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Abstract

Gesture is a natural interface in interacting with wear-

able devices such as VR/AR helmet and glasses. The main

challenge of gesture recognition in egocentric vision aris-

es from the global camera motion caused by the sponta-

neous head movement of the device wearer. In this paper,

we address the problem by a novel recurrent 3D convo-

lutional neural network for end-to-end learning. We spe-

cially design a spatiotemporal transformer module with re-

current connections between neighboring time slices which

can actively transform a 3D feature map into a canonical

view in both spatial and temporal dimensions. To vali-

date our method, we introduce a new dataset with sufficient

size, variation and reality, which contains 83 gestures de-

signed for interaction with wearable devices, and more than

24,000 RGB-D gesture samples from 50 subjects captured

in 6 scenes. On this dataset, we show that the proposed

network outperforms competing state-of-the-art algorithms.

Moreover, our method can achieve state-of-the-art perfor-

mance on the challenging GTEA egocentric action dataset.

1. Introduction

With the development and popularity of the wearable de-

vices such as VR/AR helmet and glasses, there is a demand

to manipulate these devices intelligently. Since gesture is a

common form for human communication and hands can be

conveniently captured by cameras mounted on the devices

from the first person view, hand gesture is a natural way to

interact with wearable devices. It motivates the demand to

recognize meaningful gestures from egocentric videos au-

∗Corresponding author

tomatically.

In the traditional gesture recognition implementations,

hand-crafted features are commonly adopted [16, 30, 20].

With the development of deep neural networks, end-to-

end learning frameworks based on convolutional neural net-

works (CNNs) and recurrent neural networks (RNNs) are

applied to gesture recognition achieving state-of-the-art per-

formance [18, 14, 19]. First-person vision provides a new

perspective of the visual world that is inherently human-

centric, and thus brings its unique characteristics to gesture

recognition: 1) Egocentric motion: since the camera is worn

on the user’s head, camera motion can be significant due to

the head movement, in particular when the user interacts

while walking. 2) Hands in close range: due to the short

distance from the camera to the hands and the narrow field-

of-view of the egocentric camera, hands are prominent in

the frame but meanwhile could be partly or even totally out

of the field-of-view. The frameworks proposed for the sec-

ond and third person view gesture recognition can not deal

with these challenges very well.

Another notable issue in the field of egocentric gesture

recognition is a lack of large scale training data for devel-

oping models especially the deep networks. With limited

available datasets such as American sign language dataset

[27] (which defines 40 American sign language gestures for

deaf captured with only 1 subject) and Interactive museum

database [2] (which contains 7 gesture classes performed

by 5 subjects), a few methods have been developed. Starn-

er et al. [27] use Hidden Markov model to recognize the

sentence-level sign language with hand-crafted features ex-

tracted from hand blobs. Baraldi et al. [2] extract dense tra-

jectory features inside and around hand regions which need

to perform hand detection in advance and remove the cam-

era motion by estimating the homography between two con-

secutive frames. However, hand detection brings addition-
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al computational cost. Another disadvantage of the multi-

stage framework is that the recognition performance heavily

relies on the accuracy of the hand detection and camera mo-

tion estimation algorithms, which could be the bottleneck in

case with large data variation.

We aim to design an end-to-end learnable egocentric

gesture recognition model without detecting hand and es-

timating head motion explicitly and independently. Since

3D CNNs and RNNs have been proved to be effective at

video analysis [28, 7, 19], we connect a RNN after a 3D

CNN to process video sequences, constituting a framework

for egocentric gesture recognition. Inspired by the spatial

transformer [11] which is introduced to spatially transfor-

m images, we propose a novel spatiotemporal transformer

module (STTM) to actively transform 3D feature maps into

a canonical view in both spatial and temporal dimensions.

The STTM mainly consists of three parts: a localization net-

work for transformation parameters prediction, a grid gen-

erator for sampling grid generation, and a sampler for fea-

ture map interpolation. In order to handle the spatial and

temporal variations in video simultaneously and universal-

ly, we use 3D homography transformation to warp the spa-

tiotemporal feature maps of 3D CNNs. For better learning

ability, we include recurrence between STTMs to embed

long-term information. The recurrent STTM (RSTTM) can

be inserted into a 3D CNN between any two convolution-

al layers. The whole framework as shown in Figure 1 is

end-to-end learnable.

To validate our method, we introduce up-to-date the

largest egocentric gesture dataset, named EgoGesture, with

sufficient size, variation and reality, to be able to train deep

networks. This dataset contains over 24,000 gesture sam-

ples and 3,000,000 frames for both color and depth modali-

ties from 50 distinct subjects. We design 83 gestures focus-

ing on interaction with wearable devices and collect them

from 6 diverse indoor and outdoor scenes. We also consider

the scenario when people perform gestures while walking.

This dataset provides the test-bed not only for gesture clas-

sification in segmented data but also for gesture detection in

continuous data.

The main contributions of our work include:

• We extend spatial transformer in temporal dimension,

obtaining a 3D spatiotemporal transformer which can

be directly applied to 3D CNNs for video processing.

• We utilize homography transformations to deal with

head motion in egocentric videos which can rectify the

warp caused by head movements.

• We estimate the transformation parameters at current

time based on the previous ones on video sequences

by introducing recurrent connections.
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Figure 1. Illustration of the recurrent 3D CNN with RSTTM.

Video sequence is split to clips and then input to the 3D CNN with

RSTTM for feature extraction. LSTM is used to model the tempo-

ral transition and dependency between video clips, outputting the

class label for each clip or only returning the final sequential label.

• We propose a benchmark dataset to help the communi-

ty to move steps forward in egocentric gesture recog-

nition, make it possible to apply data-hungry methods.

2. Related Work

There are several branches in egocentric computer vi-

sion related to hands, such as hand detection and segmenta-

tion [1], fingertip detection [10], pose estimation [21], ges-

ture recognition [2], human-object interaction [8, 17] and

cooking action recognition [24]. Besides the hand detection

tasks, most of the existing recognition methods [2, 17, 24]

also need to detect hand regions explicitly. Baraldi et al. [2]

and Singh et al. [24] employ hand segmentation algorithms

based on detecting skin pixels before feature extraction. Ma

et al. [17] pre-train a hand segmentation CNN to help find

objects of interest for activity recognition. These hand de-

tection based methods bring additional computational cost

and are heavily relies on the accuracy of the hand detection

algorithms. Most of the hand detection algorithms are based

on skin model which is easy to be affected by the other ir-

relevant skin areas or wearing gloves. To model the motion

caused by head movement, 2D affine [25] and 2D homogra-

phy [24] transformations are used as a pre-processing step

for image warping independently from the model learning.
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However, we argue that it is better to design a transformer

module integrated within the classification model which can

directly enhance the discrimination of the representation

and still maintain the end-to-end learning capability.

Jaderberg et al. [11] introduce a differentiable module,

the Spatial Transformer, which can be trained to learn the

optimum transformation parameters conditionally on the in-

put only with the class label for supervision, to improve the

robustness of CNNs towards translation, scaling, rotation

and even more generic image warping variances. Sønderby

et al. [26] extend the spatial transformer network (STN)

with RNN for digit sequence recognition in spatial dimen-

sion. This recurrent STN model performs better than the

feed-forward STN model [11] by attending to an individual

digit at a time. Zhong et al. [35] apply the spatial trans-

former module to alignment learning in face recognition.

Comparing to similarity and affine transformations, the ho-

mography transformation is proved to be more suitable for

face recognition in [35]. However, the above researches

are all based on images. For video analysis, van Amers-

foort et al. [29] utilize a 2D affine transformer to predict the

next frame in video. A CNN is used to predict a series of

affine transformations applied on the current frame patches

to generate the next frame. Although transformations of a

few previous frames are given to the CNN, there are no tem-

poral connections to model the sequential information. We

extend 2D spatial transformers to 3D spatiotemporal trans-

formers, and choose the most suitable transformation type,

i.e. homography, for egocentric gesture recognition. More-

over, we include recurrence in our model not only for la-

bel prediction but also for transformation estimation, which

takes full advantage of the temporal information in videos.

3. Method

In this section, we describe the architecture of the pro-

posed recurrent 3D convolutional neural network with re-

current spatiotemporal transformer module.

3.1. Recurrent 3D Convolutional Neural Network

3D CNNs and RNNs have been testified [28, 19, 4, 7, 15]

to be good at video representation and sequence modeling

respectively. We propose a framework of recurrent 3D CN-

N in an end-to-end learning paradigm, which can not only

capture short-term spatiotemporal features, but also model

long-term dependencies.

C3D [28] and long short term memory network (LSTM)

[9] are chosen as the basic brick to construct our frame-

work. C3D [28] is a 3D convolutional neural network with

eight 3D convolutional layers, one 2D pooling layers, four

3D pooling layers and three fully-connected layers. The 3D

layers take a volume as input and output a volume which

can preserve the spatiotemporal information of the input.

LSTM [9] is employed to model the temporal evolution of

Figure 2. Illustration of the localization network.

sequences. Compared to the traditional RNN, it addresses

the problem of gradient vanishing and explosion by insert-

ing gate units. Specifically, we connect a single-layer LST-

M with 256 hidden units after the first fully-connected lay-

er (fc6 layer) of C3D to process sequence inputs. The re-

current 3D convolutional neural network can process video

sequences of arbitrary lengths. For classification, the pre-

diction of the last time slice can be used as the video label.

Alternatively, we can also utilize the lstm layer features to

train a linear SVM classifier for recognition.

3.2. Recurrent Spatiotemporal Transformer

There are 3 parts in a recurrent spatiotemporal trans-

former module: a localization network, a grid generator and

a sampler. As shown in Figure 1, the localization network

predicts a set of transformation parameters conditioned on

the input through a number of hidden layers. Then, the grid

generator uses the predicted transformation parameters to

construct a sampling grid, which is a set of points where the

source map should be sampled to generate the target trans-

formed output. Finally, the sampler takes the feature map to

be transformed and the sampling grid as inputs, producing

the output map sampled from the input at the grid points.

Specifically, at any time slice t, the localization network

takes a 3D convolutional feature map It as input and pre-

dicts the transformation parameters θt that should be ap-

plied to the feature map Ut. Note that the input feature

map of the localization network is not necessarily the fea-

ture map to be transformed, i.e. It and Ut can be different

feature maps. The size of θt is determined by the transfor-

mation type, e.g. θt is 6-dimensional for 2D affine transfor-

mation and 9-dimensional for 2D homography transforma-

tion. We choose to use the most general homography trans-

formation and apply it on 3D spatiotemporal convolutional

feature maps. A homography is a non-singular, line preserv-

ing, projective mapping. A n-dimension homography is p-

resented by a square (n+1)-dim matrix with (n+1)2−1 de-

grees of freedom (DOF), where homogeneous coordinates

are used to manipulate n-dim vectors in a (n + 1)-dim s-

pace. In 3D homography case, the transformation predicted

by the localization network is 16-dimensional:

floc(It) = Hθt =









θ11 θ12 θ13 θ14
θ21 θ22 θ23 θ24
θ31 θ32 θ33 θ34
θ41 θ42 θ43 θ44









(1)

where we omit the symbol of time t in the matrix for clarity.
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Figure 3. Example of the 3D grids before and after a transforma-

tion of homography.

We include recurrence in the localization network as il-

lustrated in Figure 2 to predict the current transformation

parameters conditioned on the previous ones:

ct = f cnn
loc (It) (2)

ht = frnn
loc (ct, ht−1) (3)

Hθt = ffc
loc (ht) (4)

where f cnn
loc is a 3D CNN which takes It as input and out-

puts a feature map ct. f
rnn
loc is an RNN with hidden state ht

and ffc
loc is a fully-connected layer to regress the transfor-

mation parameters. In our experiments, we use a GRU [5]

layer with 256 hidden units as the frnn
loc .

The output transformation is used to create a sampling

grid, which is done by the grid generator. For 3D feature

maps, define the activations of the target feature map V
to lie on a regular grid G = {Gi} of coordinates Gi =

(xt
i, y

t
i , z

t
i)

T
. (xs

i , y
s
i , z

s
i )

T
is used to represent the source

coordinate in the feature map U that defines the sample

points. Note that, the index of time in the symbols of param-

eters is omitted for clarity from now on. In the program, all

the coordinates are normalized to the range of [−1, 1]. The

process of grid generator can be formulated as following:

Tθ (Gi) = (xs
i , y

s
i , z

s
i )

T
(5)

(

x′s

i , y
′s

i , z
′s

i , w
)T

= Hθ

(

xt
i, y

t
i , z

t
i , 1

)T

(6)
(

x′s

i , y
′s

i , z
′s

i , w
)T

⇒
(

x′s

i/w, y
′s

i/w, z
′s

i/w
)T

(7)

⇒ (xs
i , y

s
i , z

s
i )

T
(8)

An example of the 3D grids before and after a transfor-

mation of homography is shown in Figure 3. Given one

sampling grid and the original pixel values in the grid, we

are able to construct a new output by interpolation or sam-

pling the pixel values on the corresponding grid positons.

Finally, the sampling grid Tθ (Gi) and the feature map

U ∈ R
C×L×H×W with width W , height H , length L and C

channels to be transformed are taken as input to a sampler.

The sampler outputs feature map V ∈ R
C×L′

×H′
×W ′

by

sampling from U at the grid points. In the paper, we use

bilinear kernel to do sampling.

V c
i =

W
∑

m

H
∑

n

L
∑

k

U c
mnl · [1− |xs

i −m|]
+

· [1− |ysi − n|]
+
· [1− |zsi − k|]

+

(9)

where [x]
+
= max (0, x) and ∀i ∈ [1, . . . , L′H ′W ′] , ∀c ∈

[1, . . . , C]. Note that the size of feature map V can be dif-

ferent from U by varying the number of sample points in the

target and source coordinates. We specify a down-sampling

parameter with three elements (rl, rh, rw) to adjust the ratio

of input size L × H × W to output size L′ × H ′ × W ′ in

spatiotemporal dimensions.

4. Dataset

In this paper, we introduce up-to-date the largest dataset

called EgoGesture for the task of egocentric gesture recog-

nition. The dataset, which is publicly available 1, con-

tains 2,081 RGB-D videos, 24,161 gesture samples and

2,953,224 frames from 50 distinct subjects. We carefully

design 83 classes of static or dynamic gestures specifically

for interaction with wearable devices. Our dataset is more

complex than any existing dataset as our data is collected

from the most diverse yet representative scenes with large

variations. The 6 scenes we designed consist of 4 indoor

scenes: 1) the subject in a stationary state with a static clut-

ter background; 2) the subject in a stationary state with a dy-

namic background; 3) the subject in a stationary state facing

a window with drastic-changing sunlight; 4) the subject in a

walking state; and 2 outdoor scenes: 5) the subject in a sta-

tionary state with a dynamic background; 6) the subject in

a walking state with a dynamic background. We select Intel

RealSense SR300 as our egocentric camera due to its small

size and integrating both RGB and depth modules. The two-

modality videos are recorded in a resolution of 640 × 480
pixel with 30 fps. The subjects wearing the RealSense cam-

era with a strap belt on their heads are asked to continuously

perform 9-14 gestures as a session and recorded as a video.

Since the order of the gestures performed is randomly gen-

erated, the videos can be used to evaluate gesture detection

in continuous stream. Besides the annotation of class la-

bel, the start and end frame index of each gesture sample

are also manually labeled, which provides the test-bed for

segmented gesture classification. We believe the proposed

dataset can be used as a benchmark and help the communi-

ty to move steps forward in egocentric gesture recognition,

making it possible to apply data-hungry methods such as

deep neural networks for this task.

1http://www.nlpr.ia.ac.cn/iva/yfzhang/datasets/egogesture.html
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5. Experiments

We test the proposed model in our newly created E-

goGesture dataset and another egocentric action dataset

GTEA [8] which focuses on the cooking actions of hand-

s. There are few appropriate egocentric gesture datasets

for research as mentioned before. We do not take the In-

teractive Museum database [2] for experiment as it is less

challenging. The recognition results on it are already high

even with two gesture samples from each class as training

set. Moreover, our proposed method is not restricted to ges-

ture recognition field, it is a general framework for video

analysis especially in the first person view. Hence we al-

so evaluate the proposed model on GTEA dataset. All the

models are implemented using Theano [3] and Lasagne [6].

Cross entropy loss and SGD are used for training.

For comparision, in our proposed EgoGesture Dataset,

we systematically evaluate state-of-the-art methods based

on both hand-crafted features and deep networks as base-

lines on two tasks: gesture classification and gesture de-

tection. These methods are also the winner approaches in

ChaLearn 2016 Looking at People ICPR Challenge [14].

We randomly split the data by subject into training (60%),

validation (20%) and testing (20%) sets, resulting in 1,239

training, 411 validation and 431 testing videos. The num-

bers of gesture samples in training, validation and testing

splits are 14416, 4768 and 4977 respectively.

5.1. Classification Results on EgoGesture dataset

For classification, we segment the video sequences into

isolated gesture samples based on the manual annotation of

the begin and the end frames. The learning task is to pre-

dict the class labels for each gesture sample. Classification

accuracy is used as the evaluation metric.

We select one hand-craft features: iDT-FV [32], and four

deep learning based methods: VGG16 [23], C3D [28], VG-

G16+LSTM [7] and IDMM+CaffeNet [34] as baselines.

iDT-FV is a representative hand-crafted feature for local

motion modeling where global camera motion is canceled

out by optical flow estimation. We compute the Trajectory,

HOG, HOF and MBH descriptors in the RGB videos. After

PCA, we train GMMs with 256 Gaussians to generate Fish-

er Vectors (FV) for each type of the descriptor. Then, the

FVs after L2 normalization are concatenated to form a video

descriptor. Finally, linear SVM is used for classification.

There are mainly four kinds of frameworks to classify video

sequences with deep learning methods: 1) Use 2D CNNs to

extract features of single frames. Then frame-level features

are encoded as video descriptors and classifiers are trained

to predict the labels of videos. 2) Use 3D CNNs to extract

features of video clips. After that, clip features are aggre-

gated into video descriptors for classifier training. 3) Make

use of RNNs to model the temporal evolution of sequences

based on convolutional features. 4) Represent a video as

one or multiple compact images and then input it to a neu-

ral network for classification. We choose VGG16, C3D,

VGG16+LSTM and IDMM+CaffeNet as baselines which

correspond to the four kinds of deep learning framework-

s described above. Among them, IDMM+CaffeNet [34]

encodes both spatial and temporal information of a depth

video into an image called improved depth motion map (ID-

MM), then uses CaffeNet [12] for classification. The other

baselines take either an image or a 16-frame clip as input,

then average pooling with L2 normalization are used to ag-

gregate the frame-level or clip-level features (activations of

the first fully-connected layer for CNNs and the lstm layer

for VGG16+LSTM) into a video-level descriptor. Finally,

linear SVM is employed for classification. For RGB-D fu-

sion, the scores of classification probability obtained from

RGB and depth modalities are added with a weight which

is chosen on the validation split.

The classification accuracies of the baselines are listed

in Table 1. As we can see, in most cases, deep features

performs much better than hand-crafted features. VGG16

does not perform as well as other deep approaches since it

can only characterize the visual appearance and losses the

temporal information seriously. Benefit from the attached

temporal model, VGG16+LSTM improves the performance

of VGG16 significantly. The performance of C3D is obvi-

ously superior to those of other methods with a margin more

than 10%. It is probably because of the excellent spatiotem-

poral learning ability of C3D. For different modalities, the

results on depth data are better than those on RGB data, s-

ince the short-range depth sensor can eliminate most of the

noise from the background and the RGB data are sensitive

to illumination changes. However, the depth sensor is easy

to be affected with infrared and fast movements. The per-

formance is further improved by fusing the results from the

RGB and depth modalities together.

We analyse the performance of different transformers in-

serted to 2D CNNs and 3D CNNs (i.e. VGG16 and C3D).

The results are shown in Table 2. This time, we use L-

STM to model the evolutions of the whole gesture samples

instead of fixed-length clips. In EgoGesture dataset, the av-

erage length of a segmented gesture is 38 frames, while the

minimum and the maximum length are 3 and 196 frames

respectively. For convenience, we constrain the maximum

length of a gesture sample to be 40 frames by downsam-

pling the longer ones. In the experiments based on C3D, we

choose the last convolutional feature map and the second

last convolutional feature map of C3D as I and U in the

spatiotemporal transformer module. The f cnn
loc is designed

to consist of three 3D convolutional layers with 20 filters.

The same experimental setting is applied to VGG16 based

models, which use 2D convolutional layers instead of 3D

ones. We test (1, 1, 1), (1, 2, 2), (2, 2, 2), (1, 3, 3), (2, 3, 3)
down-sampling factors (where the three elements represent
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Table 1. The Baseline Classification results on EgoGesture dataset.

Method Modality Accuracy

iDT-FV [32] RGB 0.643

VGG16 [23] RGB 0.625

VGG16+LSTM [7] RGB 0.747

C3D [28] RGB 0.864

IDMM+CaffeNet [34] depth 0.664

VGG16 [23] depth 0.623

VGG16+LSTM [7] depth 0.777

C3D [28] depth 0.881

VGG16 [23] RGB-D 0.665

VGG16+LSTM [7] RGB-D 0.814

C3D [28] RGB-D 0.897

Table 2. Analysis of the transformers on EgoGesture dataset. “A”

and “H” stand for the affine and homography transformations re-

spectively. The LSTMs are used to model the evolution of a whole

sequence. For convenience, the maximum length of a sequence is

constrained to 40 frames.

Method Modality Accuracy

VGG16+LSTM, 40frm RGB 0.808

VGG16+LSTM+RSTM (A) RGB 0.812

VGG16+LSTM+RSTM (H) RGB 0.838

C3D RGB 0.864

C3D+STM (A) RGB 0.880

C3D+STM (H) RGB 0.882

C3D+STTM (H) RGB 0.887

C3D+LSTM RGB 0.889

C3D+LSTM+STTM (H) RGB 0.890

C3D+LSTM+RSTTM (H) RGB 0.893

VGG16+LSTM+RSTM (H) depth 0.857

C3D+STTM (H) depth 0.895

C3D+LSTM+RSTTM (H) depth 0.906

VGG16+LSTM+RSTM (H) RGB-D 0.885

C3D+STTM (H) RGB-D 0.917

C3D+LSTM+RSTTM (H) RGB-D 0.922

the down-sampling coefficients in length, height, width re-

spectively) for C3D in advance, and choose the best param-

eter with (1, 3, 3). Similarly, the VGG16 based architecture

performs best with (3, 3) down-sampling factor in space.

Actually, when the down-sampling factor is greater than one

we introduce an information bottleneck forcing the model

to zoom in the attention regions. We evaluate the perfor-

mance of affine transformation and homography transfor-

mation in experiments. Table 2 shows that both 2D CNNs

and 3D CNNs benefit from adding a transformer module.

The improvement produced by homography is higher than

that from affine. Spatiotemporal transformers can further

improve the recognition results of spatial transformers. The

best accuracy is achieved by recurrent 3D CNNs with recur-

rent spatiotemporal homography transformer modules.

Analysis of confusion matrix: The confusion matrix

of C3D and C3D+LSTM+RSTTM with RGB-D fusion is

shown in Figure 6. The gesture classes with the high-

est accuracy are: “Dual hands heart” (Class 53), “Pause”

(Class 36), and “Cross index fingers” (Class 7) which

are with an accuracy of 98.3% by C3D and 100% by

C3D+LSTM+RSTTM. The gestures with the lowest classi-

fication accuracies are: “Grasp” (66.1% by C3D, 74.6% by

our method), “Sweep cross” (71.2% by C3D, 83.1% by our

method) and “Scroll hand towards right” (72.4% by C3D,

75.9% by our method). Specifically, the most confusing

class of “Grasp” (Class 48) is “Palm to fist” (Class 43),

“Sweep cross” (Class 19) is easy to be classified as “Sweep

checkmark” (Class 20), while “Scroll hand towards right”

(Class 1) is likely to be regard as “Scroll hand towards left”

(Class 2). It is reasonable since these gestures contain sim-

ilar movements. Our method improves the performance of

C3D significantly, especially for the confusing classes.

Analysis of different scenes: By analyzing the classi-

fication results of each scene shown in figure 4, we can

find that deep learning features are more robust than hand-

crafted features for illumination and global motions includ-

ing egocentric movements and background dynamics. In

general, RGB features are more sensitive to illumination

changes which can be seen with the results of iDT-FV and

C3D-RGB in scene 3. It is noteworthy that the large ego-

centric motion caused by walking hurts the performance of

all the methods except our proposed model which can be

seen in the results of scene 4 and 6. The results of scene

4 do not degenerate too much because the walking speed is

low due to the space limit in an indoor environment. Our

method persistently performs well in all the scenarios even

if the egocentric motion is obviously.

Results on different egocentric movement intensities:

Table 3 lists the improvements with our method on station-

ary and walking scenario domains using RGB data. Adding

STTM to C3D can increase the accuracy on both domain-

s. Especially the walking scenario domain benefits a lot

from the spatiotemporal transformation ability of STTM.

By introducing recurrence to handling temporal sequences,

the performance is further improved. The recognition d-

ifference of C3D on the two domains is 3.8%, while the

difference of C3D+RSTTM+LSTM is decreased to 1.4%.

C3D+RSTTM+LSTM increases the accuracy on the walk-

ing scenario domain by 4% demonstrating its good ability

to deal with egocentric motion.

Visualization of the spatiotemporal transformer: We

visualize the feature maps before and after the 3D homog-

raphy transformation in Figure 5. For more intuitive com-

parison, we use the (1, 1, 1) down-sampling factor without

changing the size of feature maps and choose two gesture

samples belonging to the same class from two different sub-

jects. Comparing the feature maps of sample1 and sample2

shows that the activations on the layer after transformation

have a more similar appearance and especially more con-
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Figure 4. Classification accuracies in the 6 different scenes on EgoGesture dataset.

 channel1

sample1

sample2

conv5b

sample1

sample2

transform

 channel2  channel3  channel4  channel5  channel6  channel7  channel8

Figure 5. Feature maps before and after 3D homography transformation. We visualize the 3D feature maps of conv5b (the layer to be

transformed) and transform (the layer after transformation) for comparison. The spatiotemporal feature maps are shown by a series of

spatial images. We choose two gesture samples belonging to the same class from two different subjects as input.The first 8 channels are

drawn in rows. A few representative channels are highlighted.

Table 3. Classification accuracies of the models trained on differ-

ent domains with RGB data.

Domain C3D +STTM +RSTTM+LSTM

stationary

(scene1,2,3,5)
0.866

0.870

(↑0.004)

0.882

(↑0.016)

walking

(scene4,6)
0.828

0.839

(↑0.011)

0.868

(↑0.040)

sistent temporal distribution than that on the layer before

transformation. Taking the channels highlighted with red

boxes for example, the feature maps before transformation

are much different not only in the temporal dimension but

also between the two samples, while the feature maps after

transformation are evenly distributed in the temporal dimen-

sion and more similar between samples.

Figure 6. The confusion matrix of C3D and the recurrent C3D with

RSTTM using RGB-D fusion on EgoGesture dataset.

5.2. Detection Results on EgoGesture dataset

For detection, we aim to spot and recognize gestures

from continuous unsegmented video sequences. Perfor-

mance is evaluated by the Jaccard index used in ChaLearn

LAP 2016 challenges [30]. This metric measures the aver-

age relative overlap between the ground truth and the pre-

dicted label sequence for a given input.

We test two detection baselines: For the first baseline,

we train a C3D to classify 84 gestures (with an extra non-

gesture class). When testing, a 16-frame length sliding win-

dow with 8 or 16 frame stride is used to slide through the

whole sequence to generate video clips. The class probabil-

ity of each clip predicted by C3D’s softmax layer is used to

label all the frames in the clip. After summing the overlap-

ping probabilities, the most possible class is chosen as the

label for each single frame. The second baseline [34] tack-

les temporal segmentation and classification separately and

sequentially. Firstly, the quantity of movement (QOM) [13]

is used to detect the start and end frame of each candidate

gesture in the stream. Then the IDMM is generated within

a candidate gesture and input to CaffeNet for classification.

The Jaccard index for detection is shown in Table 4,

where l16s16 denotes 16-frame length sliding window with

16-frame stride. We also list the runtime tested on a sin-

gle GTX Titan X GPU and Intel i7-3770 CPU @3.4GHz.

As shown in Table 4, small stride setting can achieve bet-

ter performance with more computations. The best per-

formance (70.9%) is achieved by C3D+STTM-l16s8 with

RGB-D inputs. Optimizing the computation of grid gener-
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Table 4. Detection results on EgoGesture dataset.

Method Modality Jaccard Runtime

C3D [28]-l16s16 RGB 0.585 624fps

C3D-l16s8 RGB 0.659 312fps

C3D+STTM-l16s8 RGB 0.670 215fps

QOM+IDMM [34] depth 0.430 30fps

C3D-l16s16 depth 0.600 626fps

C3D-l16s8 depth 0.678 313fps

C3D+STTM-l16s8 depth 0.681 229fps

C3D-l16s16 RGB-D 0.618 312fps

C3D-l16s8 RGB-D 0.698 156fps

C3D+STTM-l16s8 RGB-D 0.709 111fps

Table 5. Detection results on GTEA dataset. The results are e-

valuated in terms of frame-level accuracy for comparison with the

published outcomes. We further evaluate our methods with data

augmentation.

Method Accuracy

DT [31] 0.452

iDT [32] 0.524

TDD (Spatial) [33] 0.586

TDD (Temporal) [33] 0.571

TDD (Spatial+Temporal) [33] 0.595

Ego ConvNet (2D) [24] 0.576

Ego ConvNet (3D) [24] 0.558

Ego ConvNet (2D+3D) [24] 0.589

Ours 0.615

Ours (augmentation) 0.630

ation and feature map interpolation should further speed up

the runtime of STTM based models. In the second base-

line method, the most time consuming step is to convert the

depth sequence into one image with IDMM, making it less

efficient than C3D with sliding window. Another disadvan-

tage is that the detection performance heavily relies on the

pre-segmentation which could be the bottleneck of the two-

stage framework.

5.3. Detection Results on GTEA dataset

GTEA dataset [8] contains 28 videos belonging to 7 ac-

tivities performed by 4 subjects. The activities are com-

posed of several actions. Take the activity “Cheese” for ex-

ample, it consists of “take” bread, “take” cheese, “open”

cheese etc. actions operating with different objects. There

are 10 annotations of actions defined by verbs. Including

the idle state, the number of actions is 11. To compare with

the published results on GTEA dataset, we follow the ex-

perimental settings of [24] by using the data of subject 1

and subject 3 for training, subject 4 for validation and sub-

ject 2 for testing. Performance is evaluated with frame-level

accuracy for continuous video understanding.

The results of our proposed model and competing meth-

ods are shown in Table 5. From the table we can see that

iDT [32] improves DT [31] significantly by canceling the

global camera motion with optical flow estimation. TDD

[33] is a kind of video descriptor which conduct trajectory-

constrained pooling on two-stream networks [22]. The s-

patial stream takes a RGB image as input at a time, while

the temporal stream takes a stack of optical flow images

for input. Both the spatial stream and the temporal stream

use 2D CNN to extract features. For TDD [33], the perfor-

mance of the temporal stream is inferior to that of the spatial

stream on the egocentric GTEA dataset, which is contrary

to the results on the traditional video analysis fields. This

demonstrates that head motion severely damage the perfor-

mance of the representative methods proposed for tradition-

al video-based action recognition. Ego ConveNet [24] uses

hand-crafted egocentric cues (including hand masks, head

motions and saliency maps) as input to a 2D CNN or 3D

CNN model. The 2D CNN and 3D CNN both are smal-

l networks with only 2 convolutional layers. Since GTEA

dataset is a relatively small dataset, even for the Ego Con-

veNet which used multiple well-designed features and shal-

low network architecture, the network is fine-tuned on a

pre-trained gesture model. In order to alleviate overfitting,

we use the model pre-trained on our proposed EgoGesture

dataset to initialize the model on GTEA dataset. We also try

to scale (±20%) and rotate ( ±15◦) the input video clips in

space randomly for data augmentation. The performance of

our method outperforms competing methods significantly

demonstrating its good learning ability.

For continuous video understanding, the accuracy of our

method on the test split is close to that on the validation

split. While for segmented video classification, due to the

insufficient training data, overfitting is severe. Even though

the accuracy on the test split is about 10% lower than that

on the validation split with isolated actions, the recognition

result can reach 75.0% without combining other features.

6. Conclusion

In this work, we propose a novel recurrent 3D CNN mod-

el with recurrent spatiotemporal transformer module which

can deal with the egocentric motion effectively. We extend

spatial affine transformers to spatiotemporal homography

transformers for better learning ability and include recur-

rent connections between time steps to deal with video se-

quences. We also introduce up-to-date the largest dataset

called EgoGesture for the task of egocentric gesture recog-

nition with sufficient size, variation and reality, to success-

fully train deep networks.
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