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Abstract

The success of fine-grained visual categorization
(FGVC) extremely relies on the modeling of appearance
and interactions of various semantic parts. This makes
FGVC very challenging because: (i) part annotation and
detection require expert guidance and are very expensive;
(ii) parts are of different sizes; and (iii) the part interac-
tions are complex and of higher-order. To address these is-
sues, we propose an end-to-end framework based on higher-
order integration of hierarchical convolutional activations
for FGVC. By treating the convolutional activations as lo-
cal descriptors, hierarchical convolutional activations can
serve as a representation of local parts from different scales.
A polynomial kernel based predictor is proposed to cap-
ture higher-order statistics of convolutional activations for
modeling part interaction. To model inter-layer part inter-
actions, we extend polynomial predictor to integrate hierar-
chical activations via kernel fusion. Our work also provides
a new perspective for combining convolutional activations
from multiple layers. While hypercolumns simply concate-
nate maps from different layers, and holistically-nested net-
work uses weighted fusion to combine side-outputs, our ap-
proach exploits higher-order intra-layer and inter-layer re-
lations for better integration of hierarchical convolutional
features. The proposed framework yields more discrimina-
tive representation and achieves competitive results on the
widely used FGVC datasets.

1. Introduction

Deep convolutional neural networks (CNNs) have
emerged as the new state-of-the-art for a wide range of vi-
sual recognition tasks. Nevertheless, it remains quite chal-
lenging to derive the effective discriminative representa-
tion for fine-grained visual categorization (FGVC), primar-
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ily due to subtle semantic differences between sub-ordinate
categories. Conventional CNNs usually deploy the fully
connected layers to learn global semantic representation and
may not be suitable to FGVC. Therefore, leveraging local
discriminative patterns in CNN is crucial to obtain more
powerful representation, and recently has been intensively
studied for FGVC.

Part-based representations [47, 13l 146, 134, 48] built on
CNN features have been a predominant trend in FGVC.
Such methods follow a detection module consisting of part
detection and appearance modeling to extract regional fea-
tures on deeper convolutional layers in R-CNN [12] based
scenario. Then global appearance structure is incorporated
to pool these regional features. Although these methods
have yielded rich emporical returns, they still pose the fol-
lowing issues: (1) A considerable number of part-based
methods [47, 3| 46] heavily rely on the detailed part an-
notations to train accurate part detectors, which is costly
and further limits the scalability for large-scale datasets;
moreover, identifying discriminative parts for specific fine-
grained objects is quite challenging and often requires inter-
action with human or expert knowledge [4}40]]; (2) The dis-
criminative semantic parts in images often appear at differ-
ent scales. As each spatial unit in the deeper convolutional
layer corresponds to a specific receptive field, activations
from a single convolutional layer are limited in describing
various parts with different sizes; (3) Exploiting the joint
configuration of individual object parts is very important for
object appearance modeling. A few works introduce addi-
tional geometric constraints for object parts including the
popular deformable parts model [47]], constellation model
[34] and order-shape constraint [41]]. One key disadvantage
of these approaches is that they only characterize the first-
order occurrences and relationships of very few parts, how-
ever, cannot be readily applied to model objects with more
parts. Consequently, our focus is to capture the higher-order
statistics of those semantic parts at different scales, and thus
provide a more flexible way for global appearance modeling
without the help of part annotation.

511



activation maps

pooled relus_2 pooled relus_3

X . activation maps h

Ll bl

pooled relus_3

pooled relus_2

Figure 1. Visualization of several activation maps that corresponds
to large responses of the sum-pooled vectors of two activation lay-
ers relu5_2 and relu5_3 in VGG-16 model.

In recent works [34] 48], the deeper convolutional fil-
ters are regarded as weak part detectors and the correspond-
ing activations as the responses of detection, shown in Fig.
Motivated by this observation, instead of part anno-
tations and explicit appearance modeling, we straightfor-
wardly exploit the higher-order statistics from the convolu-
tional activations. We first provide a perspective of match-
ing kernel to understand the widely adopted mapping and
pooling schemes on convolutional activations in conjunc-
tion with linear classifier. Linear mapping and direct pool-
ing only capture the occurrence of parts. In order to capture
the higher-order relations among parts, it is better to ex-
plore local non-linear matching kernels to characterize the
higher-order part interactions (e.g., co-occurrence). How-
ever, designing an appropriate CNN architechture that can
be plugged with non-linear local kernels in an end-to-end
manner is non-trivial. The kernel scheme is required to
have explicit non-linear maps and be differentiable to fa-
cilitate back-propagation. One representative work is con-
volutional kernel network (CKN) [28], which provides a
kernel approximation scheme to interpret CNNs. A related
polynomial network [26] is to utilize polynomial activation
functions as alternatives of ReLU in CNNs to learn non-
linear interations of feature variables. Similarly, we lever-
age the polynomial kernel to serve in modeling higher-level
part interactions and derive the polynomial modules that al-
low trainable structure built on CNNs.

With the kernel scheme, we extend our framework for
higher-order integration of hierarchical convolutional acti-
vations. The effectiveness of fusing hierarchical features in
CNNs has been widely reported in visual recognition. The
benefits come from both the different discriminative capac-
ities of multiple convolutional layers and the coarse-to-fine
object description. However, the existing methods simply
concatenate or sum multiple activations into a holistic rep-
resentation [[15]], or adopt a decision level fusion to combine
side-outputs from different layers [23}42]. These methods,
however, are limited in exploiting the intrinsic higher-order
relationships of convolutional activations in either the intra-
layer level or the inter-layer level. By using the kernel fu-

sion on hierarchical convolutional activations, we can con-
struct a richer image representation for cross-layer integra-
tion. Compared with the related works that perform feature
fusion via learning multiple networks [8} 135, 24]], our frame-
work is easy to construct and more effective for FGVC.

2. Related work
2.1. Feature encoding in CNNs

Applying encoding techniques for the local convolu-
tional activations in CNNs has shown significant improve-
ments compared with the fully-connected outputs [7, 43].
In this case, the Vectors of Locally Aggregated Descrip-
tors (VLAD) and Fisher Vectors (FV) as high-order statis-
tics based representation can be readily applied. Gong et
al. [13] propose to use VLAD to encode local features ex-
tracted from multiple regions of an image. In [9, [7, 43],
the values of FV encoding on convolutional activations are
discovered for scene, texture and video recognition tasks.
However, regarding feature encoding as an isolated compo-
nent is not the optimal choice for CNNs. Therefore, Lin et
al. [24] propose a bilinear CNN (B-CNN) as codebook-free
coding that allows end-to-end training for FGVC. The very
recent work in [1]] builds a weakly place recognition sys-
tem by introducing a generalized VLAD layer that can be
trained with off-the-shelf CNN models. An alternative for
feature mapping is to exploit kernel approximation feature
embedding. Yang et al. [43] introduce adaptive Fastfood
transform in their deep fried convnets to replace the fully-
connected layers, which is a generalization of the Fastfood
transform for approximating kernels [22]]. Gao et al. [11]
implement an end-to-end structure to approximate degree-2
homogeneous polynomial kernel by utilizing random fea-
tures and sketch techniques.

2.2. Feature fusion in CNNs

Compared with the fully connected layers capturing the
global semantic information, convolutional layers preserve
more instance-level details and exhibit diverse visual con-
tents as well as different discriminative capacities, which
are more meaningful to the fine-grained recognition task
[2]. Recently a few works attempt to investigate the effec-
tiveness of exploiting features from different convolutional
layers [25) 44]]. Long et al. [27] combine the feature maps
from intermediate level and high level convolutional layers
in their fully convolutional network to provide both finer
details and higher-level semantics for better image segmen-
tation. Hariharan ef al. [15] introduce hypercolumns for
localization and segmentation, where convolutional activa-
tions at a pixel of different feature maps are concatenated
as a vector as a pixel descriptor. Similarly, Xie and Tu
[42] present a holistically-nested edge detection scheme in
which the sideoutputs are added after several lower convo-

512



lutional layers to provide deep supervision for predicting
edges at multiple scales.

3. Kernelized convolutional activations

Most part-based CNN methods for FGVC consist of two
components: (i) feature extraction for semantic parts on the
last convolutional layer, and (ii) spatial configuration mod-
eling for those parts to produce discriminative image rep-
resentation. In this work, we treat the convolutional filter
as part detector, and then the convolutional activations in
a single spatial position can be considered as the part de-
scriptions. Therefore, instead of explicit part extraction, we
introduce polynomial predictor to integrate a family of lo-
cal matching kernels for modeling higher-order part inter-
actions and derive powerful representation for FGVC.

3.1. Matching kernel and polynomial predictor

Suppose that an image I is passed by a plain CNN,

and we denote the 3D activations X € REXMXN ex.
tracted from some specific convolutional layer as a set of
K -dimensional descriptors {x, },cq, where K is the num-
ber of feature channels, x, represents the descriptor at a
particular position p over the set {2 of valid spatial locations
(|2] = M x N). We first consider the matching scheme K
for activation sets X and X from two images, in which the
set similarity is measured via aggregating all the pairwise
similarities among the local descriptors:
K(X,X) = Agg({k(xp, Tp) }peq pe)
where k(-) is some kernel function between individual de-
scriptors of two activation sets, Agg(-) is some set-based
aggregation function, 1)(X’) and 1 (X’) are the vector repre-
setations for sets. It is worth noting that the construction of
K presented above is decomposed into two steps in CNNs:
feature mapping and feature aggregation. The mapping step
maps each local descriptor z € R¥ as ¢(z) € R in
elaborated feature space. The aggregating step produces an
image-level representation (X)) from the set {¢(x,)}pen
through some pooling function g(-).

The key for FGVC is to discover and represent those
local regions which share common appearances within the
same category while exhibiting distinctive difference across
categories. Based on the matching scheme K in Eqn. (1)),
appropriate pooling operators have been designed to effi-
ciently prune non-discriminative matching subset while re-
taining those highly discriminative ones into image repre-
sentation. Among them, sum pooling assigns equal weights
to each position, and does not emphasize any position. Max
pooling only considers the most significant position, which
results in enormous information loss and is prone to small
interference. Other pooling operators such as generalized
max pooling [31]] and £,-norm pooling [10] may be effec-

= (X)) (X)), (1)

tive in discovering informative regions, but the feasible end-
to-end schemes are unclear. Our attention is to model the
higher-order relationships for discriminative representation
of local patch and design suitable local mapping function
¢ which can be stacked upon CNN for end-to-end training.
Thus, we simply adopt g(-) as the global sum pooling, in
which case we denote it as:

> o). 6)

W(X) = g({o(xp) }pea) =
peEN

The above matching underpinning highlights the advantage
of generating image-level representation compatible with
linear predictors, which can be interpreted as the linear
combination of all local compositions accordingly:

f(@) = (w, o(2)), 3)

where w is the parameter of predictor, we omit the bias term
and position subscript p here for later convenience. As our
aim is to capture more complex and higher-order relation-
ships among parts, to this end, we propose the following
polynomial predictor:

Zwksrk+z Z th (Hajks),
s=1

where R is the maximal degree of part interactions, W' is a
r-order tensor which contains the weights of degree-r vari-
able combinations in x. For instance, when r = 3, W, ;
is the weight of z;x;x). We discuss different polynomial
predictors as well as their corresponding kernels as follows:

1) Linear Kkernel: k(x,Z) = (x,Z) is the most simple
kernel that refers to an identity map ¢ :  — x, which is
identical to the polynomial predictor of degree-1: f(x) =
Y Wk

2) Homogeneous polynomial kernel: k(x,Z) =
(@, Z)" has shown the superiority in characterizing the in-
trinsic manifold structure of dense local descriptors [5]. The
induced non-linear map ¢ : * — ®,x, where ®,.x is a
tensor defined by the r-order self-outer product [32] of =,
is able to model all the degree-r interactions between vari-
ables. Its polynomial predictor obeys the following form:

= > win (T =), 5)
k1,.o.kr s=1

Notice that the polynomial predictor of degree-2 homo-
geneous polynomial kernel is defined as Z W2z,
which captures all pairwise/second-order mteractlons be-
tween variables and is an increasingly popular model in
classification tasks [24].

3) Positive definite kernel: as discussed in [18], the
positive definite kernel k(x, Z) : (x,Z) — f({x,Z)) de-
fines an analytic function which admits a Maclaurin ex-
pansion with only nonnegative coefficients, i.e., f(x) =
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Ziio a,z", a, > 0. For instance, a non-homogeneous
degree-2 polynomial kernel ({x,Z) + 1)? corresponds to
a polynomial predictor that captures all single and pairwise
interactions between variables. It also indicates that the pos-
itive definite kernel can be arbitrarily accurate approxima-
tion of polynomial kernels in principle of sufficiently high
degree polynomial expansions for target functions.

3.2. Tensor learning for polynomial kernels

Before deriving the end-to-end CNN architecture for
learning the parameters in Eqn. (), we first reformulate
the polynomial predictor into a more concise tensor form:

R
f(@) = (w,z) + Y (W, @), 6)

r=2

where (W, V) is the inner product of two same-sized ten-
sors W,V € RE1>XXEr which is defined as the sum of
the products of their entries. It is observed that the tensor
®rx comprises all the degree-r monomials in . There-
fore, any degree-r homogeneous polynomial predictor sat-
isfies (W", ®,.x) for some r-order tensor W"; likewise,
any r-order tensor YW determines a degree-r homogenous
polynomial predictor. This equivalence between polyno-
mials and tensors motivates us to transform the parameter
learning of polynomial predictor into tensor learning.

Rather than estimating the variable interations in tensors
independently, an alternative method is tensor decomposi-
tion [[19] which breaks the independence of interaction pa-
rameters and estimates the reliable interaction parameters
under high sparsity. Tensor decomposition is widely used
in tensor machines [38]] for sparse data based regression,
which circumvents the parameter storage issue and achieves
better generalization in practice. We then embrace the rank-
one tensor decomposition [19] in our next step of tensor
learning for consideration of two aspects: the high sparsity
of activations in deeper layers of CNNs and the parameter
sharing of convolutional filters.

We first briefly review the notations and definitions in the
area of rank-one tensor decomposition: the outer product
of vectors u; € RX1, € REr is the K7 x --- X
K, rank-one tensor that satisfies (w1 ® -+ @ Uy )iy k. =
(w1)k, -+ (u,)g,. The rank-one decomposition for a tensor
W is defined as W = S0 a%uf @ -+ @ ud, where

d is the weight for d-th rank-one tensor, D is the rank of
the tensor if D is minimal. We then apply the rank-one
approximation [[19] for each r-order tensor W' and present
the following alternative form of polynomial predictor:

R D"

(w, x) +ZZadrd

r=2 d=1

fz) = c@upt, @) (7)

and ug’d r=2,...,R,s =
D"), in next section, we show that all

In order to learn w, o™
r,d=1,...,

the parameters can be absorbed into the conventional train-
able modules in CNNss.

3.3. Trainable polynomial modules

According to the tensor algebra, the Eqn. (7)) can be fur-
ther rewritten as:

R D
flx) = (w,z) +ZZa’dH (®)
r=2d=1 s=1
R
= (w,z)+) (a,2") )

where the d-th element of the vector z" € RPr is
[T._,(u>? x) which characterizes the degree-r variable
interactions under a single rank-one tensor basis. o’ =
[t ...,a"P"]T is the associated weight vector of all
D" rank-one tensors. A key observation of Eqns. (8§
() is that we are able to decouple the parameters into
{w,a?,...,a® and {{ul%s-1,  rd=1,..D, }reo,. R
Notice that for each s, we can first deploy {u”%}4—1. _ p, as
asetof D, 1 x 1 convolutional filters on X" to generate a set
of feature maps Z', of dimension D" x M x N. Then, the
feature maps {Z7 }s=1, ., from different ss are combined
by element-wise product to obtain Z" = Z7 ©--- © Z7.
Therefore, {ug’d}szl’,___ymd:l,mDT can be treated as a poly-
nomial module in learning degree-r polynomial features.
As for the former parameter group, it can be easily embed-
ded into the learning of the classifier for the concatenated
polynomial features. Refering to Eqn. (), the derivatives

for = and each degree-r convolutional filter u*® in back
propagation process can be achieved by:
ot
e x))ul?  (10)
x d 1s=1 t;és'
o or rd
_— = — u, ,x))xT (11
i = oy @l )

where y" = g(Z") = g({z"}) is the pooled feature rep-
resentation for degree-r polynomial module, ¢ is the loss
associated with y”. On this basis, we can embrace those
polynomial modules with the trainable CNN architectures
and are able to model the higher-order part statistics of any
degree. Even though the dominant level of those highly-
correlated parts will be enhanced with a larger r, the high-
order tensor usually needs large D" to guarantee a good ap-
proximation. Therefore, a relative small degree r should
be considered in practice because a high-degree polynomial
module increases the computational cost in back propaga-
tion, i.e., Eqns. (I0) (II)), and the induced high dimension-
ality of feature would cause over-fitting.
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Figure 2. Illustration of our integration framework. The convolutional activation maps are concatenated as X = concat( X",
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fed into different branches. For 7-th branch (r > 2), the degree-r polynomial module consisting of r groups of 1 X 1 convolutional filters
is deployed to obtain r sets of feature maps { Z% }s=1,...,». Then {Z%}s=1,. ., are integrated as Z" by applying element-wise product
®. Atlast, X and all Z"s are concatenated as the degree-r polynomial features, following by sum pooling layer to obtain the pooled

representation y = concat(y’, . ..

4. Hierarchical convolutional activations
4.1. Higher-order integration using kernel fusion

The polynomial predictor provides a good measure for
the highly-correlated parts but the activations on individual
convolutional layer are not sufficient to describe the part re-
lations from different levels of abstraction and scale. Con-
sequently, we investigate a kernel fusion scheme to combine
the hierarchical convolutional activations. Suppose that the
local activation descriptor sets from L convolutional layers
at spatial correspondences for two images are denoted as

;o {z!}, and 7 : {Z'},. Then we generalize ¢
under linear factorization to fuse the local activations from
multiple convolutional layers as below:

kpr,r) = (o({z'}Hy),

L
= > m(¢ @
=1

where 7); is the weight for the matching scores in [-th layer.
The above kernel fusion can be re-interpreted as perform-
ing polynomial feature extraction at each layer and fusing
them in latter phase. Recently, hypercolumn [15] suggests
a simple feature concatenation manner to combine different
feature maps in CNNs for pixel-level classification, which
motivates us to adopt the similar way in our polynomial ker-
nel fusion. Thereby, we assume a holistic mapping ¢ for
all layers, Le., Zlel Vmdh(x') — ¢(concat(z!, ... xh))
with weights ,/7;s be merged into element-wise scale lay-
ers. It should be noted that the spatial resolutions of differ-
ent convolutional layers need to be consistent for concate-
nation operation. Alternatively, we can add pooling layers
or spatial resampling layers to meet this requirement. In this
sense, the expansion of ¢ by Eqn. (@) yields two groups of

variable interactions: [, xfﬂ that characterizes the inter-

o({Z'} 1))
#(z"), (12)

,y") with the dimension of Efil D, (D1 denotes the channel number of X'), and softmax layer.

actions of parts in the /-th layer; and [ ], ky xklxk (where
I # q) that captures additional information of multi-scale
part relations from the [/-th layer and ¢-th layer.

4.2. Integration architecture for deeper layers

Although the kernel fusion scheme enables polynomial
predictor for integrating hierarchical convolutional activa-
tions, it may not perform and scale well in case where large
numbers of layers involoved. We argue that only the con-
volutional activations from very deep layers refer to the re-
sponses of discriminative semantic parts. That is consistent
with the recent studies [34} 48] which regard the convolu-
tional filters in deeper layers as weak part detectors. In our
experiments, we demonstrate that the integration of the last
three convolutional activation layers (i.e., relu5_1, relu5_2,
and relu5_3 in VGG-16 model [36]) is fairly effective to
obtain satisfactory performance. Even though more lower
layers could be involved, the effect is less obvious on the
improvement but higher computational complexity on both
training and testing phases. Fig. [2] presents our CNN archi-
tecture for integrating multiple convolutional layers. Com-
pared with the B-CNN methods [24, [11] focusing only on
the degree-2 part statistics, our approach provides a gen-
eral solution to model complex part interactions from hier-
archical layers in differnt degrees and its superiority will be
demonstrated in experiments.

5. Experiments

In this section, we evaluate the effectiveness of our pro-
posed integration framework on three fine-grained cate-
gorization datasets: Caltech-UCSD Bird-200-2011 (CUB)
[39]], Aircraft [29]] and Cars [21l]. The experimental com-
parisons with state-of-the-art methods indicate that effec-
tive feature integration from CNN is a promising solution
for FGVC in contrast with the requirements of massive ex-
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ternal data or detailed part annotation.

5.1. Datasets and Implementation Details

CUB dataset contains 11,788 bird images. There are
altogether 200 bird species and the number of images per
class is about 60. The significant variations in pose, view-
point and illumination inside each class make this dataset
very challenging. We adopt the publicly available split [39],
which use nearly half of the dataset for training and the
other half for testing.

Aircraft dataset has 100 different aircraft model vari-
ants, giving 100 images for each model. The aircrafts ap-
pear at different scales, design structures and appearances.
We adopt the training/testing split protocol provideded by
[29] to perform our experiments.

Cars dataset consists of 16,185 images from 196 car
classes. Each class has about 80 images with different car
sizes and heavy clutter background. We use the same split
provided by [21], divided with 8,144 images for training
and 8,041 images for testing.

Implementation details: our networks on all datasets
are fine-tuned on the VGG-16 model pretrained on
ILSVRC-2012 dataset [33] for fair comparison with most
state-of-the-art FGVC methods. The framework can be
also applied to the recently proposed network architectures
such as Inception [37] and ResNet [16]. We remove the
last three fully-connnected layers and construct a directed
acyclic graph (DAG) to combine all the components in our
framework. Before fed into softmax layer, we first pass
pooled polynomial features through ¢ normalization step.
We then use logistic regression to intialize the parameters
of classification layer, and adopt Rademacher vectors (i.e.,
each of its components are chosen independently using a
fair coin toss from the set {—1,1}) as good initializations
[[L8] of homogenous polynomial kernels for the 1 x 1 con-
volutional filters. In training phase, following [24], we
transform the input image by cropping the largest image re-
gion around its center, resizing it to 448 x 448, and creat-
ing its mirrored version to double the training set. During
fine-tuning, the learning rates of those pre-trained VGG-16
layers and the newly added layers, including 1 x 1 con-
volutional layers and classification layer, are initialized as
0.001. We train all the networks using stochastic gradient
descent with a batch size of 16, momentum of 0.9. In test-
ing phase, we follow the popular CNN-SVM scheme [24],
i.e., use softmax loss in training and then perform evalua-
tion on the extracted features by SVM. Our code is imple-
mented on the open source MatConvNet framework with
a single NVIDIA GeForce GTX TITAN X GPU and can
be downloaded at http://www4.comp.polyu.edu.
hk/~cslzhang/code/hihca.zipl

5.2. Analysis of the proposed framework

5.2.1 Effect of number of 1 x 1 convolutional filters

To validate the effectiveness of introducing tensor de-
composition in our polynomial predictor, we investigate
the effect of different D" for the approximation of each
r-order tensor W". We first evaluate the classifica-
tion accuracies on the CUB dataset on a single layer
relu5_3 using different homogeneous polynomial kernels
for solely modeling the degree-r variable interactions, i.e.,
Ty XiTj, TiX Tk, T2, The number D™ for degree-r
convolutional filters varies from 512 to 32,768. The results
are shown in Fig. As expected, increasing D" leads
higher accuracies on all degrees. Interestingly, when D" is
small, degree-2 always leads a higher accuracy than those
with higher degrees, which indicates that modeling higher-
order part interactions often yields a tensor of dense param-
eters. It is observed that the performance gain is slight when
the number D" increases from 8,192 to 32,768, which in-
fers that a relative sparse tensor YW" can comprehensively
encode the distinguishing part interactions of fine-grained
objects from the very sparse activation features. Therefore,
we uniformly use 8,192 1 x 1 convolutional filters in all the
polynomial modules in consideration of feature dimension,
computational complexity as well as accuracy.
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Figure 3. Accuracies achieved by using polynomial kernels with
varied numbers of 1 X 1 convolutional filters on the CUB dataset.

5.2.2 Effect of polynomial degree r

We further demonstrate the superiority of using higher-
order part interactions both with and without finetuning on
the CUB dataset in Table |I} We observe that the degree-2
polynomial kernel significantly outperforms the linear ker-
nel. It implies that the co-occurrence statistics is very effec-
tive in capturing part relations, which is more informative in
distinguishing objects with homogeneous appearance than
the simple part occurrence statistics. The accuracy degrades
considerably as the degree r increases from 2 to 6, which
might be explained by the fact the low-degree interactions
with high counts are more reliable. As the reliable high-
degree interactions are usually a few in number, the sum
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pooling will abate those scarce interactions in the pooled
polynomial representation, which weakens the discrimina-
tive ability of the final concatenated representation. Table.
lists the frame-per-second (FPS) comparison in both train-
ing and testing phases using different polynomial kernels.
Since there is high computational overhead involved in the
polynomial modules in the network, a large degree r will
significantly slow the speed. Therefore, we suggest to adopt
2 as the practical degree in all the experiments in Section
[5.3]even though degree-3 kernel can achieve slightly better
results on Aircraft and Cars datasets.

Table 1. Accuracy comparison with different non-homogeneous
polynominal kernels.
r 1 2 3 4 5 6
non-ft | 75.7 | 783 | 76.4 | 74.6 | 724 | 71.2
ft 79.2 | 83.7 | 833 | 82.0 | 81.1 | 79.5

Table 2. FPS with different non-homogeneous polynomial kernels.
r 2 3 4 5 6

Training | 9.7 7.4 5.5 4.2 2.8

Testing | 29.8 | 23.7 | 183 | 145 | 104

5.2.3 Effect of feature integration

We then provide details of the results by using higher-
order integration for hierarchical convolutional activations.
We focus on relu5_1, relu5_2 and relu5_3 as they exhibit
good capacity in capturing semantic part information com-
pared with lower layers. And we analyze the impact fac-
tors of layers, kernels, and finetuning on the CUB dataset.
The accuracies are obtained under five polynomial ker-
nels including linear kernel, degree-2 homogeneous ker-
nel, degree-2 non-homogeneous (single + pairwise inter-
actions), degree-3 homogeneous kernel and degree-3 non-
homogeneous kernel (single + pairwise + triple interac-
tions). We consider the following baselines: relu5_3 uses
only relu5_3 activations. relu5_3+relu5_2, relu5_3+relu5_1
and relu5_2+relu5_I are integration baselines that use 2 lay-
ers. relu5_I+relu5_2+relu5_3 is the full integration of three
layers. The results in Table [3] demonstrate that the perfor-
mance gain of our framework comes from three factors: (i)
higher-order integration, (ii) finetuning, (iii) multiple layers.
Notably, we observe the remarkable performance benefits
on the baseline relu5_3+relu5_2 and the full model of three
layers by exploiting the degree-2 and degree-3 polynomial
kernels, which implies that the discriminative power can
be enhanced by the complementary capacities of hierarchi-
cal convolutional layers compared with the isolated relu5_3
layer. As the baseline relu5_3+relu5_2 already presents the
best performance, thus we set the feature integration as
relu5_3+relu5_2 in all the experiments in Section[5.3]

Table 3. Accuracy comparison with different baselines.

5.3 r53+ r5_3+ r52+ :;j:
r52 r5_1 r5_1
r5_1
degree-1
non-ft 75.7 77.2 75.5 68.9 71.0
ft 79.2 80.4 79.3 71.1 80.8
degree-2 homogeneous
non-ft 77.2 78.1 71.5 723 78.4
ft 83.5 85.0 83.3 76.0 84.9
degree-2 non-homogeneous
non-ft 78.3 78.5 71.5 72.1 78.6
ft 83.7 85.3 83.6 76.5 85.1
degree-3 homogeneous
non-ft 75.7 76.9 76.0 70.7 76.1
ft 82.3 83.8 81.5 74.1 83.3
degree-3 non-homogeneous
non-ft 76.4 78.2 77.4 723 78.1
ft 83.3 84.6 82.1 754 84.5

We also compare our higher-order integration with hy-
percolumn [15] and HED [42] based feature integrations.
Since the original hypercolumn and HED are introduced
for pixel-wise classification, for fair comparison, we re-
vise hypercolumn as the feature concatenation of relu5_3,
relu5_2 and relu5_1, following by max pooling (denoted
as Hypercolumn™); and revise HED by training classifiers
for the pooled activation features at each layer and then
fuse the predictions (denoted as HED*). Table [4] shows
that our integration framework is significantly superior to
Hypercolumn® and HED*. This is not surprising since
Hypercolumn® and HED* can be treated as degree-1 inte-
gration to some extent.

Table 4. Accuracy comparison with different feature integrations.
Degree-2 integration | Hypercolumn™ | HED*
85.1 80.9 823

5.3. Comparison with state-of-the-art methods

5.3.1 Results on the CUB dataset

We first compare our framework along with both the
annotation-based methods (i.e., using object bounding
boxes or part annotations) and annotation-free methods (i.e.,
only using image-level labels) on the CUB dataset. As
shown in Table |5} unlike the state-of-the-art result obtained
from SPDA-CNN (85.1%) [46] which relys on the addi-
tional annotations of seven parts, we can still achieve a
comparable accuracy of 85.3% with only image-level labels
and significant improvements over PB R-CNN [47] and FG-
Without [20]. Furthermore, our method is slightly inferior
to BoostCNN [30] and outperforms all other annotation-
free methods with a modest improvement (about 1%) com-
pared with STN [17], B-CNN [24]] and PDFS [48]. How-
ever, STN [[17] uses a better baseline CNN (Inception [37])
than our VGG-16 network and PDFS [48]] cannot be trained
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by end-to-end manner. B-CNN [24] attempts to achieve the
feature complementary based on the outer product of con-
volutional activations from two networks (i.e., VGG-M and
VGG-16). However, our framework shows that the better
complementarity can be achieved by exploiting the natural
hierarchical structures of CNNs. BoostCNN uses BCNN as
the base CNN and adopts an ensemble learning method to
incorporate boosting weights. Thus, a fair comparison is to
use ours as the base CNN in BoostCNN.

Table 5. Accuracies (%) on the CUB dataset. “bbox” and “parts”
refer to object bounding box and part annotations.

methods train anno. test anno. acc.

PB R-CNN bbox+parts n/a 73.9
FG-Without [20] bbox bbox 82.0
SPDA-CNN [46] | bbox+parts | bbox+parts | 85.1
STN [17] n/a n/a 84.1
B-CNN n/a n/a 84.1
PDFS [48] n/a n/a 84.5
BoostCNN [30] n/a n/a 85.6
Ours n/a n/a 85.3

5.3.2 Results on the Aircraft and Cars datasets

The methods for the Aircraft and Cars datasets are all
annotation-free since there are no ground-truth part anno-
tations on these two datasets. We first evaluate our frame-
work on the Aircraft dataset, and the related results are
shown in the second column of Table Our network
achieves significantly better classification accuracy than the
state-of-the-art B-CNN which can be seemed as a specific
degree-2 case in our framework. As we find that relu5_2
instead of relu5_3 achieves the best performance in Aircraft
dataset, our improvement might be due to the reasons: (1)
B-CNN only focuses on relu5_3 where the the discrimina-
tive parts are highly out-numbered, thus these parts might be
overwhelmed by large non-discriminative region in pooling
stage; (2) the discriminative parts in this dataset may occur
simultaneously in both the coarse and fine scales. While
the rich representation by incorporating multiple layers in
our integration framework mitigates the local ambiguities
of single-layer representation to a large extent.

The third column of Table [6] provides the comparision
on the Cars dataset. B-CNN [24]] shows the similar accu-
ray behavior with ours and both present a large margin over
Symbiotic [6] and FV-FGC [14]]. The accuracy of B-CNN
using two networks is very close to ours (91.3% vs.
91.7%), yet for the single network case, it still has the accu-
racy gap of 1.1%, which infers that the hierarchical feature
integration on a single network can also contribute the fea-
ture complementary as done by two different networks.

Table 6. Accuracies (%) on the Aircraft and Cars datasets.

methods acc. (Aircraft) | acc. (Cars)
Symbiotic [6] 72.5 78.0
FV-FGC [14] 80.7 82.7

B-CNN 84.1 91.3 (90.6)
Ours 88.3 91.7

5.3.3 Visualization for the learned image patches

In Fig. @] we visualize some image patches with the highest
activations in the deeper layers of our fine-tuned networks
and the patches in each column come from different fea-
ture channels/maps. We obviously observe strong semantic-
related parts such as heads, legs and tails in CUB; cockpit,
tail stabilizers and engine in Aircraft; front bumpers, wheels
and lights in Cars. Such observations exactly reflect the na-
ture of our approach which aims to improve the feature dis-
crimination by the effective combinations of these parts.

CUB Aircraft Cars

ﬁu“u

Figure 4. Visualization of the learned image patches in our fine-
tuned networks on the CUB, Aircraft and Cars datasets.

6. Conclusion

It is preferred to perform FGVC under a more realistic
setting without part annotations and any prior knowledge
for explicit object appearance modeling. In this paper, by
considering the weak parts in CNN itself, we present a novel
higher-order integration framework of hierarchical convo-
lutional layers to derive a rich representation for FGVC.
Based on the kernel mapping scheme, we propose a polyno-
mial predictor to exploit the higher-order part relations and
presented the trainable polynomial modules which can be
plugged in conventional CNNs. Furthermore, the higher-
order integration framework can be naturally extended to
mine the multi-scale part relations in hierarchical layers.
The results on the CUB, Aircraft and Cars datasets manifest
competitive performance, and demonstrate the effectiveness
of our integration framework.
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