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Abstract

The success of fine-grained visual categorization

(FGVC) extremely relies on the modeling of appearance

and interactions of various semantic parts. This makes

FGVC very challenging because: (i) part annotation and

detection require expert guidance and are very expensive;

(ii) parts are of different sizes; and (iii) the part interac-

tions are complex and of higher-order. To address these is-

sues, we propose an end-to-end framework based on higher-

order integration of hierarchical convolutional activations

for FGVC. By treating the convolutional activations as lo-

cal descriptors, hierarchical convolutional activations can

serve as a representation of local parts from different scales.

A polynomial kernel based predictor is proposed to cap-

ture higher-order statistics of convolutional activations for

modeling part interaction. To model inter-layer part inter-

actions, we extend polynomial predictor to integrate hierar-

chical activations via kernel fusion. Our work also provides

a new perspective for combining convolutional activations

from multiple layers. While hypercolumns simply concate-

nate maps from different layers, and holistically-nested net-

work uses weighted fusion to combine side-outputs, our ap-

proach exploits higher-order intra-layer and inter-layer re-

lations for better integration of hierarchical convolutional

features. The proposed framework yields more discrimina-

tive representation and achieves competitive results on the

widely used FGVC datasets.

1. Introduction

Deep convolutional neural networks (CNNs) have

emerged as the new state-of-the-art for a wide range of vi-

sual recognition tasks. Nevertheless, it remains quite chal-

lenging to derive the effective discriminative representa-

tion for fine-grained visual categorization (FGVC), primar-
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ily due to subtle semantic differences between sub-ordinate

categories. Conventional CNNs usually deploy the fully

connected layers to learn global semantic representation and

may not be suitable to FGVC. Therefore, leveraging local

discriminative patterns in CNN is crucial to obtain more

powerful representation, and recently has been intensively

studied for FGVC.

Part-based representations [47, 3, 46, 34, 48] built on

CNN features have been a predominant trend in FGVC.

Such methods follow a detection module consisting of part

detection and appearance modeling to extract regional fea-

tures on deeper convolutional layers in R-CNN [12] based

scenario. Then global appearance structure is incorporated

to pool these regional features. Although these methods

have yielded rich emporical returns, they still pose the fol-

lowing issues: (1) A considerable number of part-based

methods [47, 3, 46] heavily rely on the detailed part an-

notations to train accurate part detectors, which is costly

and further limits the scalability for large-scale datasets;

moreover, identifying discriminative parts for specific fine-

grained objects is quite challenging and often requires inter-

action with human or expert knowledge [4, 40]; (2) The dis-

criminative semantic parts in images often appear at differ-

ent scales. As each spatial unit in the deeper convolutional

layer corresponds to a specific receptive field, activations

from a single convolutional layer are limited in describing

various parts with different sizes; (3) Exploiting the joint

configuration of individual object parts is very important for

object appearance modeling. A few works introduce addi-

tional geometric constraints for object parts including the

popular deformable parts model [47], constellation model

[34] and order-shape constraint [41]. One key disadvantage

of these approaches is that they only characterize the first-

order occurrences and relationships of very few parts, how-

ever, cannot be readily applied to model objects with more

parts. Consequently, our focus is to capture the higher-order

statistics of those semantic parts at different scales, and thus

provide a more flexible way for global appearance modeling

without the help of part annotation.
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Figure 1. Visualization of several activation maps that corresponds

to large responses of the sum-pooled vectors of two activation lay-

ers relu5 2 and relu5 3 in VGG-16 model.

In recent works [34, 48], the deeper convolutional fil-

ters are regarded as weak part detectors and the correspond-

ing activations as the responses of detection, shown in Fig.

1. Motivated by this observation, instead of part anno-

tations and explicit appearance modeling, we straightfor-

wardly exploit the higher-order statistics from the convolu-

tional activations. We first provide a perspective of match-

ing kernel to understand the widely adopted mapping and

pooling schemes on convolutional activations in conjunc-

tion with linear classifier. Linear mapping and direct pool-

ing only capture the occurrence of parts. In order to capture

the higher-order relations among parts, it is better to ex-

plore local non-linear matching kernels to characterize the

higher-order part interactions (e.g., co-occurrence). How-

ever, designing an appropriate CNN architechture that can

be plugged with non-linear local kernels in an end-to-end

manner is non-trivial. The kernel scheme is required to

have explicit non-linear maps and be differentiable to fa-

cilitate back-propagation. One representative work is con-

volutional kernel network (CKN) [28], which provides a

kernel approximation scheme to interpret CNNs. A related

polynomial network [26] is to utilize polynomial activation

functions as alternatives of ReLU in CNNs to learn non-

linear interations of feature variables. Similarly, we lever-

age the polynomial kernel to serve in modeling higher-level

part interactions and derive the polynomial modules that al-

low trainable structure built on CNNs.

With the kernel scheme, we extend our framework for

higher-order integration of hierarchical convolutional acti-

vations. The effectiveness of fusing hierarchical features in

CNNs has been widely reported in visual recognition. The

benefits come from both the different discriminative capac-

ities of multiple convolutional layers and the coarse-to-fine

object description. However, the existing methods simply

concatenate or sum multiple activations into a holistic rep-

resentation [15], or adopt a decision level fusion to combine

side-outputs from different layers [23, 42]. These methods,

however, are limited in exploiting the intrinsic higher-order

relationships of convolutional activations in either the intra-

layer level or the inter-layer level. By using the kernel fu-

sion on hierarchical convolutional activations, we can con-

struct a richer image representation for cross-layer integra-

tion. Compared with the related works that perform feature

fusion via learning multiple networks [8, 35, 24], our frame-

work is easy to construct and more effective for FGVC.

2. Related work

2.1. Feature encoding in CNNs

Applying encoding techniques for the local convolu-

tional activations in CNNs has shown significant improve-

ments compared with the fully-connected outputs [7, 43].

In this case, the Vectors of Locally Aggregated Descrip-

tors (VLAD) and Fisher Vectors (FV) as high-order statis-

tics based representation can be readily applied. Gong et

al. [13] propose to use VLAD to encode local features ex-

tracted from multiple regions of an image. In [9, 7, 43],

the values of FV encoding on convolutional activations are

discovered for scene, texture and video recognition tasks.

However, regarding feature encoding as an isolated compo-

nent is not the optimal choice for CNNs. Therefore, Lin et

al. [24] propose a bilinear CNN (B-CNN) as codebook-free

coding that allows end-to-end training for FGVC. The very

recent work in [1] builds a weakly place recognition sys-

tem by introducing a generalized VLAD layer that can be

trained with off-the-shelf CNN models. An alternative for

feature mapping is to exploit kernel approximation feature

embedding. Yang et al. [45] introduce adaptive Fastfood

transform in their deep fried convnets to replace the fully-

connected layers, which is a generalization of the Fastfood

transform for approximating kernels [22]. Gao et al. [11]

implement an end-to-end structure to approximate degree-2

homogeneous polynomial kernel by utilizing random fea-

tures and sketch techniques.

2.2. Feature fusion in CNNs

Compared with the fully connected layers capturing the

global semantic information, convolutional layers preserve

more instance-level details and exhibit diverse visual con-

tents as well as different discriminative capacities, which

are more meaningful to the fine-grained recognition task

[2]. Recently a few works attempt to investigate the effec-

tiveness of exploiting features from different convolutional

layers [25, 44]. Long et al. [27] combine the feature maps

from intermediate level and high level convolutional layers

in their fully convolutional network to provide both finer

details and higher-level semantics for better image segmen-

tation. Hariharan et al. [15] introduce hypercolumns for

localization and segmentation, where convolutional activa-

tions at a pixel of different feature maps are concatenated

as a vector as a pixel descriptor. Similarly, Xie and Tu

[42] present a holistically-nested edge detection scheme in

which the sideoutputs are added after several lower convo-
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lutional layers to provide deep supervision for predicting

edges at multiple scales.

3. Kernelized convolutional activations

Most part-based CNN methods for FGVC consist of two

components: (i) feature extraction for semantic parts on the

last convolutional layer, and (ii) spatial configuration mod-

eling for those parts to produce discriminative image rep-

resentation. In this work, we treat the convolutional filter

as part detector, and then the convolutional activations in

a single spatial position can be considered as the part de-

scriptions. Therefore, instead of explicit part extraction, we

introduce polynomial predictor to integrate a family of lo-

cal matching kernels for modeling higher-order part inter-

actions and derive powerful representation for FGVC.

3.1. Matching kernel and polynomial predictor

Suppose that an image I is passed by a plain CNN,

and we denote the 3D activations X ∈ R
K×M×N ex-

tracted from some specific convolutional layer as a set of

K-dimensional descriptors {xp}p∈Ω, where K is the num-

ber of feature channels, xp represents the descriptor at a

particular position p over the set Ω of valid spatial locations

(|Ω| = M ×N ). We first consider the matching scheme K
for activation sets X and X̄ from two images, in which the

set similarity is measured via aggregating all the pairwise

similarities among the local descriptors:

K(X , X̄ ) = Agg({k(xp, x̄p̄)}p∈Ω,p̄∈Ω̄) = ψ(X )Tψ(X̄ ), (1)

where k(·) is some kernel function between individual de-

scriptors of two activation sets, Agg(·) is some set-based

aggregation function, ψ(X ) and ψ(X̄ ) are the vector repre-

setations for sets. It is worth noting that the construction of

K presented above is decomposed into two steps in CNNs:

feature mapping and feature aggregation. The mapping step

maps each local descriptor x ∈ R
K as φ(x) ∈ R

D in

elaborated feature space. The aggregating step produces an

image-level representation ψ(X ) from the set {φ(xp)}p∈Ω

through some pooling function g(·).
The key for FGVC is to discover and represent those

local regions which share common appearances within the

same category while exhibiting distinctive difference across

categories. Based on the matching scheme K in Eqn. (1),

appropriate pooling operators have been designed to effi-

ciently prune non-discriminative matching subset while re-

taining those highly discriminative ones into image repre-

sentation. Among them, sum pooling assigns equal weights

to each position, and does not emphasize any position. Max

pooling only considers the most significant position, which

results in enormous information loss and is prone to small

interference. Other pooling operators such as generalized

max pooling [31] and ℓp-norm pooling [10] may be effec-

tive in discovering informative regions, but the feasible end-

to-end schemes are unclear. Our attention is to model the

higher-order relationships for discriminative representation

of local patch and design suitable local mapping function

φ which can be stacked upon CNN for end-to-end training.

Thus, we simply adopt g(·) as the global sum pooling, in

which case we denote it as:

ψ(X ) = g({φ(xp)}p∈Ω) =
∑

p∈Ω

φ(xp). (2)

The above matching underpinning highlights the advantage

of generating image-level representation compatible with

linear predictors, which can be interpreted as the linear

combination of all local compositions accordingly:

f(x) = 〈w, φ(x)〉, (3)

wherew is the parameter of predictor, we omit the bias term

and position subscript p here for later convenience. As our

aim is to capture more complex and higher-order relation-

ships among parts, to this end, we propose the following

polynomial predictor:

f(x) =

K∑

k=1

wkxk +

R∑

r=2

∑

k1,...,kr

Wr
k1,...,kr

(

r∏

s=1

xks
), (4)

whereR is the maximal degree of part interactions, Wr is a

r-order tensor which contains the weights of degree-r vari-

able combinations in x. For instance, when r = 3, Wi,j,k

is the weight of xixjxk. We discuss different polynomial

predictors as well as their corresponding kernels as follows:

1) Linear kernel: k(x, x̄) = 〈x, x̄〉 is the most simple

kernel that refers to an identity map φ : x 7→ x, which is

identical to the polynomial predictor of degree-1: f(x) =∑K

k=1 wkxk.

2) Homogeneous polynomial kernel: k(x, x̄) =
〈x, x̄〉r has shown the superiority in characterizing the in-

trinsic manifold structure of dense local descriptors [5]. The

induced non-linear map φ : x 7→ ⊗rx, where ⊗rx is a

tensor defined by the r-order self-outer product [32] of x,

is able to model all the degree-r interactions between vari-

ables. Its polynomial predictor obeys the following form:

f(x) =
∑

k1,...,kr

Wr
k1,...,kr

(

r∏

s=1

xks
). (5)

Notice that the polynomial predictor of degree-2 homo-

geneous polynomial kernel is defined as
∑

i,j Wi,jxixj ,

which captures all pairwise/second-order interactions be-

tween variables and is an increasingly popular model in

classification tasks [24].

3) Positive definite kernel: as discussed in [18], the

positive definite kernel k(x, x̄) : (x, x̄) 7→ f(〈x, x̄〉) de-

fines an analytic function which admits a Maclaurin ex-

pansion with only nonnegative coefficients, i.e., f(x) =
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∑∞
r=0 arx

r, ar ≥ 0. For instance, a non-homogeneous

degree-2 polynomial kernel (〈x, x̄〉 + 1)2 corresponds to

a polynomial predictor that captures all single and pairwise

interactions between variables. It also indicates that the pos-

itive definite kernel can be arbitrarily accurate approxima-

tion of polynomial kernels in principle of sufficiently high

degree polynomial expansions for target functions.

3.2. Tensor learning for polynomial kernels

Before deriving the end-to-end CNN architecture for

learning the parameters in Eqn. (4), we first reformulate

the polynomial predictor into a more concise tensor form:

f(x) = 〈w,x〉+
R∑

r=2

〈Wr,⊗rx〉, (6)

where 〈W ,V〉 is the inner product of two same-sized ten-

sors W ,V ∈ R
K1×···×Kr , which is defined as the sum of

the products of their entries. It is observed that the tensor

⊗rx comprises all the degree-r monomials in x. There-

fore, any degree-r homogeneous polynomial predictor sat-

isfies 〈Wr,⊗rx〉 for some r-order tensor W
r; likewise,

any r-order tensor Wr determines a degree-r homogenous

polynomial predictor. This equivalence between polyno-

mials and tensors motivates us to transform the parameter

learning of polynomial predictor into tensor learning.

Rather than estimating the variable interations in tensors

independently, an alternative method is tensor decomposi-

tion [19] which breaks the independence of interaction pa-

rameters and estimates the reliable interaction parameters

under high sparsity. Tensor decomposition is widely used

in tensor machines [38] for sparse data based regression,

which circumvents the parameter storage issue and achieves

better generalization in practice. We then embrace the rank-

one tensor decomposition [19] in our next step of tensor

learning for consideration of two aspects: the high sparsity

of activations in deeper layers of CNNs and the parameter

sharing of convolutional filters.

We first briefly review the notations and definitions in the

area of rank-one tensor decomposition: the outer product

of vectors u1 ∈ R
K1 , . . . ,ur ∈ R

Kr is the K1 × · · · ×
Kr rank-one tensor that satisfies (u1 ⊗ · · · ⊗ ur)k1...,kr

=
(u1)k1

· · · (ur)kr
. The rank-one decomposition for a tensor

W is defined as W =
∑D

d=1 α
dud

1 ⊗ · · · ⊗ ud
r , where

αd is the weight for d-th rank-one tensor, D is the rank of

the tensor if D is minimal. We then apply the rank-one

approximation [19] for each r-order tensor Wr and present

the following alternative form of polynomial predictor:

f(x) = 〈w,x〉+
R∑

r=2

〈
Dr∑

d=1

αr,du
r,d
1 ⊗ · · · ⊗ ur,d

r ,⊗rx〉. (7)

In order to learn w, αr,d and ur,d
s (r = 2, . . . , R, s =

1, . . . , r, d = 1, . . . , Dr), in next section, we show that all

the parameters can be absorbed into the conventional train-

able modules in CNNs.

3.3. Trainable polynomial modules

According to the tensor algebra, the Eqn. (7) can be fur-

ther rewritten as:

f(x) = 〈w,x〉+
R∑

r=2

Dr∑

d=1

αr,d

r∏

s=1

〈ur,d
s ,x〉 (8)

= 〈w,x〉+
R∑

r=2

〈αr, zr〉 (9)

where the d-th element of the vector zr ∈ R
Dr is∏r

s=1〈ur,d
s ,x〉 which characterizes the degree-r variable

interactions under a single rank-one tensor basis. αr =
[αr,1, . . . , αr,Dr

]T is the associated weight vector of all

Dr rank-one tensors. A key observation of Eqns. (8)

(9) is that we are able to decouple the parameters into

{w,α2, . . . ,αR} and {{ur,d
s }s=1,...,r;d=1,...Dr

}r=2,...,R.

Notice that for each s, we can first deploy {ur,d
s }d=1,...Dr

as

a set ofDr 1×1 convolutional filters on X to generate a set

of feature maps Zr
s of dimension Dr ×M ×N . Then, the

feature maps {Zr
s}s=1,...,r from different ss are combined

by element-wise product to obtain Z
r = Z

r
1 ⊙ · · · ⊙ Z

r
r.

Therefore, {ur,d
s }s=1,...,r;d=1,...Dr

can be treated as a poly-

nomial module in learning degree-r polynomial features.

As for the former parameter group, it can be easily embed-

ded into the learning of the classifier for the concatenated

polynomial features. Refering to Eqn. (8), the derivatives

for x and each degree-r convolutional filter ur,d
s in back

propagation process can be achieved by:

∂ℓ

∂x
=

∂ℓ

∂yr

Dr∑

d=1

r∑

s=1

(
∏

t 6=s

〈ur,d
t ,x〉)ur,d

s (10)

∂ℓ

∂u
r,d
s

=
∂ℓ

∂yr
(
∏

t 6=s

〈ur,d
t ,x〉)x (11)

where yr = g(Zr) = g({zr}) is the pooled feature rep-

resentation for degree-r polynomial module, ℓ is the loss

associated with yr. On this basis, we can embrace those

polynomial modules with the trainable CNN architectures

and are able to model the higher-order part statistics of any

degree. Even though the dominant level of those highly-

correlated parts will be enhanced with a larger r, the high-

order tensor usually needs large Dr to guarantee a good ap-

proximation. Therefore, a relative small degree r should

be considered in practice because a high-degree polynomial

module increases the computational cost in back propaga-

tion, i.e., Eqns. (10) (11), and the induced high dimension-

ality of feature would cause over-fitting.
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Figure 2. Illustration of our integration framework. The convolutional activation maps are concatenated as X = concat(X 1, . . . ,XL) and

fed into different branches. For r-th branch (r ≥ 2), the degree-r polynomial module consisting of r groups of 1× 1 convolutional filters

is deployed to obtain r sets of feature maps {Zr
s}s=1,...,r . Then {Zr

s}s=1,...,r are integrated as Z
r by applying element-wise product

⊙. At last, X and all Zrs are concatenated as the degree-r polynomial features, following by sum pooling layer to obtain the pooled

representation y = concat(y1, . . . ,yL) with the dimension of
∑R

r=1
Dr (D1 denotes the channel number of X ), and softmax layer.

4. Hierarchical convolutional activations

4.1. Higher­order integration using kernel fusion

The polynomial predictor provides a good measure for

the highly-correlated parts but the activations on individual

convolutional layer are not sufficient to describe the part re-

lations from different levels of abstraction and scale. Con-

sequently, we investigate a kernel fusion scheme to combine

the hierarchical convolutional activations. Suppose that the

local activation descriptor sets from L convolutional layers

at spatial correspondences for two images are denoted as

ψI : {xl}Ll=1 and ψĪ : {x̄l}Ll=1. Then we generalize φ

under linear factorization to fuse the local activations from

multiple convolutional layers as below:

k(ψI ,ψĪ
) = 〈φ({xl}Ll=1), φ({x̄l}Ll=1)〉

=

L∑

l=1

ηl〈φl(xl), φl(x̄l)〉, (12)

where ηl is the weight for the matching scores in l-th layer.

The above kernel fusion can be re-interpreted as perform-

ing polynomial feature extraction at each layer and fusing

them in latter phase. Recently, hypercolumn [15] suggests

a simple feature concatenation manner to combine different

feature maps in CNNs for pixel-level classification, which

motivates us to adopt the similar way in our polynomial ker-

nel fusion. Thereby, we assume a holistic mapping φ for

all layers, i.e.,
∑L

l=1

√
ηlφ

l(xl) → φ(concat(x1, . . . ,xL))
with weights

√
ηls be merged into element-wise scale lay-

ers. It should be noted that the spatial resolutions of differ-

ent convolutional layers need to be consistent for concate-

nation operation. Alternatively, we can add pooling layers

or spatial resampling layers to meet this requirement. In this

sense, the expansion of φ by Eqn. (4) yields two groups of

variable interactions:
∏

kl
xlkl

that characterizes the inter-

actions of parts in the l-th layer; and
∏

kl,kq
xlkl

x
q
kq

(where

l 6= q) that captures additional information of multi-scale

part relations from the l-th layer and q-th layer.

4.2. Integration architecture for deeper layers

Although the kernel fusion scheme enables polynomial

predictor for integrating hierarchical convolutional activa-

tions, it may not perform and scale well in case where large

numbers of layers involoved. We argue that only the con-

volutional activations from very deep layers refer to the re-

sponses of discriminative semantic parts. That is consistent

with the recent studies [34, 48] which regard the convolu-

tional filters in deeper layers as weak part detectors. In our

experiments, we demonstrate that the integration of the last

three convolutional activation layers (i.e., relu5 1, relu5 2,

and relu5 3 in VGG-16 model [36]) is fairly effective to

obtain satisfactory performance. Even though more lower

layers could be involved, the effect is less obvious on the

improvement but higher computational complexity on both

training and testing phases. Fig. 2 presents our CNN archi-

tecture for integrating multiple convolutional layers. Com-

pared with the B-CNN methods [24, 11] focusing only on

the degree-2 part statistics, our approach provides a gen-

eral solution to model complex part interactions from hier-

archical layers in differnt degrees and its superiority will be

demonstrated in experiments.

5. Experiments

In this section, we evaluate the effectiveness of our pro-

posed integration framework on three fine-grained cate-

gorization datasets: Caltech-UCSD Bird-200-2011 (CUB)

[39], Aircraft [29] and Cars [21]. The experimental com-

parisons with state-of-the-art methods indicate that effec-

tive feature integration from CNN is a promising solution

for FGVC in contrast with the requirements of massive ex-
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ternal data or detailed part annotation.

5.1. Datasets and Implementation Details

CUB dataset contains 11,788 bird images. There are

altogether 200 bird species and the number of images per

class is about 60. The significant variations in pose, view-

point and illumination inside each class make this dataset

very challenging. We adopt the publicly available split [39],

which use nearly half of the dataset for training and the

other half for testing.

Aircraft dataset has 100 different aircraft model vari-

ants, giving 100 images for each model. The aircrafts ap-

pear at different scales, design structures and appearances.

We adopt the training/testing split protocol provideded by

[29] to perform our experiments.

Cars dataset consists of 16,185 images from 196 car

classes. Each class has about 80 images with different car

sizes and heavy clutter background. We use the same split

provided by [21], divided with 8,144 images for training

and 8,041 images for testing.

Implementation details: our networks on all datasets

are fine-tuned on the VGG-16 model pretrained on

ILSVRC-2012 dataset [33] for fair comparison with most

state-of-the-art FGVC methods. The framework can be

also applied to the recently proposed network architectures

such as Inception [37] and ResNet [16]. We remove the

last three fully-connnected layers and construct a directed

acyclic graph (DAG) to combine all the components in our

framework. Before fed into softmax layer, we first pass

pooled polynomial features through ℓ2 normalization step.

We then use logistic regression to intialize the parameters

of classification layer, and adopt Rademacher vectors (i.e.,

each of its components are chosen independently using a

fair coin toss from the set {−1, 1}) as good initializations

[18] of homogenous polynomial kernels for the 1 × 1 con-

volutional filters. In training phase, following [24], we

transform the input image by cropping the largest image re-

gion around its center, resizing it to 448 × 448, and creat-

ing its mirrored version to double the training set. During

fine-tuning, the learning rates of those pre-trained VGG-16

layers and the newly added layers, including 1 × 1 con-

volutional layers and classification layer, are initialized as

0.001. We train all the networks using stochastic gradient

descent with a batch size of 16, momentum of 0.9. In test-

ing phase, we follow the popular CNN-SVM scheme [24],

i.e., use softmax loss in training and then perform evalua-

tion on the extracted features by SVM. Our code is imple-

mented on the open source MatConvNet framework with

a single NVIDIA GeForce GTX TITAN X GPU and can

be downloaded at http://www4.comp.polyu.edu.

hk/˜cslzhang/code/hihca.zip.

5.2. Analysis of the proposed framework

5.2.1 Effect of number of 1× 1 convolutional filters

To validate the effectiveness of introducing tensor de-

composition in our polynomial predictor, we investigate

the effect of different Dr for the approximation of each

r-order tensor W
r. We first evaluate the classifica-

tion accuracies on the CUB dataset on a single layer

relu5 3 using different homogeneous polynomial kernels

for solely modeling the degree-r variable interactions, i.e.,

xi, xixj , xixjxk, xixjxkxl. The number Dr for degree-r

convolutional filters varies from 512 to 32,768. The results

are shown in Fig. 3. As expected, increasing Dr leads

higher accuracies on all degrees. Interestingly, when Dr is

small, degree-2 always leads a higher accuracy than those

with higher degrees, which indicates that modeling higher-

order part interactions often yields a tensor of dense param-

eters. It is observed that the performance gain is slight when

the number Dr increases from 8,192 to 32,768, which in-

fers that a relative sparse tensor Wr can comprehensively

encode the distinguishing part interactions of fine-grained

objects from the very sparse activation features. Therefore,

we uniformly use 8,192 1× 1 convolutional filters in all the

polynomial modules in consideration of feature dimension,

computational complexity as well as accuracy.

Figure 3. Accuracies achieved by using polynomial kernels with

varied numbers of 1× 1 convolutional filters on the CUB dataset.

5.2.2 Effect of polynomial degree r

We further demonstrate the superiority of using higher-

order part interactions both with and without finetuning on

the CUB dataset in Table 1. We observe that the degree-2

polynomial kernel significantly outperforms the linear ker-

nel. It implies that the co-occurrence statistics is very effec-

tive in capturing part relations, which is more informative in

distinguishing objects with homogeneous appearance than

the simple part occurrence statistics. The accuracy degrades

considerably as the degree r increases from 2 to 6, which

might be explained by the fact the low-degree interactions

with high counts are more reliable. As the reliable high-

degree interactions are usually a few in number, the sum
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pooling will abate those scarce interactions in the pooled

polynomial representation, which weakens the discrimina-

tive ability of the final concatenated representation. Table. 2

lists the frame-per-second (FPS) comparison in both train-

ing and testing phases using different polynomial kernels.

Since there is high computational overhead involved in the

polynomial modules in the network, a large degree r will

significantly slow the speed. Therefore, we suggest to adopt

2 as the practical degree in all the experiments in Section

5.3 even though degree-3 kernel can achieve slightly better

results on Aircraft and Cars datasets.

Table 1. Accuracy comparison with different non-homogeneous

polynominal kernels.

r 1 2 3 4 5 6

non-ft 75.7 78.3 76.4 74.6 72.4 71.2

ft 79.2 83.7 83.3 82.0 81.1 79.5

Table 2. FPS with different non-homogeneous polynomial kernels.

r 2 3 4 5 6

Training 9.7 7.4 5.5 4.2 2.8

Testing 29.8 23.7 18.3 14.5 10.4

5.2.3 Effect of feature integration

We then provide details of the results by using higher-

order integration for hierarchical convolutional activations.

We focus on relu5 1, relu5 2 and relu5 3 as they exhibit

good capacity in capturing semantic part information com-

pared with lower layers. And we analyze the impact fac-

tors of layers, kernels, and finetuning on the CUB dataset.

The accuracies are obtained under five polynomial ker-

nels including linear kernel, degree-2 homogeneous ker-

nel, degree-2 non-homogeneous (single + pairwise inter-

actions), degree-3 homogeneous kernel and degree-3 non-

homogeneous kernel (single + pairwise + triple interac-

tions). We consider the following baselines: relu5 3 uses

only relu5 3 activations. relu5 3+relu5 2, relu5 3+relu5 1

and relu5 2+relu5 1 are integration baselines that use 2 lay-

ers. relu5 1+relu5 2+relu5 3 is the full integration of three

layers. The results in Table 3 demonstrate that the perfor-

mance gain of our framework comes from three factors: (i)

higher-order integration, (ii) finetuning, (iii) multiple layers.

Notably, we observe the remarkable performance benefits

on the baseline relu5 3+relu5 2 and the full model of three

layers by exploiting the degree-2 and degree-3 polynomial

kernels, which implies that the discriminative power can

be enhanced by the complementary capacities of hierarchi-

cal convolutional layers compared with the isolated relu5 3

layer. As the baseline relu5 3+relu5 2 already presents the

best performance, thus we set the feature integration as

relu5 3+relu5 2 in all the experiments in Section 5.3.

Table 3. Accuracy comparison with different baselines.

r5 3
r5 3+

r5 2

r5 3+

r5 1

r5 2+

r5 1

r5 3+

r5 2+

r5 1

degree-1

non-ft 75.7 77.2 75.5 68.9 77.0

ft 79.2 80.4 79.3 71.1 80.8

degree-2 homogeneous

non-ft 77.2 78.1 77.5 72.3 78.4

ft 83.5 85.0 83.3 76.0 84.9

degree-2 non-homogeneous

non-ft 78.3 78.5 77.5 72.1 78.6

ft 83.7 85.3 83.6 76.5 85.1

degree-3 homogeneous

non-ft 75.7 76.9 76.0 70.7 76.1

ft 82.3 83.8 81.5 74.1 83.3

degree-3 non-homogeneous

non-ft 76.4 78.2 77.4 72.3 78.1

ft 83.3 84.6 82.1 75.4 84.5

We also compare our higher-order integration with hy-

percolumn [15] and HED [42] based feature integrations.

Since the original hypercolumn and HED are introduced

for pixel-wise classification, for fair comparison, we re-

vise hypercolumn as the feature concatenation of relu5 3,

relu5 2 and relu5 1, following by max pooling (denoted

as Hypercolumn∗); and revise HED by training classifiers

for the pooled activation features at each layer and then

fuse the predictions (denoted as HED∗). Table 4 shows

that our integration framework is significantly superior to

Hypercolumn∗ and HED∗. This is not surprising since

Hypercolumn∗ and HED∗ can be treated as degree-1 inte-

gration to some extent.

Table 4. Accuracy comparison with different feature integrations.

Degree-2 integration Hypercolumn∗ HED∗

85.1 80.9 82.3

5.3. Comparison with state­of­the­art methods

5.3.1 Results on the CUB dataset

We first compare our framework along with both the

annotation-based methods (i.e., using object bounding

boxes or part annotations) and annotation-free methods (i.e.,

only using image-level labels) on the CUB dataset. As

shown in Table 5, unlike the state-of-the-art result obtained

from SPDA-CNN (85.1%) [46] which relys on the addi-

tional annotations of seven parts, we can still achieve a

comparable accuracy of 85.3% with only image-level labels

and significant improvements over PB R-CNN [47] and FG-

Without [20]. Furthermore, our method is slightly inferior

to BoostCNN [30] and outperforms all other annotation-

free methods with a modest improvement (about 1%) com-

pared with STN [17], B-CNN [24] and PDFS [48]. How-

ever, STN [17] uses a better baseline CNN (Inception [37])

than our VGG-16 network and PDFS [48] cannot be trained
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by end-to-end manner. B-CNN [24] attempts to achieve the

feature complementary based on the outer product of con-

volutional activations from two networks (i.e., VGG-M and

VGG-16). However, our framework shows that the better

complementarity can be achieved by exploiting the natural

hierarchical structures of CNNs. BoostCNN uses BCNN as

the base CNN and adopts an ensemble learning method to

incorporate boosting weights. Thus, a fair comparison is to

use ours as the base CNN in BoostCNN.

Table 5. Accuracies (%) on the CUB dataset. “bbox” and “parts”

refer to object bounding box and part annotations.

methods train anno. test anno. acc.

PB R-CNN [47] bbox+parts n/a 73.9

FG-Without [20] bbox bbox 82.0

SPDA-CNN [46] bbox+parts bbox+parts 85.1

STN [17] n/a n/a 84.1

B-CNN [24] n/a n/a 84.1

PDFS [48] n/a n/a 84.5

BoostCNN [30] n/a n/a 85.6

Ours n/a n/a 85.3

5.3.2 Results on the Aircraft and Cars datasets

The methods for the Aircraft and Cars datasets are all

annotation-free since there are no ground-truth part anno-

tations on these two datasets. We first evaluate our frame-

work on the Aircraft dataset, and the related results are

shown in the second column of Table 6. Our network

achieves significantly better classification accuracy than the

state-of-the-art B-CNN which can be seemed as a specific

degree-2 case in our framework. As we find that relu5 2

instead of relu5 3 achieves the best performance in Aircraft

dataset, our improvement might be due to the reasons: (1)

B-CNN only focuses on relu5 3 where the the discrimina-

tive parts are highly out-numbered, thus these parts might be

overwhelmed by large non-discriminative region in pooling

stage; (2) the discriminative parts in this dataset may occur

simultaneously in both the coarse and fine scales. While

the rich representation by incorporating multiple layers in

our integration framework mitigates the local ambiguities

of single-layer representation to a large extent.

The third column of Table 6 provides the comparision

on the Cars dataset. B-CNN [24] shows the similar accu-

ray behavior with ours and both present a large margin over

Symbiotic [6] and FV-FGC [14]. The accuracy of B-CNN

[24] using two networks is very close to ours (91.3% vs.

91.7%), yet for the single network case, it still has the accu-

racy gap of 1.1%, which infers that the hierarchical feature

integration on a single network can also contribute the fea-

ture complementary as done by two different networks.

Table 6. Accuracies (%) on the Aircraft and Cars datasets.

methods acc. (Aircraft) acc. (Cars)

Symbiotic [6] 72.5 78.0

FV-FGC [14] 80.7 82.7

B-CNN [24] 84.1 91.3 (90.6)

Ours 88.3 91.7

5.3.3 Visualization for the learned image patches

In Fig. 4, we visualize some image patches with the highest

activations in the deeper layers of our fine-tuned networks

and the patches in each column come from different fea-

ture channels/maps. We obviously observe strong semantic-

related parts such as heads, legs and tails in CUB; cockpit,

tail stabilizers and engine in Aircraft; front bumpers, wheels

and lights in Cars. Such observations exactly reflect the na-

ture of our approach which aims to improve the feature dis-

crimination by the effective combinations of these parts.

CUB Aircraft Cars

Figure 4. Visualization of the learned image patches in our fine-

tuned networks on the CUB, Aircraft and Cars datasets.

6. Conclusion

It is preferred to perform FGVC under a more realistic

setting without part annotations and any prior knowledge

for explicit object appearance modeling. In this paper, by

considering the weak parts in CNN itself, we present a novel

higher-order integration framework of hierarchical convo-

lutional layers to derive a rich representation for FGVC.

Based on the kernel mapping scheme, we propose a polyno-

mial predictor to exploit the higher-order part relations and

presented the trainable polynomial modules which can be

plugged in conventional CNNs. Furthermore, the higher-

order integration framework can be naturally extended to

mine the multi-scale part relations in hierarchical layers.

The results on the CUB, Aircraft and Cars datasets manifest

competitive performance, and demonstrate the effectiveness

of our integration framework.
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