.4. Prior Impact

Since the shape and illumination priors have not been

adopted in previous Retinex algorithms, we analyze their
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2.9701 3.4078 3.0969 3.4994 2.7740 2.9655 2.9051

5.1666 5.2713 5.1825 5.5159 5.5670 5.4183 4.8868

4.2348 2.1570 2.4755 2.4464 2.4251 2.2191 2.1355

2.5165 2.3883 2.3273 2.1362 2.4026 2.3838 2.1829

(a) Input (b) HE [7] (c) NPE [41] (d) LIME [19] (e) SRIE [13] (f) WVM [15] (g) Ours

Figure 8: Comparison of illumination adjustment with NIQE.

Table 1: Quantitative performance comparison on 35 images with NIQE and ARSIM

Method HE [7] BPDFHE [35] SSR [23] MSRCR [33] NPE [41] GOLW [34] MF [14] LIME [19] SRIE [13] WVM [15] Ours

NIQE 3.4475 3.7267 3.3778 3.4295 3.4091 3.3647 3.5335 3.6155 3.4590 3.3594 3.3409

ARISM 3.2902 3.3275 3.0469 3.1014 3.0891 3.3243 3.0200 3.1753 2.9930 2.9958 2.9917

impacts in this experiment. To evaluate the impact of shape

prior, the LVD measure of the shape prior is replaced by

L2 smoothing regularization. The structure of estimated

illumination is blurry without structure preserving (see Fig.

10(c)). To evaluate the impact of illumination prior, the

regularization parameters λ is set to zero while keeping the

others. As shown in Fig. 10(d), the estimated illumination

is over-smoothed when the shape prior is replaced by L2

smoothing regularization. This is because bright channel

prior is a strong assumption. The illumination estimation

with joint prior captures the luminous source (i.e. the moon-

light and the street lamps) more effectively than the result

without illumination prior. By conducting experiment on

the same dataset as in Sec. 4.2, the joint prior model

generates more satisfactory results shown in Table 3.

Since effective priors will accelerate the optimization,

the convergence rate with different prior is analyzed. Fig.

11 shows the relationship between the iterative error εl =
‖Ik − Ik−1‖/‖Ik−1‖, εr = ‖Rk −Rk−1‖/‖Rk−1‖ and

Table 3: The impact of priors on the 35 images.

Metric NIQE ARISM
Joint Prior 3.3409 2.9917
w/o Shape Prior 3.3964 2.9999
w/o Illumination Prior 3.3791 3.0024

the iteration number. As shown from the iterative error

curves, the convergence rate of joint prior is faster than

those without shape or illumination prior, because the shape

and illumination restraints apply the prior constraints to

reduce the solution space scale.

5. Conclusion

In this paper, we proposed a joint intrinsic-extrinsic
prior model for Retinex, which is effective in estimating
reflectance and illumination simultaneously. First, we
proposed a novel measure called local variation deviation
to remove textures effectively without distorting structure in
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(a) Input/Ground Truth (b) VF [24] (c) TVM [30] (d) SRIE [13] (e) WVM [15] (f) Ours

Figure 9: Comparison of color correction. Our results are more accurate when dealing with color distorted images.

Table 2: Comparison of color constancy with angle error on the Color-Checker Dataset [17].

Method White-Patch [4] Grey-World [5] Gray-Edge [39] Shades-Gray [10] Bayesian [17] CNNs [3] Gray-World [1] Grey-Pixel [43] Ours

Mean (◦) 7.55 6.36 5.13 4.93 4.82 4.73 4.66 4.60 4.32

(a) Input (b) Joint Prior (c) w/o Shape Prior (d) w/o Illumination Prior

Figure 10: Comparison with different prior. In each group of sub-figure, the illumination and reflectance are shown in the

first and second image respectively.

the illumination. In addition, a joint prior model with shape,
illumination, and texture assumption is introduced to refine
the regularization terms for better prior representation. To
separate the illumination and the reflectance efficiently,
the optimization problem is solved by a block coordinate
descent method with iteratively re-weighted least square.
Comprehensive experiments in terms of subjective and
objective assessments are conducted. Compared with the
state-of-the-art algorithms, the proposed model shows
better results with satisfactory convergence rate.
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