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Abstract

Estimating the 6-DoF pose of a camera from a single im-

age relative to a pre-computed 3D point-set is an important

task for many computer vision applications. Perspective-n-

Point (PnP) solvers are routinely used for camera pose es-

timation, provided that a good quality set of 2D–3D feature

correspondences are known beforehand. However, finding

optimal correspondences between 2D key-points and a 3D

point-set is non-trivial, especially when only geometric (po-

sition) information is known. Existing approaches to the

simultaneous pose and correspondence problem use local

optimisation, and are therefore unlikely to find the opti-

mal solution without a good pose initialisation, or intro-

duce restrictive assumptions. Since a large proportion of

outliers are common for this problem, we instead propose

a globally-optimal inlier set cardinality maximisation ap-

proach which jointly estimates optimal camera pose and

optimal correspondences. Our approach employs branch-

and-bound to search the 6D space of camera poses, guar-

anteeing global optimality without requiring a pose prior.

The geometry of SE(3) is used to find novel upper and

lower bounds for the number of inliers and local optimi-

sation is integrated to accelerate convergence. The evalu-

ation empirically supports the optimality proof and shows

that the method performs much more robustly than existing

approaches, including on a large-scale outdoor data-set.

1. Introduction

Estimating the pose of a calibrated camera given a set

of 2D points in the camera frame and a set of 3D points

in the world frame, as shown in Figure 1, is a funda-

mental part of the general 2D–3D registration problem of

aligning an image with a 3D scene or model. When cor-

respondences are known, this becomes the Perspective-

n-Point (PnP) problem for which many solutions exist

[16, 26, 23, 18, 22]. Applications include camera localisa-

tion and tracking [13, 38, 24], augmented reality [34], mo-

tion segmentation [39] and object recognition [19, 36, 2].

*This research is supported by an Australian Government Research Training Program (RTP) Scholarship.

(a) 3D point-set (grey and green), 3D features (black dots) and ground-

truth (black), RANSAC (red) and our (blue) camera poses. The ground-

truth and our camera poses coincide, whereas the RANSAC pose has a

translation offset and a 180◦ rotation offset. Best viewed in colour.

(b) Panoramic photograph and extracted 2D features (top), building points

projected onto the image using the RANSAC camera pose (middle) and

building points projected using our camera pose (bottom).

Figure 1. Estimating the pose of a calibrated camera from a sin-

gle image within a large-scale, unorganised 3D point-set captured

by vehicle-mounted laser scanner. Our method solves the abso-

lute pose problem while simultaneously finding feature correspon-

dences, using a globally-optimal branch-and-bound approach with

tight novel bounds on the cardinality of the inlier set.

While hypothesise-and-test frameworks like RANSAC

[13] can mitigate the sensitivity of PnP solvers to outliers

in the correspondence set, few approaches are able to han-

dle the case where 2D–3D correspondences are not known

in advance. Unknown correspondences arise in many cir-

cumstances, including the general case of aligning an image

with a textureless 3D point-set or CAD model. While fea-

ture extraction techniques provide a relatively robust and

reproducible way to detect interest points such as edges

or corners within each modality, finding correspondences

across the two modalities is much more challenging. Even

when the point-set has sufficient visual information asso-

ciated with it, such as colour or SIFT features [32], repet-

itive features, occlusions and perspective distortion make

the correspondence problem non-trivial. Moreover, appear-
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ance and thus visual features may change significantly be-

tween viewpoints, lighting conditions, weather and seasons,

whereas scene geometry is often less affected. When re-

localising a camera in a previously mapped environment or

bootstrapping a tracking algorithm, we contend that geom-

etry is often more reliable. Therefore, there is a need for

methods that solve for both pose and correspondences.

Efficient local optimisation algorithms for solving this

joint problem have been proposed [9, 35]. However, they

require a pose prior, search only for local optima and do

not provide an optimality guarantee, yielding erroneous

pose estimates without a reliable means of detecting fail-

ure. Hypothesise-and-test approaches such as RANSAC

[13], when applied to the correspondence-free problem

[15], are global methods that are not reliant on pose pri-

ors but quickly become computationally intractable as the

number of points and outliers increase and do not provide

an optimality guarantee. More recently, a global and ǫ-
suboptimal method has been proposed [5], which uses a

branch-and-bound approach to find a camera pose whose

trimmed geometric error is within ǫ of the global minimum.

This work is the first to propose a global and optimal in-

lier set cardinality maximisation solution to the simultane-

ous pose and correspondence problem. The approach em-

ploys the branch-and-bound framework to guarantee global

optimality without requiring a pose prior, ensuring that it is

not susceptible to local optima. We use a parametrisation

of SE(3) space that facilitates branching and derive novel

bounds on the objective function. In addition, we also ap-

ply local optimisation whenever the algorithm finds a better

transformation, to accelerate convergence without voiding

the optimality guarantee. Cardinality maximisation allows

an exact optimiser to be found, unlike the ǫ-suboptimality

inherent to the continuous objective function used in [5].

More critically, cardinality maximisation is inherently ro-

bust to 2D and 3D outliers, while avoiding the problems

associated with trimming. The latter requires the user to

specify the inlier fraction, which can rarely be known and is

less intuitive to select than a geometrically meaningful inlier

threshold. If the inlier fraction is over- or under-estimated,

this approach may converge to the wrong pose, without a

means to detect failure. Figure 2 demonstrates how the

global optimum of a trimmed objective function, as used

by [5, 49], may not occur at the true pose, a problem that is

exacerbated when the inlier fraction is guessed incorrectly.

2. Related Work

A large body of work exists for solving the 2D–3D regis-

tration problem when correspondences are provided. When

the correspondences are known perfectly, Perspective-n-

Point (PnP) solvers [16, 26, 23, 18, 22] are able to estimate

the pose of a camera given a set of noisy image points and

their corresponding 3D points. When outliers are present in

Figure 2. Two zero-error but incorrect 1D alignments of 2 point-

sets with 8 trimmed ‘outliers’. With noise, the global optimum of

a trimmed objective function may not occur at the true pose, par-

ticularly if an incorrect trimming fraction is selected. The problem

is exacerbated with higher dimensions and degrees of freedom.

the correspondence set, the RANSAC framework [13, 8] or

robust global optimisation [27, 11, 1, 48, 12, 47] can be used

to find the inlier set. Alternatively, outlier removal schemes

can make the problem more tractable [46, 40, 50, 7]. Other

methods develop sophisticated matching strategies to avoid

outlier correspondences at the outset [30, 44, 45, 29]. How-

ever, these methods require some correct correspondences.

For this reason, they are often only practical for 3D mod-

els that have been constructed using stereopsis or Structure-

from-Motion (SfM). These models associate an image fea-

ture with each 3D point, facilitating inter-modality feature

matching. Generic point-sets do not have this property; a

point may lie anywhere on the underlying surfaces in a laser

scan, not just where strong image gradients occur.

When correspondences are unknown, the problem be-

comes more challenging. For the 2D–2D case, problems

such as correspondence-free rigid registration [3, 4], SfM

[10, 33, 31] and relative camera pose [14] have been ad-

dressed. For the 2D–3D case, solution have been proposed

for registering a collection of images [43] or multiple cam-

eras [42] to a 3D point-set. The more general problem, how-

ever, is pose estimation from a single image. David et al. [9]

proposed the SoftPOSIT algorithm, which alternates corre-

spondence assignment with an iterative pose update algo-

rithm. Moreno-Noguer et al. [35] proposed the BlindPnP

algorithm, which represents the pose prior as a Gaussian

mixture model from which a Kalman filter is initialised for

matching. It outperformed SoftPOSIT when large amounts

of clutter, occlusions and repetitive patterns were present.

However, both are susceptible to local optima, require a

pose prior and cannot guarantee global optimality.

Grimson [15] applied a RANSAC-like approach to the

correspondence-free case, removing the need for a pose

prior, but the method is not optimal and quickly becomes

intractable as the number of points increase. In contrast,

globally-optimal methods find a camera pose that is guar-

anteed to be an optimiser of an error function without re-

quiring a pose prior, but tractability remains a challenge.

A Branch-and-Bound (BB) [25] strategy may be applied in

these cases, for which bounds need to be derived. For exam-

ple, Breuel [4] used BB for 2D–2D registration problems,

Hartley and Kahl [17] for optimal relative pose estimation

by bounding the group of 3D rotations, Li and Hartley [28]
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for rotation-only 3D–3D registration, Olsson et al. [41] for

3D–3D registration with known correspondences, Yang et

al. [49] for full 3D–3D registration and Campbell and Pe-

tersson [6] for robust 3D–3D registration. While not opti-

mal, Jurie [20] used an approach similar to BB for 2D–3D

alignment with a linear approximation of perspective pro-

jection. Brown et al. [5] proposed a global and ǫ-suboptimal

method using BB. It finds a camera pose whose trimmed

geometric error, the sum of angular distances between the

bearings and their rotationally-closest 3D points, is within ǫ
of the global minimum. While not susceptible to local min-

ima, it requires the inlier fraction to be specified, which can

rarely be known in advance, in order to trim outliers.

Our work is the first globally-optimal inlier set cardi-

nality maximisation solution to the simultaneous pose and

correspondence problem. It is guaranteed to find the exact

global optimum without requiring a pose prior and is ro-

bust to 2D and 3D outliers while avoiding the distortion of

trimming. The rest of the paper is organised as follows: we

introduce the problem formulation in Section 3, develop a

parametrisation of the domain of 3D motions, a branching

strategy and a derivation of the bounds in Section 4, propose

an algorithm for globally-optimal pose and correspondence

in Section 5 and evaluate its performance in Section 6.

3. Inlier Set Cardinality Maximisation

Let p ∈ R
3 be a 3D point and f ∈ R

3 be a bearing

vector with unit norm, corresponding to a 2D point imaged

by a calibrated camera. That is, f ∝ K
−1x̂ where K is the

matrix of intrinsic camera parameters and x̂ is the homo-

geneous image point. Given a set of points P = {pj}Mj=1

and bearing vectors F = {fi}Ni=1
and an inlier threshold θ,

the objective is to find a rotation R ∈ SO(3) and translation

t ∈ R
3 that maximises the cardinality ν of the inlier set SI

ν∗ = max
R, t
|SI | (1)

SI = {f ∈ F | ∃p ∈ P : ∠(f , R(p− t)) 6 θ} (2)

where ∠(·, ·) denotes the angular distance between vectors.

An equivalent formulation is given by

ν∗ = max
R, t

f(R, t) (3)

f(R, t) =
∑

f∈F

max
p∈P

1
(

θ − ∠(f , R(p− t))
)

(4)

where 1(x) , 1R≥0
(x) is the indicator function that has

the value 1 for all elements of the non-negative real num-

bers and the value 0 otherwise. The optimal transformation

parameters R∗ and t∗ allow us to find all correspondences

(fi,pj) with respect to θ by identifying all pairs for which

∠(fi, R
∗(pj − t∗)) 6 θ. We maximise the cardinality of

the set of bearing vector inliers, not the set of 3D point in-

liers, to avoid the degenerate case of all points sharing the

same bearing vector inlier, which occurs when the camera

is translated far away from the point-set.

π

(a) Rotation Domain Ωr

τx

τz
τy

(b) Translation Domain Ωt

Figure 3. Parametrisation of SE(3). (a) The rotation space SO(3)
is parametrised by angle-axis 3-vectors in a solid radius-π ball.

(b) The translation space R3 is parametrised by 3-vectors bounded

by a cuboid with half-widths [τx, τy, τz]. The domain is branched

into sub-cuboids as shown using nested octree data structures.

4. Branch-and-Bound

To solve the highly non-convex cardinality maximisation

problem (1), the global optimisation technique of Branch-

and-Bound (BB) [25] may be applied. To do so, a suit-

able means of parametrising and branching (partitioning)

the function domain must be found, as well as an efficient

way to calculate upper and lower bounds of the function for

each branch which converge as the size of the branch tends

to zero. While the bounds need to be computationally ef-

ficient to calculate, the time and memory efficiency of the

algorithm also depends on how tight the bounds are, since

tighter bounds reduce the search space quicker by allowing

suboptimal branches to be pruned.

4.1. Parametrising and Branching the Domain

To find a globally-optimal solution, the cardinality of the

inlier set SI must be maximised over the domain of 3D mo-

tions, that is, the group SE(3) = SO(3)×R3. However, the

space of these transformations is unbounded, therefore we

restrict the space of translations to be within the bounded set

Ωt in order to use BB. For a suitably large Ωt, it is reason-

able to assume that the camera centre lies within Ωt. That is,

we can assume that the camera is less than a finite distance

from the 3D points. The domains are shown in Figure 3.

Rotation space SO(3) is minimally parametrised with

angle-axis 3-vectors r with rotation angle ‖r‖ and rotation

axis r/‖r‖. The notation Rr ∈ SO(3) is used to denote the

rotation matrix obtained from the matrix exponential map

of the skew-symmetric matrix [r]× induced by r. The Ro-

drigues’ rotation formula can be used to efficiently calculate

this mapping. Using this parametrisation, the space of all

3D rotations can be represented as a solid ball of radius π in

R
3. The mapping is one-to-one on the interior of the π-ball

and two-to-one on the surface. For ease of manipulation,

we use the 3D cube circumscribing the π-ball as the rota-

tion domain Ωr [28]. Translation space R
3 is parametrised

with 3-vectors in a bounded domain chosen as the cuboid Ωt

containing the bounding box of P . If the camera is known

to be inside the 3D scene, Ωt can be set to the bounding box,

otherwise it is set to an expansion of the bounding box.
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ψr

O

Rr0p

Rrp

(a) Rotation Uncertainty Angle

p− t0

ψt

O

p− t

(b) Translation Uncertainty Angle

Figure 4. Uncertainty angles induced by rotation and translation

sub-cubes. (a) Rotation uncertainty angle ψr for Cr . The optimal

rotation of p may be anywhere within the umbrella-shaped region,

which is entirely contained by the cone defined by Rr0p and ψr .

(b) Translation uncertainty angle ψt for Ct. The optimal transla-

tion of p may be anywhere within the cuboidal region, which is

entirely contained by the cone defined by p− t0 and ψt.

During BB, the domain is branched into sub-cuboids us-

ing nested octree data structures. They are defined as

C(c, δ)={x ∈ R
3 | e⊺i (x−c) ∈ [−δi, δi], i = 1, 2, 3} (5)

where ei is the ith standard basis vector. To simplify the

notation, we use Cr = C(r0, δr) and Ct = C(t0, δt).
The uncertainty angle induced by a rotation and trans-

lation sub-cuboid on a point p is shown in Figure 4. The

transformed point may lie anywhere within an uncertainty

cone, with aperture angle equal to the sum of the rotation

and translation uncertainty angles.

4.2. Bounding the Branches

The success of a BB algorithm is predicated on the qual-

ity of its bounds. For inlier set maximisation, the objective

function (4) needs to be bounded within a transformation

domain. Some preparatory material is now presented.

To bound the uncertainty angle due to rotation, Lemmas

1 and 2 from [17] are used. For reference, the relevant parts

are merged into Lemma 1, as in [49]. The lemma indi-

cates that the angle between two rotated vectors is less than

or equal to the Euclidean distance between their rotations’

angle-axis representations in R
3.

Lemma 1. For an arbitrary vector p and two rotations,

represented as Rr1 and Rr2 in matrix form and r1 and r2 in

angle-axis form,

∠(Rr1p, Rr2p) 6 ‖r1 − r2‖. (6)

From this, the maximum angle between a vector p ro-

tated by r0 and p rotated by r ∈ Cr can be found as follows.

Lemma 2. (Weak rotation uncertainty angle) Given a 3D

point p and a rotation cube Cr of half side-length δr centred

at r0, then ∀r ∈ Cr,

∠(Rrp, Rr0p) 6 min(
√
3δr, π) , ψw

r (Cr). (7)

Proof. Inequality (7) can be derived as follows:

∠(Rrp, Rr0p) 6 min(‖r− r0‖, π) (8)

6 min(
√
3δr, π) (9)

where (8) follows from Lemma 1 and the maximum possi-

ble angle and (9) follows from max ‖r − r0‖ =
√
3δr (the

half space diagonal of the rotation cube) for r ∈ Cr.

However, a tighter bound can be found by observing

that a point rotated about an axis parallel to the point is

not displaced. To exploit this, we maximise the angle

∠(Rrp, Rr0p) over the surface Sr of the cube Cr.

Lemma 3. (Rotation uncertainty angle) Given a 3D point

p and a rotation cube Cr centred at r0 with surface Sr, then

∀r ∈ Cr,

∠(Rrp, Rr0p) 6 min(max
r∈Sr

∠(Rrp, Rr0p), π) , ψr(p, Cr).
(10)

Proof. Inequality (10) can be derived as follows:

∠(Rrp, Rr0p) 6 min(max
r∈Cr

∠(Rrp, Rr0p), π) (11)

= min(max
r∈Sr

∠(Rrp, Rr0p), π) (12)

where (12) is a consequence of the order-preserving map-

ping, with respect to the radial angle, from the convex cube

of angle-axis vectors to the spherical surface patch (see Fig-

ure 4a), since the mapping is obtained by projecting from

the centre of the sphere to the surface of the sphere. See the

appendix for further details.

The uncertainty angle due to translation can be bounded

by observing that the translated points form a cube (Fig-

ure 4b). When the cube does not contain the origin, the

angle can be found by maximising over the cube vertices.

Lemma 4. (Translation uncertainty angle) Given a 3D

point p and a translation cube Ct centred at t0 with ver-

tices Vt, then ∀t ∈ Ct,

∠(p− t,p− t0) 6

{

max
t∈Vt

∠(p− t,p− t0) if p /∈ Ct

π else

, ψt(p, Ct). (13)

Proof. Observe that for p ∈ Ct, the cube containing all

translated points p − t also contains the origin. Therefore

p− t can be proportional to −(p− t0) and thus the maxi-

mum angle is π. For p /∈ Ct,

∠(p− t,p− t0) 6 max
t∈Ct

∠(p− t,p− t0) (14)

= max
t∈Vt

∠(p− t,p− t0) (15)
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(b) Ray through vertex

Figure 5. Comparison of translation bounds when the cube centre

lies along a ray from the origin towards (a) any face centre and (b)

any vertex. Our bound ψt is tighter across the entire domain.

where (15) follows from the convexity of the angle function

in this domain. The maximum of a convex function over a

convex set must occur at one of its extreme points (the ver-

tices). Geometrically, the cube p− t projects to a spherical

hexagon on the unit sphere. The maximum geodesic from a

point in the hexagon to any other is to a vertex.

To avoid the non-physical case where a 3D point is lo-

cated within a very small value ζ of the camera centre we

restrict the translation domain such that Ω′
t = Ωt ∩ {t ∈

R
3 | ‖p− t‖ > ζ, ∀p ∈ P}.
The translation bound from [5] encloses a translation

cube with a sphere of radius ρt =
√
3δt and is given by

ψw
t (p, Ct) ,

{

arcsin
(

ρt

‖p−t0‖

)

if ρt 6 ‖p− t0‖
π else.

(16)

Our bound is tighter with a maximum difference of 117◦

for cubes and greater for cuboids. Figure 5 compares both

translation bounds across a range of values.

The preceding lemmas are used to bound the objective

function (4) within a transformation domain Cr × Ct. For

brevity, we use the notation pr
t , Rr(p − t), pt , p − t

and fr , (Rr)
−1f .

Theorem 1. (Lower bound) For the domain Cr×Ct centred

at (r0, t0), the lower bound of the inlier set cardinality can

be chosen as

¯
f(Rr, t) , f(Rr0 , t0). (17)

Proof. The validity of the lower bound follows from

max
r, t

f(Rr, t) > f(Rr0 , t0). (18)

That is, the function value at a specific point within the do-

main is less than or equal to the maximum.

Theorem 2. (Upper bound) For the domain Cr×Ct centred

at (r0, t0), the upper bound of the inlier set cardinality can

be chosen as

f̄(Rr, t),
∑

f∈F

max
p∈P

1
(

θ−∠(f ,pr0
t0
)+ψr(f , Cr)+ψt(p, Ct)

)

.

(19)

fr

pt

pt0

α
β γ

O

Figure 6. The triangle inequality in spherical geometry, given by

β 6 α + γ or ∠(fr,pt0
) 6 ∠(fr,pt) + ∠(pt,pt0

). The trans-

formed points have been normalised to lie on the unit sphere.

Proof. Observe that ∀(r, t) ∈ (Cr × Ct),
∠(f ,pr

t) > ∠(f ,pr0
t0
)− ∠(fr, fr0)− ∠(pt,pt0) (20)

> ∠(f ,pr0
t0
)− ψr(f , Cr)− ψt(p, Ct) (21)

where (20) follows from the triangle inequality in spherical

geometry (see Figure 6) and (21) follows from Lemmas 3

and 4. Substituting (21) into (4) completes the proof.

By inspecting the translation component of Theorem 2,

a tighter upper bound may be found by removing one of

the two applications of the triangle inequality. A simi-

lar approach cannot be taken for the rotation component

since Rrp is a complex surface due to the nonlinear con-

version from angle-axis to rotation matrix representations.

To reduce computation, it is only necessary to evaluate this

tighter bound when ∠(f ,pr0
t0
) 6 θ+ψr(f , Cr) +ψt(p, Ct),

since otherwise the point is definitely an outlier and does

not need to be investigated further.

Theorem 3. (Tighter upper bound) For the domain Cr ×Ct
centred at (r0, t0), the upper bound of the inlier set cardi-

nality can be chosen as

f̄(Rr, t) ,
∑

f∈F

max
p∈P

Γ(f ,p) (22)

Γ(f ,p) = max
t∈Ct

1
(

θ − ∠(f ,pr0
t ) + ψr(f , Cr)

)

(23)

Proof. Observe that ∀(r, t) ∈ (Cr × Ct),
1
(

θ−∠(f ,pr
t)
)

6 1
(

θ − ∠(f ,pr0
t ) + ∠(fr, fr0)

)

(24)

6 max
t∈Ct

1
(

θ − ∠(f ,pr0
t ) + ψr(f , Cr)

)

(25)

where (24) follows from the triangle inequality in spherical

geometry and (25) follows from Lemma 3 and maximising

over t. Substituting (25) into (4) completes the proof.

Γ may be evaluated by observing that the minimum angle

between a ray f and a cube pr0
t is zero if the ray passes

through the cube and is otherwise the angle between the

ray and the point on the skeleton of the cube (vertices and

edges) with least angular displacement from f . Thus, for

the translation domain Ct with skeleton Skt,

Γ =

{

max
t∈Skt

1
(

θ − ∠(f ,pr0
t ) + ψr

)

if ∠(f ,pr0
t0
) > ψt

1 else. (26)
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5. The GOPAC Algorithm

The Globally-Optimal Pose And Correspondences

(GOPAC) algorithm for a calibrated camera is outlined in

Algorithms 1 and 2. As in [49], we employ a nested branch-

and-bound structure for computational efficiency. In the

outer breadth-first BB search, upper and lower bounds are

found for each translation cuboid Ct ∈ Ωt by running an

inner BB search over rotation space SO(3) (denoted RBB).

The upper bound ν̄ , ν̄t (19) of Ct is found by running

RBB until convergence with the following bounds

¯
νr ,

∑

f∈F

max
p∈P

1
(

θ − ∠(f ,pr0
t0
) + ψt(p)

)

(27)

ν̄r ,
∑

f∈F

max
p∈P

1
(

θ − ∠(f ,pr0
t0
) + ψt(p) + ψr(f)

)

. (28)

The tighter upper bound (22) instead uses

¯
νr ,

∑

f∈F

max
p∈P,t∈Ct

1
(

θ − ∠(f ,pr0
t )

)

(29)

ν̄r ,
∑

f∈F

max
p∈P,t∈Ct

1
(

θ − ∠(f ,pr0
t ) + ψr(f)

)

. (30)

The lower bound
¯
ν ,

¯
νt (17) is found by running RBB

using bounds (27) and (28) with ψt set to zero.

The nested structure has better memory and computa-

tional efficiency than directly branching over 6D transfor-

mation space, since it maintains a queue for each 3D sub-

problem, rather than one for the entire 6D problem. This

requires significantly fewer simultaneously enqueued sub-

cubes. Moreover, with rotation search nested inside trans-

lation search, ψt only has to be calculated once per trans-

lation t, not once per pose (r, t), and F can be rotated (by

R
−1) instead of P which typically has more elements. This

makes it possible to precompute the rotated bearing vectors

and rotation bounds for the top five levels of the rotation

octree to reduce the amount of computation required in the

inner BB subroutine.

Line 9 of Algorithm 1 shows how local optimisation is

incorporated to refine the camera pose, in a similar man-

ner to [49, 5]. Whenever the BB algorithm finds a sub-cube

pair (Cr, Ct) with a greater lower bound
¯
ν than half the best-

so-far cardinality ν∗, the PnP problem is solved, with corre-

spondences given by the inlier pairs at the pose (r0, t0). We

use nonlinear optimisation [21], minimising the sum of an-

gular distances between corresponding bearing vectors and

points, and update ν∗ if a larger ν is found. In this way, BB

and PnP collaborate, with PnP finding the best pose given

correspondences and BB guiding the search for correspon-

dences. PnP accelerates convergence since the faster ν∗ is

increased, the sooner sub-cubes (with ν̄ 6 ν∗) can be culled

(Alg. 1 Line 11). SoftPOSIT [9] is also applied at this stage

to help jump out of local minima.

Algorithm 1 GOPAC: a branch-and-bound algorithm for

globally-optimal camera pose & correspondence estimation

Input: bearing vector set F , point set P , inlier threshold θ,

initial domains Ωr and Ωt

Output: optimal number of inliers ν∗, camera pose

(r∗, t∗) and 2D–3D correspondences

1: ν∗ ← 0
2: Add translation domain Ωt to priority queue Qt

3: loop

4: Update greatest upper bound ν̄t from Qt

5: Get cuboid Ct with greatest width δtx from Qt

6: if ν∗ > ν̄t then terminate

7: for all sub-cuboids Cti ∈ Ct do

8: (
¯
νti, r)← RBB(ν∗, t0i, ψt = 0)

9: if ν∗ < 2
¯
νti then (ν∗, r∗, t∗)← PnP(r, t0i)

10: ν̄ti ← RBB(ν∗, t0i, ψt)
11: if ν∗ < ν̄ti then add Cti to queue Qt

Algorithm 2 RBB: a rotation search subroutine for GOPAC

Input: bearing vector set F , point set P , inlier threshold θ,

initial domain Ωr, best-so-far cardinality ν∗, translation

t0, translation uncertainty ψt

Output: optimal number of inliers ν∗r and rotation R
∗

1: ν∗r ← ν∗

2: Add rotation domain Ωr to priority queue Qr

3: loop

4: Read cube Cr with greatest upper bound ν̄r fromQr

5: if ν∗r > ν̄r then terminate

6: for all sub-cubes Cri ∈ Cr do

7: Calculate
¯
νri by (27) or (29)

8: if ν∗r < ¯
νri then ν∗r ← ¯

νri, r
∗ ← r0

9: Calculate ν̄ri by (28) or (30)

10: if ν∗r < ν̄ri then add Cri to queue Qr

As just observed, a large ν∗ reduces runtime. Therefore,

if the user knows a lower bound on the number of 2D in-

liers, ν∗ can be initialised to this value. However, this is

rarely known. Instead, our algorithm implements an op-

tional guess-and-verify approach, without loss of optimal-

ity or objective function distortion, which provides espe-

cial benefit when 2D outliers are rare: set ν∗ = n; run

GOPAC; stop if an optimality guarantee is found, otherwise

n ← max(n − s, 0) and repeat. We initialise n = N − 1
and s = ⌈0.1N⌉.

We also provide a multi-threaded implementation, where

the initial translation domain is divided into sub-domains

and GOPAC is run for each in separate CPU threads. The

algorithm returns the largest ν∗ and the associated pose and

correspondences. While not supplied, a massively parallel

implementation on a GPU is very feasible. Further algorith-

mic details are provided in the appendix.
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6. Results

The GOPAC algorithm was evaluated with respect to the

baseline RANSAC [13], SoftPOSIT [9] and BlindPnP [35]

algorithms, denoted GP, RS, SP and BP respectively, with

synthetic and real data. The RANSAC approach uses the

OpenGV framework [21] and the P3P algorithm [23] with

randomly-sampled correspondences. Since SoftPOSIT and

BlindPnP require pose priors to function, we use a torus

prior in the synthetic experiments. In general, the space of

camera poses is much larger than the restrictive torus prior

and a good prior can rarely be known in advance. Except

where otherwise specified, the inlier threshold θ was set to

1◦, the rotation and translation bounds (10) and (13) were

used, SoftPOSIT and nonlinear PnP refinement were ap-

plied and multithreading was not used. It is crucial to ob-

serve that finding the global optimum does not necessarily

imply finding the ground-truth transformation. There may

be multiple global optima, particularly in the case of sym-

metries, and noise may create false optima.

6.1. Synthetic Data Experiments

To evaluate our algorithm in a setting where true priors

can be applied, we performed 50 independent Monte Carlo

simulations per parameter setting, using the framework of

[35]: M random 3D points were generated from [−1, 1]3;

a fraction ω3D of the 3D points were randomly selected as

outliers to model occlusion; the inliers were projected to a

virtual image; normal noise was added with σ = 2 pixels;

and random points were added to the image such that a frac-

tion ω2D of the 2D points were outliers. To facilitate fair

comparison with SoftPOSIT and BlindPnP, we use a pose

prior for these experiments. The torus prior constrains the

camera centre to a torus around the point-set with the op-

tical axis directed towards the model, as in [35]. BlindPnP

represents the poses with a 20 component Gaussian mixture

model, the means of which are used to initialise SoftPOSIT,

as in [35]. GOPAC is given a set of translation cubes which

approximate the torus and is not given the rotation priors.

The results are shown in Figures 7 and 8a. We repeated

the experiments for the repetitive CAD structure shown in

Figure 9a, with results shown in Figure 8b. Two success

rates are reported: the fraction of trials where the true max-

imum number of inliers was found and the fraction where

the correct pose was found, where the angle between the

output rotation and the ground truth rotation is less than 0.1
radians and the camera centre error ‖t − tGT‖/‖tGT‖ rela-

tive to the ground truth tGT is less than 0.1, as in [35]. The

2D and 3D outlier fractions were fixed to 0 when not being

varied and multithreading was used in the 2D outlier exper-

iments. GOPAC outperforms the other methods, reliably

finding the global optimum while still being relatively effi-

cient, particularly when the fraction of 2D outliers is low.

For the repetitive CAD structure, while GOPAC finds the
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(d) ω3D = 0.75

Figure 7. Mean success rates and median runtimes with respect to

the number of random 3D points and the 3D outlier fraction, for 50

Monte Carlo simulations per parameter value with the torus prior.
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(b) CAD Structure M = 27

Figure 8. Mean success rates and median runtimes with respect to

the 3D and 2D outlier fractions for the random points and CAD

structure datasets, for 50 Monte Carlo simulations per parameter

value with the torus prior.

globally optimal number of inliers in all cases, the pose is

occasionally incorrect when 75% of the 3D points are oc-

cluded, due to the highly symmetric nature of the model.

The evolution of the global lower and upper bounds is

shown in Figure 9c: BB and PnP collaborate to increase the

lower bound with BB guiding the search into better conver-

gence basins and PnP refining the bound by jumping to the

nearest local maximum (the staircase pattern). The majority

of the time is spent decreasing the upper bound, indicating

it will often find the global optimum when terminated early.

To show the improvement attributable to the tighter up-

per bounds derived, we measured the runtime of the algo-

rithm with 10 random 3D points and 50% 2D outliers us-

ing different upper bounds, shown in Figure 10. The weak

sphere-based bounding functions in (7) and (16) are denoted

ψw
r and ψw

t respectively, the tighter cuboid-based bounding

functions in (10) and (13) are denoted ψr and ψt respec-

tively and the bounding function from (22) is denoted Γ.

Further results are provided in the appendix.
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(a) 3D Models (b) 2D Alignment (c) Bound Evolution

Figure 9. Sample 2D and 3D results for two trials using the ran-

dom points and repetitive CAD model datasets. (a) 3D models,

true and GOPAC-estimated camera fulcra (completely overlap-

ping) and toroidal pose priors. Only non-occluded 3D points are

shown. (b) True projections of non-occluded 3D points are shown

as black dots, 2D outliers as red dots, GOPAC projections as black

circles and GOPAC-classified 3D outliers as red crosses. (c) Evo-

lution over time of the upper and lower bounds (black), remaining

translation volume (blue) and translation queue size (green) as a

fraction of their maximum values. Best viewed in colour.
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Figure 10. Comparison of the different upper bound functions.

Runtime is plotted relative to the maximum (leftmost) value. The

weakest upper bound is 50% slower than the tightest upper bound.

6.2. Real Data Experiments

To evaluate the algorithm on real data, we use the

DATA61/2D3D (formerly NICTA) dataset [37], a large and

repetitive multi-modal outdoor dataset. Finding the pose

of a camera within a large laser-scanned point-set with-

out a good initialisation represents an unsolved problem

in computer vision, which this work makes progress to-

wards solving. For each image, we obtain the ground truth

camera pose from the provided 2D–3D correspondences us-

ing EPnP [26] followed by nonlinear PnP [21]. Extracting

points from a laser scan that correspond to known pixels in

an image is itself a challenging unsolved problem for 2D–

3D registration pipelines. Due to the robust and optimal

nature of GOPAC, we can relax this problem to isolating

regions of the point-set that appear in the image and vice

versa, from which putative correspondences may be drawn.

We used semantic segmentations of the images and point-

set to select regions that were potentially observable in both

modalities, in this case the ‘building’ class. We then used

grid downsampling and k-means clustering on the class pix-

els and points independently to reduce them to a manage-

able size and converted the pixels to bearing vectors. While

we do not know the correspondences in advance, each bear-

ing vector has a good chance of having a 3D point as an

Table 1. Camera pose results for the DATA61/2D3D dataset. The

median translation error, rotation error and runtime and the mean

inlier recall and success rates are reported. ⌊GP⌋ denotes truncated

GOPAC, where search is terminated after 30s, with no optimality

guarantee. RSK denotes RANSAC with K million iterations.

Method GP ⌊GP⌋ RS20 RS280

Translation Error (m) 2.30 3.10 20.3 28.5

Rotation Error (◦) 2.08 3.04 178 179

Recall (Inliers) 1.00 0.97 0.75 0.81

Success Rate (Inliers) 1.00 0.45 0.00 0.00

Success Rate (Pose) 0.82 0.64 0.09 0.09

Runtime (s) 477 34 34 471

inlier. In this way, we constructed a dataset consisting of a

3D point-set with 88 points, a set of 11 images containing

30 2D features and a set of ground truth camera poses. For

this experiment, we used an inlier threshold of θ = 2◦, mul-

tithreading and a 2D outlier fraction guess of ω2D = 0.25.

The translation domain was 50×5×5m, covering two lanes

of the road, making use of the knowledge that the camera

was mounted on a survey vehicle. SoftPOSIT and BlindPnP

failed to find the correct camera pose for every image in this

dataset, even when supplied the ground truth pose as a prior,

due to the weak ground truth correspondences and an inabil-

ity to handle 3D points behind the camera. Moreover, they

do not natively support panoramic imagery and required an

artificially restricted field of view to function.

Qualitative results for the GOPAC and RANSAC algo-

rithms are shown in Figure 1 and quantitative results in

Table 1. GOPAC finds the optimal number of inliers for

all frames and the correct camera pose for the majority of

frames, despite the weakness of the 2D/3D point extraction

process, surpassing the other methods. The failure modes

for GOPAC were 180◦ rotation flips, due to ambiguities

arising from the low angular separation of points in the ver-

tical direction. The difficulty of this ill-posed problem is

illustrated by the performance of truncated GOPAC, which

was not able to find all optima even after running for 30s,

motivating the necessity for globally-optimal guided search.

7. Conclusion

In this paper, we have introduced a robust and globally-

optimal solution to the simultaneous camera pose and cor-

respondence problem using inlier set cardinality maximisa-

tion. The method applies the branch-and-bound paradigm

to guarantee optimality regardless of initialisation and uses

local optimisation to accelerate convergence. The pivotal

contribution is the derivation of the function bounds using

the geometry of SE(3). The algorithm outperformed other

local and global methods on challenging synthetic and real

datasets, finding the global optimum reliably. Further inves-

tigation is warranted to develop a complete 2D–3D pipeline,

from segmentation and clustering to alignment.
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