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Abstract

Learning-based hashing methods are widely used for

nearest neighbor retrieval, and recently, online hashing

methods have demonstrated good performance-complexity

trade-offs by learning hash functions from streaming data.

In this paper, we first address a key challenge for online

hashing: the binary codes for indexed data must be re-

computed to keep pace with updates to the hash functions.

We propose an efficient quality measure for hash functions,

based on an information-theoretic quantity, mutual infor-

mation, and use it successfully as a criterion to eliminate

unnecessary hash table updates. Next, we also show how to

optimize the mutual information objective using stochastic

gradient descent. We thus develop a novel hashing method,

MIHash, that can be used in both online and batch settings.

Experiments on image retrieval benchmarks (including a

2.5M image dataset) confirm the effectiveness of our for-

mulation, both in reducing hash table recomputations and

in learning high-quality hash functions.

1. Introduction

Hashing is a widely used approach for practical nearest

neighbor search in many computer vision applications. It

has been observed that adaptive hashing methods that learn

to hash from data generally outperform data-independent

hashing methods such as Locality Sensitive Hashing [4]. In

this paper, we focus on a relatively new family of adaptive

hashing methods, namely online adaptive hashing methods

[1, 2, 6, 11]. These techniques employ online learning in the

presence of streaming data, and are appealing due to their

low computational complexity and their ability to adapt to

changes in the data distribution.

Despite recent progress, a key challenge has not been

addressed in online hashing, which motivates this work:

the computed binary representations, or the “hash table”,

may become outdated after a change in the hash mapping.

To reflect the updates in the hash mapping, the hash table
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Figure 1: We study online hashing for efficient nearest

neighbor retrieval. Given a hash mapping Φ, an image x̂,

along with its neighbors in �x̂ and non-neighbors in �x̂,

are mapped to binary codes, yielding two distributions of

Hamming distances. In this example, Φ1 has higher quality

than Φ2 since it induces more separable distributions. The

information-theoretic quantity Mutual Information can be

used to capture the separability, which gives a good quality

indicator and learning objective for online hashing.

may need to be recomputed frequently, causing inefficien-

cies in the system such as successive disk I/O, especially

when dealing with large datasets. We thus identify an im-

portant question for online adaptive hashing systems: when

to update the hash table? Previous online hashing solutions

do not address this question, as they usually update both the

hash mapping and hash table concurrently.

We make the observation that achieving high quality

nearest neighbor search is an ultimate goal in hashing sys-

tems, and therefore any effort to limit computational com-

plexity should preserve, if not improve, that quality. There-

fore, another important question is: how to quantify qual-

ity? Here, we briefly describe our answer to this question,

but first introduce some necessary notation. We would like

to learn a hash mapping Φ from feature space X to the b-
dimensional Hamming space Hb, whose outputs are b-bit
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binary codes. The goal of hashing is to preserve a neighbor-

hood structure in X after the mapping to Hb. Given x̂ ∈ X ,

the neighborhood structure is usually given in terms of a set

of its neighbors �x̂, and a set of non-neighbors �x̂. We

discuss how to derive the neighborhood structure in Sec. 3.

As shown in Fig. 1, the distributions of the Hamming

distances from x̂ to its neighbors and non-neighbors are his-

tograms over {0, 1, . . . , b}. Ideally, if there is no overlap

between these two distributions, we can recover �x̂ and �x̂

by simply thresholding the Hamming distance. A nonzero

overlap results in ambiguity, as observing the Hamming dis-

tance is no longer sufficient to determine neighbor relation-

ships. Our discovery is that this overlap can be quanti-

fied using an information-theoretic quantity, mutual infor-

mation, between two random variables induced by Φ. We

then use mutual information to define a novel measure to

quantify quality for hash functions in general.

With a quality measure defined, we answer the motivat-

ing question of when to update the hash table. We propose

a simple solution by restricting updates to times when there

is an estimated improvement in hashing quality, based on

an efficient estimation method in the presence of streaming

data. Notably, since mutual information is a good general-

purpose quality measure for hashing, this results in a gen-

eral plug-in module for online hashing that does not require

knowledge of the learning method.

Inspired by this strong result, we next ask, can we opti-

mize mutual information as an objective to learn hash func-

tions? We propose a novel hashing method, MIHash, by

deriving gradient descent rules on the mutual information

objective, which can be applied in online stochastic opti-

mization, as well as on deep architectures. The mutual in-

formation objective is free of tuning parameters, unlike oth-

ers that may require thresholds, margins, etc.

We conduct experiments on three image retrieval bench-

marks, including the Places205 dataset [32] with 2.5M im-

ages. For four recent online hashing methods, our mu-

tual information based update criterion consistently leads to

over an order of magnitude reduction in hash table recom-

putations, while maintaining retrieval accuracy. Moreover,

our novel MIHash method achieves state-of-the-art retrieval

results, in both online and batch learning settings.

2. Related Work

In this section, we mainly review hashing methods that

adaptively update the hash mapping with incoming data,

given that our focus is on online adaptive hashing. For a

more general survey on hashing, please refer to [25].

Huang et al. [6] propose Online Kernel Hashing, where

a stochastic environment is considered with pairs of points

arriving sequentially. At each step, a number of hash func-

tions are selected based on a Hamming loss measure and pa-

rameters are updated via stochastic gradient descent (SGD).

Cakir and Sclaroff [1] argue that, in a stochastic setting,

it is difficult to determine which hash functions to update as

it is the collective effort of all the hash functions that yields

a good hash mapping. Hamming loss is considered to infer

the hash functions to be updated at each step and a squared

error loss is minimized via SGD.

In [2], binary Error Correcting Output Codes (ECOCs)

are employed in learning the hash functions. This work

follows a more general two-step hashing framework [14],

where the set of ECOCs are generated beforehand and are

assigned to labeled data as they appear, allowing the label

space to grow with incoming data. Then, hash functions are

learned to fit the binary ECOCs using Online Boosting.

Inspired by the idea of “data sketching”, Leng et al. in-

troduce Online Sketching Hashing [11] where a small fixed-

size sketch of the incoming data is maintained in an online

fashion. The sketch retains the Frobenius norm of the full

data matrix, which offers space savings, and allows to ap-

ply certain batch-based hashing methods. A PCA-based

batch learning method is applied on the sketch to obtain

hash functions.

None of the above online hashing methods offer a solu-

tion to decide whether or not the hash table shall be updated

given a new hash mapping. However, such a solution is

crucial in practice, as limiting the frequency of updates will

alleviate the computational burden of keeping the hash ta-

ble up-to-date. Although [2] and [6] include strategies to

select individual hash functions to recompute, they still re-

quire computing on all indexed data instances.

Recently, some methods employ deep neural networks

to learn hash mappings, e.g. [12, 15, 27, 30] and others.

These methods use minibatch-based stochastic optimiza-

tion, however, they usually require multiple passes over a

given dataset to learn the hash mapping, and the hash table

is only computed when the hash mapping has been learned.

Therefore, current deep learning based hashing methods are

essentially batch learning methods, which differ from the

online hashing methods that we consider, i.e. methods that

process streaming data to learn and update the hash map-

pings on-the-fly while continuously updating the hash ta-

ble. Nevertheless, when evaluating our mutual information

based hashing objective, we compare against state-of-the-

art batch hashing formulations as well, by contrasting dif-

ferent objective functions on the same model architecture.

Lastly, Ustinova et al. [23] recently proposed a method

to derive differentiation rules for objective functions that re-

quire histogram binning, and apply it in learning deep em-

beddings. When optimizing our mutual information objec-

tive, we utilize their differentiable histogram binning tech-

nique for deriving gradient-based optimization rules. Note

that both our problem setup and objective function are quite

different from [23].
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3. Online Hashing with Mutual Information

As mentioned in Sec. 1, the goal of hashing is to learn a

hash mapping Φ : X → Hb such that a desired neighbor-

hood structure is preserved. We consider an online learning

setup where Φ is continuously updated from input stream-

ing data, and at time t, the current mapping Φt is learned

from {x1, . . . ,xt}. We follow the standard setup of learn-

ing Φ from pairs of instances with similar/dissimilar labels

[9, 6, 1, 12]. These labels, along with the neighborhood

structure, can be derived from a metric, e.g. two instances

are labeled similar (i.e. neighbors of each other) if their Eu-

clidean distance in X is below a threshold. Such a setting

is often called unsupervised hashing. On the other hand, in

supervised hashing with labeled data, pair labels are derived

from individual class labels: instances are similar if they are

from the same class, and dissimilar otherwise.

Below, we first derive the mutual information quality

measure and discuss its use in determining when to update

the hash table in Sec. 3.1. We then describe a gradient-based

approach for optimizing the same quality measure, as an ob-

jective for learning hash mappings, in Sec. 3.2. Finally, we

discuss the benefits of using mutual information in Sec. 3.3.

3.1. MI as Update Criterion

We revisit our motivating question: When to update the

hash table in online hashing? During the online learn-

ing of Φt, we assume a retrieval set S ⊆ X , which may

include the streaming data after they are received. We

define the hash table as the set of hashed binary codes:

T (S,Φ) = {Φ(x)|x ∈ S}. Given the adaptive nature of

online hashing, T may need to be recomputed often to keep

pace with Φt; however, this is undesirable if S is large or the

change in Φt’s quality does not justify the cost of an update.

We propose to view the learning of Φt and computa-

tion of T as separate events, which may happen at different

rates. To this end, we introduce the notion of a snapshot,

denoted Φs, which is occasionally taken of Φt and used

to recompute T . Importantly, this happens only when the

nearest neighbor retrieval quality of Φt has improved, and

we now define the quality measure.

Given hash mapping Φ : X → {−1,+1}b, Φ induces

Hamming distance dΦ : X × X → {0, 1, . . . , b} as

dΦ(x, x̂) =
1

2

(

b− Φ(x)⊤Φ(x̂)
)

. (1)

Consider some instance x̂ ∈ X , and the sets contain-

ing neighbors and non-neighbors, �x̂ and �x̂. Φ induces

two conditional distributions, P (dΦ(x, x̂)|x ∈ �x̂) and

P (dΦ(x, x̂)|x ∈ �x̂) as seen in Fig. 1, and it is desir-

able to have low overlap between them. To formulate the

idea, for Φ and x̂, define random variable Dx̂,Φ : X →
{0, 1, . . . , b},x 7→ dΦ(x, x̂), and let Cx̂ : X → {0, 1} be

the membership indicator for �x̂. The two conditional dis-

tributions can now be expressed as P (Dx̂,Φ|Cx̂ = 1) and

P (Dx̂,Φ|Cx̂ = 0), and we can write the mutual information

between Dx̂,Φ and Cx̂ as

I(Dx̂,Φ; Cx̂) = H(Cx̂)−H(Cx̂|Dx̂,Φ) (2)

= H(Dx̂,Φ)−H(Dx̂,Φ|Cx̂) (3)

where H denotes (conditional) entropy. In the following,

for brevity we will drop subscripts Φ and x̂, and denote the

two conditional distributions and the marginal P (Dx̂,Φ) as

p+
D

, p−
D

, and pD, respectively.

By definition, I(D; C) measures the decrease in uncer-

tainty in the neighborhood information C when observing

the Hamming distances D. We claim that I(D; C) also cap-

tures how well Φ preserves the neighborhood structure of x̂.

If I(D; C) attains a high value, which means C can be de-

termined with low uncertainty by observing D, then Φ must

have achieved good separation (i.e. low overlap) between

p+
D

and p−
D

. I is maximized when there is no overlap, and

minimized when p+
D

and p−
D

are exactly identical. Recall,

however, that I is defined with respect to a single instance

x̂; therefore, for a general quality measure, we integrate I
over the feature space:

Q(Φ) =

∫

X

I(Dx̂,Φ;Cx̂)p(x̂)dx̂. (4)

Q(Φ) captures the expected amount of separation between

p+
D

and p−
D

achieved by Φ, over all instances in X .

In the online setting, given the current hash mapping Φt

and previous snapshot Φs, it is then straightforward to pose

the update criterion as

Q(Φt)−Q(Φs) > θ, (5)

where θ is a threshold; a straightforward choice is θ = 0.

However, Eq. 4 is generally difficult to evaluate due to the

intractable integral; in practice, we resort to Monte-Carlo

approximations to this integral, as we describe next.

Monte-Carlo Approximation by Reservoir Sampling

We give a Monte-Carlo approximation of Eq. 4. Since we

work with streaming data, we employ the Reservoir Sam-

pling algorithm [24], which enables sampling from a stream

or sets of large/unknown cardinality. With reservoir sam-

pling, we obtain a reservoir set R , {xr
1, . . . ,x

r
K} from

the stream, which can be regarded as a finite sample from

p(x). We estimate the value of Q on R as:

QR(Φ) =
1

|R|

∑

xr∈R

IR(Dxr,Φ; Cxr). (6)

We use subscript R to indicate that when computing the

mutual information I, the p+
D

and p−
D

for a reservoir in-

stance xr are estimated from R. This can be done in O(|R|)
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Figure 2: We present the general plug-in module for on-

line hashing methods: Trigger Update (TU). We sample a

reservoir R from the input stream, and estimate the mutual

information criterion QR. Based on its value, TU decides

whether a hash table update should be executed.

time for each x
r, as the discrete distributions can be esti-

mated via histogram binning.

Fig. 2 summarizes our approach. We use the reservoir

set to estimate the quality QR, and “trigger” an update to

the hash table only when QR improves over a threshold.

Notably, our approach provides a general plug-in module

for online hashing techniques, in that it only needs access

to streaming data and the hash mapping itself, independent

of the hashing method’s inner workings.

3.2. MI as Learning Objective

Having shown that mutual information is a suitable mea-

sure of neighborhood quality, we consider its use as a

learning objective for hashing. Following the notation in

Sec. 3.1, we define a loss L with respect to x̂ ∈ X and Φ as

L(x̂,Φ) = −I(Dx̂,Φ; Cx̂). (7)

We model Φ as a collection of parameterized hash func-

tions, each responsible for generating a single bit: Φ(x) =
[φ1(x;W ), ..., φb(x;W )], where φi : X → {−1,+1}, ∀i,
and W represents the model parameters. For example, lin-

ear hash functions can be written as φi(x) = sgn(w⊤
i x),

and for deep neural networks the bits are generated by

thresholding the activations of the output layer.

Inspired by the online nature of the problem and recent

advances in stochastic optimization, we derive gradient de-

scent rules for L. The entropy-based mutual information

is differentiable with respect to the entries of pD, p+
D

and

p−
D

, and, as mentioned before, these discrete distributions

can be estimated via histogram binning. However, it is not

clear how to differentiate histogram binning to generate gra-

dients for model parameters. We describe a differentiable

histogram binning technique next.

Differentiable Histogram Binning

We borrow ideas from [23] and estimate p+
D

, p−
D

and pD us-

ing a differentiable histogram binning technique. For b-bit

Hamming distances, we use (K + 1)-bin normalized his-

tograms with bin centers v0 = 0, ..., vK = b and uniform

bin width ∆ = b/K, where K = b by default. Consider,

for example, the k-th entry in p+
D

, denoted as p+
D,k. It can

be estimated as

p+
D,k =

1

| � |

∑

x∈�

δx,k, (8)

where δx,k records the contribution of x to bin k. It is ob-

tained by interpolating dΦ(x, x̂) using a triangular kernel:

δx,k =











(dΦ(x, x̂)− vk−1)/∆, dΦ(x, x̂) ∈ [vk−1, vk],

(vk+1 − dΦ(x, x̂))/∆, dΦ(x, x̂) ∈ [vk, vk+1],

0, otherwise.

(9)

This binning process admits subgradients:

∂δx,k
∂dΦ(x, x̂)

=











1/∆, dΦ(x, x̂) ∈ [vk−1, vk],

−1/∆, dΦ(x, x̂) ∈ [vk, vk+1],

0, otherwise.

(10)

Gradients of MI

We now derive the gradient of I with respect to the output

of the hash mapping, Φ(x̂). Using standard chain rule, we

can first write

∂I

∂Φ(x̂)
=

K
∑

k=0

[

∂I

∂p+
D,k

∂p+
D,k

∂Φ(x̂)
+

∂I

∂p−
D,k

∂p−
D,k

∂Φ(x̂)

]

. (11)

We focus on terms involving p+
D,k, and omit derivations

for p−
D,k due to symmetry. For k = 0, . . . ,K, we have

∂I

∂p+
D,k

= −
∂H(D|C)

∂p+
D,k

+
∂H(D)

∂p+
D,k

(12)

= p+(log p+
D,k + 1)− (log pD,k + 1)

∂pD,k

∂p+
D,k

(13)

= p+(log p+
D,k − log pD,k), (14)

where we used the fact that pD,k = p+p+
D,k + p−p−

D,k, with

p+ and p− being shorthands for the priors P (C = 1) and

P (C = 0). We next tackle the term ∂p+
D,k/∂Φ(x̂) in Eq. 11.

From the definition of p+
D,k in Eq.8, we have

∂p+
D,k

∂Φ(x̂)
=

1

| � |

∑

x∈�

∂δx,k
∂Φ(x̂)

(15)

=
1

| � |

∑

x∈�

∂δx,k
∂dΦ(x, x̂)

∂dΦ(x, x̂)

∂Φ(x̂)
(16)

=
1

| � |

∑

x∈�

∂δx,k
∂dΦ(x, x̂)

−Φ(x)

2
. (17)

Note that ∂δx,k/∂dΦ(x, x̂) is already given in Eq. 10. For

the last step, we used the definition of dΦ in Eq. 1.

Lastly, to back-propagate gradients to Φ’s inputs and ul-

timately model parameters, we approximate the discontin-

uous sign function with sigmoid, which is a standard tech-

nique in hashing, e.g. [1, 12, 16].
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Figure 3: We show Pearson correlation coefficients between mutual information (MI) and AP, DCG, and NDCG, evaluated

on the CIFAR-10, LabelMe, and Places205 datasets. We sample 100 instances to form the query set, and use the rest to

populate the hash table. The hash mapping parameters are randomly sampled from a Gaussian, similar to LSH [4]. Each

experiment is conducted 50 times. There exist strong correlations between MI and the standard metrics.

3.3. Benefits of MI

For monitoring the performance of hashing algorithms,

it appears that one could directly use standard ranking met-

rics, such as Average Precision (AP), Discounted Cumu-

lative Gain (DCG), and Normalized DCG (NDCG) [17].

Here, we discuss the benefits of instead using mutual in-

formation. First, we note that there exist strong correlations

between mutual information and standard ranking metrics.

Fig. 3 demonstrates the Pearson correlation coefficients be-

tween MI and AP, DCG, and NDCG, on three benchmarks.

Although a theoretical analysis is beyond the scope of this

work, empirically we find that MI serves as an efficient and

general-purpose ranking surrogate.

We also point out the lower computational complexity of

mutual information. Let n be the reservoir set size. Com-

puting Eq. 6 involves estimating discrete distributions via

histogram binning, and takes O(n) time for each reservoir

item, since D only takes discrete values from {0, 1, . . . , b},

In contrast, ranking measures such as AP and NDCG have

O(n log n) complexity due to sorting, which render them

disadvantageous.

Finally, Sec. 3.2 showed that the mutual information ob-

jective is suitable for direct, gradient-based optimization. In

contrast, optimizing metrics like AP and NDCG is much

more challenging as they are non-differentiable, and ex-

isting works usually resort to optimizing their surrogates

[13, 26, 29] rather than gradient-based optimization. Fur-

thermore, mutual information itself is essentially parameter-

free, whereas many other hashing formulations require (and

can be sensitive to) tuning parameters, such as thresholds or

margins [18, 27], quantization strength [12, 15, 20], etc.

4. Experiments

We evaluate our approach on three widely used image

benchmarks. We first describe the datasets and experimen-

tal setup in Sec. 4.1. We evaluate the mutual informa-

tion update criterion in Sec. 4.2 and the mutual informa-

tion based objective function for learning hash mappings

in Sec. 4.3. Our implementation is publicly available at

https://github.com/fcakir/mihash.

4.1. Datasets and Experimental Setup

CIFAR-10 is a widely-used dataset for image classifica-

tion and retrieval, containing 60K images from 10 different

categories [7]. For feature representation, we use CNN fea-

tures extracted from the fc7 layer of a VGG-16 network

[21] pre-trained on ImageNet.

Places205 is a subset of the large-scale Places dataset

[32] for scene recognition. Places205 contains 2.5M im-

ages from 205 scene categories. This is a very challeng-

ing dataset due to its large size and number of categories,

and it has not been studied in the hashing literature to our

knowledge. We extract CNN features from the fc7 layer

of an AlexNet [8] pre-trained on ImageNet, and reduce the

dimensionality to 128 using PCA.

LabelMe. The 22K LabelMe dataset [19, 22] has 22,019

images represented as 512-dimensional GIST descriptors.

This is an unsupervised dataset without labels, and standard

practice uses the Euclidean distance to determine neighbor

relationships. Specifically, xi and xj are considered neigh-

bor pairs if their Euclidean distance is within the smallest

5% in the training set. For a query, the closest 5% examples

are considered true neighbors.

All datasets are randomly split into a retrieval set and a

test set, and a subset from the retrieval set is used for learn-

ing hash functions. Specifically, for CIFAR-10, the test set

has 1K images and the retrieval set has 59K. A random sub-

set of 20K images from the retrieval set is used for learning,

and the size of the reservoir is set to 1K. For Places205, we

sample 20 images from each class to construct a test set of

4.1K images, and use the rest as the retrieval set. A random

subset of 100K images is used to for learning, and the reser-

voir size is 5K. For LabelMe, the dataset is split into re-

trieval and test sets with 20K and 2K samples, respectively.

Similar to CIFAR-10, we use a reservoir of size 1K.
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Figure 4: Retrieval mAP vs. number of processed training examples for four hashing methods on the three datasets, with

and without Trigger Update (TU). We use default threshold θ = 0 for TU. Circles indicate hash table updates, and the ratio

of reduction in the number of updates is shown in the titles. TU substantially reduces the number of updates while having

a stabilizing effect on the retrieval performance. Note: since OSH [2] assumes supervision in terms of class labels, it is not

applicable to the unsupervised LabelMe dataset.

For online hashing experiments, we run three random-

ized trials for each experiment and report averaged results.

To evaluate retrieval performances, we adopt the widely-

used mean Average Precision (mAP). Due to the large size

of Places205, mAP is very time-consuming to compute,

and we compute mAP on the top 1000 retrieved examples

(mAP@1000), as done in [15].

4.2. Evaluation: Update Criterion

We evaluate our mutual information based update crite-

rion, the Trigger Update module (TU). We apply TU to all

existing online hashing methods known to us: Online Ker-

nel Hashing (OKH) [6], Online Supervised Hashing (OSH)

[2], Adaptive Hashing (AdaptHash) [1] and Online Sketch-

ing Hashing (SketchHash) [11]. We use publicly available

implementations of all methods. The hash code length is

fixed at 32 bits.

As our work is the first in addressing the hash table up-

date criterion for online hashing, we compare to a data-

agnostic baseline, which updates the hash table at a fixed

rate. The rate is controlled by a parameter U , referred to

as the “update interval”: after processing every U exam-

ples, the baseline unconditionally triggers an update, while

TUmakes a decision using the mutual information criterion.

For each dataset, U is set such that the baseline updates 201

times in total. This ensures that the baseline is never too

outdated, but updates are still fairly infrequent: in all cases,

the smallest U is 100.

Results for the Trigger Update module. Fig. 4 de-

picts the retrieval mAP over time for all four online hash-

ing methods considered, on three datasets, with and without

incorporating TU. We can clearly observe a significant re-

duction in the number of hash table updates, between one

and two orders of magnitude in all cases. For example, the

number of hash table updates is reduced by a factor of 67
for the OKH method on LabelMe.

The quality-based update criterion is particularly im-

portant for hashing methods that may yield inferior hash

mappings due to noisy data and/or imperfect learning tech-

niques. In other words, TU can be used to filter updates to

the hash mapping with negative or small improvement. This

has a stabilizing effect on the mAP curve, notably for OKH
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Figure 5: Online hashing performance comparison on three datasets, where all methods use the Trigger Update module (TU)

with default threshold θ = 0. MIHash clearly outperforms other competing methods. OSH, AdaptHash, and SketchHash

perform very similarly on Places205, thus their curves overlap.

and AdaptHash. For OSH, which appears to stably improve

over time, TU nevertheless significantly reduces revisits to

the hash table while maintaining its performance.

All results in Fig. 4 are obtained using the default thresh-

old parameter θ = 0, defined in Eq. 5. We do not tune θ in

order to show general applicability. We also discuss the im-

pact of the reservoir set R. There is a trade-off regarding

the size of R: a larger R leads to better approximation but

increases the overhead. Nevertheless, we observed robust

and consistent results with |R| not exceeding 5% of the size

of the training stream.

4.3. Evaluation: Learning Objective

We evaluate the mutual information based hashing ob-

jective. We name our method MIHash, and train it using

stochastic gradient descent (SGD). This allows it to be ap-

plied to both the online setting and batch setting in learning

hash functions.

During minibatch-based SGD, to compute the mutual in-

formation objective in Eq. 7 and its gradients, we need ac-

cess to the sets �x̂, �x̂ for each considered x̂, in order to

estimate p+
D

and p−
D

. For the online setting in Sec. 4.3.1,

a standalone reservoir set R is assumed as in the previous

experiment, and we partition R into {�x̂,�x̂} with respect

to each incoming x̂. In this case, even a batch size of 1 can

be used. For the batch setting in Sec. 4.3.2, {�x̂,�x̂} are

defined within the same minibatch as x̂.

4.3.1 Online Setting

We first consider an online setting that is the same as in

Sec. 4.2. We compare against other online hashing meth-

ods: OKH, OSH, AdaptHash and SketchHash. All methods

are equipped with the TU module with the default threshold

θ = 0, which has been demonstrated to work well.

Results for Online Setting. We first show the mAP

curve comparisons in Fig. 5. For competing online hash-

ing methods, the curves are the same as the ones with

TU in Fig. 4, and we remove markers to avoid clutter.

MIHash clearly outperforms other online hashing methods

on all three datasets, and shows potential for further im-

provement with more training data. The combination of TU

and MIHash gives a complete online hashing system that

enjoys a superior learning objective with a plug-in update

criterion that improves efficiency.

We next give insights into the distribution-separating ef-

fect from optimizing mutual information. In Fig. 6, we plot

the conditional distributions p+
D

and p−
D

averaged on the

CIFAR-10 test set, before and after learning MIHash with

the 20K training examples. Before learning, with a ran-

domly initialized hash mapping, p+
D

and p−
D

exhibit high

overlap. After learning, MIHash achieves good separation

between p+
D

and p−
D

: the overlap reduces significantly, and

the mass of p+
D

is pushed towards 0. This separation is re-

flected in the large improvement in mAP (0.68 vs. 0.22).

In contrast with the other methods, the mutual informa-

tion formulation is parameter-free. For instance, there is no

threshold parameter that requires separating p+
D

and p−
D

at

a certain distance value. Likewise, there is no margin pa-

rameter that dictates the amount of separation in absolute

terms. Such parameters usually need to be tuned to fit to

data, whereas the optimization of mutual information is au-

tomatically guided by the data itself.

4.3.2 Batch Setting

To further demonstrate the potential of MIHash, we con-

sider the batch learning setting, where the entire training

set is available at once. We compare against state-of-the-

art batch formulations, including: Supervised Hashing with

Kernels (SHK) [16], Fast Supervised Hashing with Deci-

sion Trees (FastHash) [14], Supervised Discrete Hashing

(SDH) [20], Efficient Training of Very Deep Neural Net-

works (VDSH) [30], Deep Supervised Hashing with Pair-

wise Labels (DPSH) [12] and Deep Supervised Hashing

with Triplet Labels (DTSH) [27]. These competing meth-

ods have shown to outperform earlier and other work such

as [5, 9, 18, 28, 10, 31]. We focus on comparisons on the

CIFAR-10 dataset, which is the canonical benchmark for

supervised hashing. Similar to [27], we consider two exper-
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Figure 6: We plot the distributions p+
D

and p−
D

, aver-

aged on the CIFAR-10 test set, before and after learning

MIHash with 20K training examples. Optimizing the mu-

tual information objective substantially reduces the overlap

between them, resulting in state-of-the-art mAP for the on-

line setting, as shown in Fig. 5.

imental settings, which we detail below.

Setting 1: 5K training examples are sampled for learn-

ing hash mappings, and 1K examples are used as the test

set. All methods learn shallow models on top of fc7 fea-

tures from a VGG-16 network [21] pretrained on Ima-

geNet. For three gradient-based methods (DPSH, DTSH,

and MIHash), this means learning linear hash functions.

Note that VDSH uses customized architectures consisting

of only fully-connected layers, and it is unclear how to adapt

it to use standard architectures; we used its full model with

16 layers and 1024 nodes per layer.

Setting 2: We use the full training set of size 50K and

test set of size 10K. We focus on comparing the end-to-end

performance of MIHash against two recent leading meth-

ods: DPSH and DTSH, using the same VGG-F network ar-

chitecture [3] that they are trained on.

We use publicly available implementations for the com-

pared methods, and exhaustively search parameter settings

for them. For MIHash, the minibatch size is set to 100 and

250 in Settings 1 and 2, respectively. We use SGD with mo-

mentum, and decrease the learning rate when the training

loss saturates. See supplementary material for more details.

Results for Batch Setting. In Table 1, we list batch

learning results for all methods. In Setting 1, MIHash out-

performs all competing methods in terms of mAP, in some

cases with only a single training epoch (e.g. against VDSH,

DPSH). This suggests that mutual information is a more ef-

fective learning objective for hashing. MIHash learns a lin-

ear layer on the input features, while some other methods

Method

Code Length

12 24 32 48

S
et

ti
n

g
1

SHK 0.497 0.615 0.645 0.682

SDH 0.521 0.576 0.589 0.592

VDSH 0.523 0.546 0.537 0.554

DPSH 0.420 0.518 0.538 0.553

DTSH 0.617 0.659 0.689 0.702

FastHash 0.632 0.700 0.724 0.738

MIHash
1 0.524 0.563 0.597 0.609

MIHash 0.683 0.720 0.727 0.746

Method 16 24 32 48

S
et

ti
n

g
2

DPSH2 0.763 0.781 0.795 0.807

DTSH2 0.915 0.923 0.925 0.926

DPSH 0.908 0.909 0.917 0.932

DTSH 0.916 0.924 0.927 0.934

MIHash 0.929 0.933 0.938 0.942

1 Results after a single training epoch.
2 Results as reported in DPSH [12] and DTSH [27].

Table 1: Comparison against state-of-the-art hashing meth-

ods on CIFAR-10. We report mean Average Precision

(mAP) on the test set, with best results in bold. See text

for the details of the two experimental settings.

can learn non-linear hash functions: for instance, the closest

competitor, FastHash, is a two-step hashing method based

on sophisticated binary code inference and boosted trees.

In Setting 2, with end-to-end finetuning, MIHash signif-

icantly outperforms DPSH and DTSH, the two most com-

petitive deep hashing methods, and sets the current state-

of-the-art for CIFAR-10. Again, note that MIHash has no

tuning parameters in its objective function. In contrast, both

DPSH and DTSH have parameters to control the quantiza-

tion strength that need to be tuned.

5. Conclusion

We advance the state-of-the-art for online hashing in two

aspects. In order to resolve the issue of hash table updates

in online hashing, we define a quality measure using the

mutual information between variables induced by the hash

mapping. This measure is efficiently computable, corre-

lates well with standard evaluation metrics, and leads to

consistent computational savings for existing online hash-

ing methods while maintaining their retrieval accuracy. In-

spired by these strong results, we further propose a hashing

method MIHash, by optimizing mutual information as an

objective with stochastic gradient descent. In both online

and batch settings, MIHash achieves superior performance

compared to state-of-the-art hashing techniques.
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