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Abstract

In this work we introduce a structured prediction model

that endows the Deep Gaussian Conditional Random Field

(G-CRF) with a densely connected graph structure. We

keep memory and computational complexity under control

by expressing the pairwise interactions as inner products of

low-dimensional, learnable embeddings. The G-CRF sys-

tem matrix is therefore low-rank, allowing us to solve the

resulting system in a few milliseconds on the GPU by us-

ing conjugate gradient. As in G-CRF, inference is exact, the

unary and pairwise terms are jointly trained end-to-end by

using analytic expressions for the gradients, while we also

develop even faster, Potts-type variants of our embeddings.

We show that the learned embeddings capture pixel-

to-pixel affinities in a task-specific manner, while our ap-

proach achieves state of the art results on three challeng-

ing benchmarks, namely semantic segmentation, human

part segmentation, and saliency estimation. Our imple-

mentation is fully GPU based, built on top of the Caffe

library, and is available at https://github.com/

siddharthachandra/gcrf-v2.0.

1. Introduction

Structured prediction combined with deep learning has

delivered excellent results on a variety of computer vision

benchmarks [2, 5, 7, 8, 33, 34, 40]. Deeplab [5, 7] suc-

cessfully exploited the Dense-CRF [20] framework, allow-

ing a CNN trained for semantic segmentation to refine ob-

ject boundaries while compensating for the effects of spatial

downsampling within the network. Several works extended

this approach to allow for (a) end-to-end training (b) learn-

ing of pairwise interaction terms, and (c) using exact infer-

ence (table 1). Regarding (a), [2, 26, 27, 28, 33, 34, 40]

showed that structured prediction can be unfolded in time

and thus be trained end-to-end with CNNs for both sparsely-

connected [33] and fully-connected [26, 28, 34, 40] graph-

ical structures. Regarding (b), [2, 26, 28, 33, 34] learned

non-parametric, CNN-based pairwise terms for sparsely-
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Ax = B

Figure 1. Method overview: each image patch amounts to a node

in our fully-connected graph structure. As in the G-CRF model,

we infer the prediction x by solving a system of linear equations

Ax = B, based on CNN-based unary (B) and pairwise (A) terms.

We express pairwise terms as dot products of low-dimensional em-

beddings (Ai,j = 〈Ai,Aj〉) , delivered by a devoted sub-network.

This ensures that A is low-rank, allowing for efficient, conjugate

gradient-based solutions. The embeddings are optimized in a task-

specific manner through end-to-end training.

connected CRFs, while [40, 15] back-propagated on the

parameters of the bilateral filter-type kernels defining their

dense pairwise terms. Regarding (c), [2] showed that

efficient exact inference can be used for the sparsely-

connected case using conjugate gradient, while [1] showed

that for densely-connected graphs with bilateral-type pair-

wise terms linear system methods can be used for efficient

inference and backpropagation.

Our work is the first to combine all of the above ad-

vances in the case of densely-connected CRFs: we show

that we can train in end-to-end manner densely-connected

CRFs with non-parametric pairwise terms, while using effi-

cient and exact inference by relying on linear system meth-

ods. For this, we build on [2] which combined these ad-

vances for sparsely-connected CRFs and extend it to make

the densely-connected case tractable. Figure 1 provides an

overview of our approach. As in [2] we perform structured

prediction by solving a linear system Ax = B, where A
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Figure 2. Illustration of our end-to-end trainable, fully convolutional network employing a dense-G-CRF module. We get our unary terms

from Deeplab-v2 (we only show one of its three ResNet-101 branches, for simplicity). Our pairwise terms are generated by a parallel

sub-network, resnet-pw, which outputs the pixel embeddings of our formulation. The unary terms and pairwise embeddings are combined

by our fully connected G-CRF module (dense-G-CRF). This outputs the prediction x by solving the inference equation ATAx = B.

method dense end2end non-parametric exact

[5, 7] ✓ ✗ ✗ ✗

[40] ✓ ✓ ✗ ✗

[27] ✗ ✓ ✗ ✓

[33] ✗ ✓ ✓ ✗

[34] ✗ ✓ ✓ ✗

[28] ✗ ✓ ✓ ✗

[15] ✗ ✓ ✓ ✗

[2] ✗ ✓ ✓ ✓

[26] ✓ ✗ ✓ ✗

[1] ✓ ✓ ✗ ✓

Ours ✓ ✓ ✓ ✓

Table 1. Comparison of deep structured prediction approaches in

terms of whether they accommodate dense connectivity, end-to-

end training, use of non-parametric, CNN-based pairwise terms,

and exact inference. Our method combines all of these favorable

properties.

and B respectively correspond to pairwise and unary terms,

delivered by an end-to-end trainable CNN. Solving this sys-

tem of linear equations results in couplings among all the

node variables.

The core development (Sec. 3) consists in replacing the

sparse system matrix used to couple the labels of neighbor-

ing nodes in [2] with a low-rank matrix that connects any

node with all other image nodes through inner products of

learnable, D-dimensional embeddings: Ai,j = 〈Ai,Aj〉,
where i, j ∈ {1, . . . , N}, with N indexing the Cartesian

product of pixels and labels. Rather than computing and in-

verting the full N × N matrix A, our network only needs

to deliver the much smaller N × D embedding matrix A,

which is all that is needed by the conjugate gradient method.

Apart from low memory complexity, this can also result in

fast conjugate-gradient based structured prediction.

We note that several other works have concurrently ex-

plored the use of embeddings in the context of grouping

tasks, employing them as a soft, differentiable proxy for

cluster assignments [11, 13, 14, 30]. Ours however is the

first to make the connection between embeddings, low-

rank matrices and densely connected random fields, effec-

tively training embeddings for the propagation of informa-

tion across the full image domain through the solution of a

linear system.

We further exploit the structure of the problem by de-

veloping Potts-type embeddings that allow us to reduce the

memory complexity by L2 and computational complexity

by a factor of L, where L is the number of classes. The

computation time of our fastest method is 0.004s on a GPU

for a 321×321 image, 2 orders of magnitude less than GPU-

based implementations of Dense-CRF inference, while at

the same time achieving higher accuracy across all tasks.

Our approach is loss-agnostic and works with arbitrary

differentiable losses. As shown in Figures 3 and 4, our

embeddings can learn task-specific affinities through end-

to-end training. The resulting networks deliver system-

atic improvements when compared to strong baselines on

saliency estimation, human part segmentation, and seman-

tic segmentation.

We first give a brief review of the G-CRF model in

Sec. 2, then provide a detailed description of our approach

in Sec. 3, and finally demonstrate the merits of our ap-

proach on three challenging tasks, namely, semantic seg-

mentation (Sec. 4.1), human part segmentation (Sec. 4.2),

and saliency estimation (Sec. 4.3).

2. Deep Gaussian CRF

We briefly describe the Deep Gaussian CRF formulation

of [2], following the notation of [2]; further information can
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be found in [2, 16, 32, 33].

We consider an image I containing P patches where

each patch can take a label l ∈ {1, . . . , L}. The predic-

tions are represented as a real-valued vector that gives the

score for every patch-label combination, x ∈ R
N , where

we denote the number of variables in our formulation by

N = P ×L for brevity. The L continuous variables associ-

ated to every patch can be interpreted as inputs to a softmax

function that yields the label posteriors.

In particular, given an image I the G-CRF model defines

a joint posterior distribution through a Gaussian multivari-

ate density:

p(x|I) ∝ exp(−
1

2
xTAIx +BIx),

where BI , AI denote the unary and pairwise terms re-

spectively, with BI ∈ R
N and AI ∈ R

N×N . Dropping

the dependence on the image I for simplicity, and assum-

ing a positive-definite matrix A, we see that Maximum-A-

Posterior inference amounts to solving the system of linear

equations Ax = B. For a sparse matrix A, as is the case for

grid-structured CRFs, this system can be efficiently solved

through the conjugate gradient [31] algorithm.

In [2] the authors drop the probabilistic formulation and

treat the G-CRF as a structured prediction layer that is in-

corporated in a larger network. In the forward pass, the

inputs to the layer are A and B, which are delivered by a

feed-forward CNN. The output of the layer x is the solution

of the linear system:

(A+ λI)x = B, (1)

where λ is a positive constant added to the diagonal entries

of A to make it positive definite.

In the backward pass, considering that the G-CRF layer

obtains a gradient for the loss L with respect to its output x,
∂L
∂x

, the gradients of the unary terms ∂L
∂B

can be obtained by

solving a new system of linear equations:

(A+ λI)
∂L

∂B
=

∂L

∂x
, (2)

while the gradients of the pairwise terms ∂L
∂A

are given by:

∂L

∂A
= −

∂L

∂B
⊗ x, (3)

where ⊗ denotes the Kronecker product operator.

3. Deep-and-Dense Gaussian-CRF

3.1. Low­Rank G­CRF through Embeddings

While the Deep G-CRF model described above allows

for efficient and exact inference, in practice it only captures

interactions in small (4−,8− and 12−connected) neighbor-

hoods. The model may thereby lose some of its power by

ignoring a richer set of long-range interactions. The ex-

tension to fully-connected graphs is technically challeng-

ing because of the non-sparse matrix A it involves. As-

suming an image size of 800× 800 pixels, 21 labels (PAS-

CAL VOC benchmark), and a network with a spatial down-

sampling factor of 8 [5, 6], the number of variables is

N = (100 × 100) × 21 and the number of elements in

A would be N2 ∼ 1010. This is prohibitively large due to

both memory and computational requirements.

To overcome this challenge, we advocate forcing A to

be a low-rank. In particular, we propose decomposing the

N ×N matrix A into a product of the form

A = ATA, (4)

where A is a D × N matrix associating every pixel-label

combination with a D-dimensional vector (‘embedding’),

where D << N . This amounts to expressing the pairwise

terms for every pair of pixels and labels in the label set as the

inner product of their respective embeddings, as follows:

Api,pj
(lm, ln) = 〈Alm

pi
,Aln

pj
〉,

where i, j ∈ {1, . . . , P} and m,n ∈ {1, . . . , L}.

Since A is symmetric and positive semi definite by de-

sign, A′ = ATA + λI is positive definite for any λ > 0,

unlike the case of [2], where λ had to be set empirically.

Adapting the development leading to Eq. 1, we see that

we now have to solve the system:

(ATA+ λI)x = B. (5)

We take advantage of the positive definiteness of A′ and

use the conjugate gradient method [31] for solving the sys-

tem of linear equations iteratively.

Setting D allows us to control both the memory and the

computational complexity of inference: solving the linear

system with conjugate gradient only requires keeping A in

memory and forming inner products between A and a vec-

tor. As such we have a way of trading-off accuracy with

speed and memory demands; as indicated in our experi-

ments, with a sufficiently low embedding dimension we ob-

tain excellent results.

3.2. Gradients of the dense G­CRF parameters

We now turn to learning the model parameters via end-

to-end network training. To achieve this we require deriva-

tives of the overall loss L with respect to the model param-

eters, namely ∂L
∂A

and ∂L
∂B

. As described in Eq. 5, we have

an analytical closed form relationship between our model

parameters A,B, and the prediction x. Therefore, by ap-

plying the chain rule of differentiation, we can analytically

express the gradients of the model parameters in terms of
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(a) Reference Pixel (b) Ref vs Head (c) Ref vs Torso (d) Ref vs U-limb (a) Reference Pixel (b) Ref vs Bkg (c) Ref vs Ref (d) Ref vs l_2

(i) Human Parts Segmentation (ii) Semantic Segmentation
Figure 3. Visualization of pairwise terms obtained by our G-CRF embeddings trained for the (i) human part segmentation, and (ii) semantic

segmentation tasks. Column (a) shows the reference pixel (p∗), marked with a dartboard, on the image. The pairwise term corresponding

to p∗ taking the ground truth label l∗ and any other pixel p taking the label l is given by the inner product Ap∗,p (l
∗, l) = 〈Al

p,A
l∗

p∗〉. In (i)

we show the pairwise terms Ap∗,p (l
∗, head) in (b), Ap∗,p (l

∗, torso) in (c), and Ap∗,p (l
∗, upper-limb) in (d). In (ii) we show the pairwise

terms Ap∗,p (l
∗, bkg) in (b), Ap∗,p (l

∗, l∗) in (c), and Ap∗,p (l
∗, l2) in (d), where l2 is the most dominant class in the image besides l∗.

the gradients of the prediction. The gradients of the predic-

tion are delivered by the neural network layer on top of our

dense-G-CRF module through backpropagation.

The gradients of the unary terms are straightforward to

obtain by substituting Eq. 4 in Eq. 2 as:

(ATA+ λI)
∂L

∂B
=

∂L

∂x
. (6)

We thus obtain the gradients of the unary terms by solving

a system of linear equations.

Turning to the gradients of the pixel embeddings, A, we

use the chain rule of differentiation as follows:

∂L

∂A
=

(

∂L

∂A

)(

∂A

∂A

)

=

(

∂L

∂A

)(

∂

∂A
ATA

)

. (7)

We know the expression for ∂L
∂A

from Eq. 3, but to obtain

the expression for ∂
∂A

ATA we need to follow some more

tedious steps. As in [10], we define a permutation matrix

Tm,n of size mn×mn as follows:

Tm,nvec(M) = vec(MT ), (8)

where vec(M) is the vectorization operator that vectorizes

a matrix M by stacking its columns. When premultiplied

with another matrix, Tm,n rearranges the ordering of rows

of that matrix, while when postmultiplied with another ma-

trix, Tm,n rearranges its columns. Using this matrix, we can

form the following expression [10]:

∂

∂A
ATA =

(

I⊗AT
)

+
(

AT ⊗ I
)

TD,N , (9)

where I is the N × N identity matrix. Substituting Eq. 3

and Eq. 9 into Eq. 7, we obtain:

∂L

∂A
= −

(

∂L

∂B
⊗ x

)

((

I⊗AT
)

+
(

AT ⊗ I
)

TD,N

)

.

(10)

Despite the apparently complex form, this final expression

is particularly simple to implement.

These equations allow us to train embeddings in a task-

specific manner, capturing the patch-to-patch affinities that

are desirable for a particular structured prediction task. We

visualize the affinities learned by our embeddings in Fig. 3 -

we observe that our embeddings indeed learn to group pix-

els in a way that is dictated by the task: on the left pixels be-

longing to similar human parts are grouped together, while

on the right this is done for patches belonging to similar ob-

ject classes. Similar results can also be seen in Fig. 4 for the

more compact embeddings described below.

3.3. Potts Type G­CRF Pixel Embeddings

We now describe class-agnostic G-CRF pixel embed-

dings, which simplify and accelerate the G-CRF model by

sharing the pairwise terms between pairs of classes. More

specifically, these Potts-type embeddings compose pairwise

terms between a pair of pixels that depend only on whether

they take the same label or not, and are invariant to the par-

ticular labels they take. As in [2] we denote by Api,pj
(li, lj)

the pairwise energy term for pixel pi taking the label li, and

pixel pj taking the label lj . The Potts-type embeddings de-
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scribe the following model:

Api,pj
(li, lj) =

{

0 li = lj
Api,pj

li 6= lj .

}

(11)

The model in Eq. 11 reduces the size of the embeddings

from P × L to P , and allows for significantly faster infer-

ence (Sec. 3.4) since the number of computations are re-

duced by a factor of L. As demonstrated in Sec. 4, this

leads to fewer model parameters and better performance.

The Potts-type embeddings are realized by posing our in-

ference problem in Eq. 5 as:












λI ÂT Â · · · ÂT Â

ÂT Â λI · · · ÂT Â
...

ÂT Â ÂT Â · · · λI













×











x1

x2

...

xL











=











b1

b2

...

bL











(12)

where xk, denotes the scores for all the pixels for the class

k. The per-class unaries are denoted by bk, and the em-

beddings Â are shared between all class pairs. In [2] solv-

ing this large linear system was reduced to solving L + 1
smaller linear systems. We have realized that this is not

necessary: (1) the same gain in computation speed can be

achieved by adapting the conjugate gradient implementa-

tion to this structure and avoiding redundant computations,

(2) their proposed decomposition of a positive definite lin-

ear system may result into smaller non-positive definite sys-

tems. These points are detailed in the following subsection.

3.4. Implementation and Efficiency

We now provide numerical analysis details that will be

useful for the reproduction of our method. Our approach is

implemented as a layer in Caffe [17]. We exploit fast lin-

ear algebra routines of the CUDA blas library to efficiently

implement the conjugate gradient method.

For these timing comparisons, we use a GTX-1080 GPU.

Our general-inference procedure takes 0.029s, and Potts-

type inference takes 0.004s on average for the semantic

segmentation task (21 labels) for an image patch of size

321 × 321 pixels downsampled by a factor of 8, and for an

embedding dimension of 128. This is an order of magnitude

faster than the approximate dense CRF mean-field inference

which takes 0.2s on average. The sparse G-CRF, and the

Potts-type sparse G-CRF from [2] take 0.021s and 0.003s

respectively for the same input size. Thus, our dense infer-

ence procedure comes at negligible extra cost compared to

the sparse G-CRF.

We now describe our approach to efficiently implement

the conjugate gradient method for G-CRF pixel embed-

dings. We begin by describing the conjugate gradient al-

gorithm in Algorithm 1.

The conjugate gradient algorithm thus relies on comput-

ing the matrix-vector product q = Ap in each iteration (Al-

gorithm 1, line:10). This operation is computationally

(a) Reference Pixel (b) Segmentation (c) Human-Parts (d) Saliency

Figure 4. Visualization of pairwise terms obtained by our Potts-

Type task-specific G-CRF embeddings. The first column shows

the reference pixel (p∗), marked with a dartboard, on the image.

The pairwise term between p∗ and any other pixel p is given by

the dot product Ap∗,p = Ap
TAp∗ . We show the pairwise terms

Ap∗,p for the segmentation task in (b), human part estimation in

(c), and saliency estimation in (d).

Algorithm 1 Conjugate Gradient Algorithm

1: procedure CONJUGATEGRADIENT

2: Input: A, B, x0

3: Output: x | Ax = B

4: r0 := B−Ax0

5: p0 := r0
6: k := 0
7: repeat

8: αk :=
rTkrk

pT

k
Apk

9: xk+1 := xk + αkpk

10: rk+1 := rk − αkApk

11: if rk+1 is sufficiently small, then exit loop

12: βk :=
rTk+1rk+1

rT
k
rk

13: pk+1 := rk+1 + βkpk

14: k := k + 1
15: end repeat

16: x = xk+1

the most expensive step of this method. We now describe

how to efficiently compute this quantity for our case.

Conjugate Gradient for G-CRF Embeddings To solve

Eq. 5, each iteration of the conjugate gradient algorithm in-

volves computing q = (ATA+λI)p. Explicitly computing

(ATA+λI) is unnecessary because (a) it requires us to keep
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PL × PL terms in memory, and (b) it is computationally

expensive. We therefore compute q as

q̄ = Ap; q = AT q̄+ λp. (13)

Conjugate Gradient for Potts-type G-CRF Embeddings

The recurring matrix-vector product for this case is given

by

q =











q1

q2

...

qL











=













λI ÂT Â · · · ÂT Â

ÂT Â λI · · · ÂT Â
...

ÂT Â ÂT Â · · · λI























p1

p2

...

pL











.

(14)

We make two observations by carefully examining Eq. 14:

(1) The terms ÂT Â are repeated L − 1 times per col-

umn of the precision matrix. A naive implementation would

compute (ÂT Â)pk exactly L− 1 times for each class k.

(2) Each qk can be computed as a sum of L terms, and

for each pair (qk,qk′ 6=k), L− 2 of these terms are equal.

Using these observations, and further simplifications, we

compute qk for each class as

¯̂q = Â

L
∑

i=1

pi; q̂ = ÂT ¯̂q (15)

¯̂qk = Âpk; qk = q̂+ λpk − ÂT ¯̂qk (16)

Please note that the quantity q̂ in Eq. 15 is computed

once, and used to compute qk for each class using Eq. 16.

4. Experiments and Results

Base network. Our base network is Deeplab-v2-resnet-

101 [6], a three branch multi-resolution network which pro-

cesses the input image at scale factors of 1, 0.75, 0.5 and

then combines the network responses by upsampling the

lower scales and taking an element-wise maximum. It uses

random horizontal flipping, and random scaling of the input

image to achieve data augmentation.

Fully-Connected G-CRF network. Our fully-

connected G-CRF (dense-G-CRF) network is shown in

Fig. 2. It uses the base network to provide unaries, and

a sub-network (resnet-pw) in parallel to the base network

to construct the pixel embeddings for the pairwise terms.

As dictated by our experiments in Sec. 4.1 the resnet-pw

has layers conv1 through res4a. We use a 3−phase train-

ing strategy. We first train the unary network without the

pairwise stream. We train the pairwise sub-network next,

with the softmax cross-entropy loss to enforce the follow-

ing objective: Ap1,p2
(l1, l2) < Ap1,p2

(l′1 6= l1, l
′
2 6= l2),

where l1, l2 are the ground truth labels for pixels p1, p2. Fi-

nally, we combine the unary and pairwise networks, and

train them together in end-to-end fashion. Each training

phase uses 20K iterations with a batch size of 10. The ini-

tial learning rate for the first two phases is fixed to 0.001,

while for the third phase we set it to 2.5e−4. We use a poly-

nomial decaying learning rate with power= 0.9. Training

each network takes around 2.5 days on a GTX-1080 GPU.

4.1. Semantic Segmentation

Dataset. We use the PASCAL VOC 2012 dataset which

has 1464 training, 1449 validation and 1456 test images

containing 20 foreground object classes. We also use the

additional ground-truth from [12], obtaining 10582 training

images in total. The evaluation criterion is the mean pixel

intersection-over-union (IOU) metric.

Ablation Studies. In these experiments, we train on the

train set, and evaluate on the val set. We study the effect of

varying the depth of the pairwise network stream by chop-

ping the resnet-101 at three lengths, indicated by the stan-

dard resnet layer names. We also study the effect of chang-

ing the size of G-CRF pixel-embeddings. These results are

reported in table 2. The best results are obtained at em-

bedding size of 128 and 1024 for general- and Potts-type

embeddings respectively. Results improve as we increase

the depth of resnet-pw. Even though the Potts-type embed-

dings are higher dimensional than the general embeddings,

we learn less than half the parameters (128× 21 = 2688 >

1024). Improvement over the base-network is 0.91%.

Base network [6] 76.30

dense-G-CRF Embedding Dimension →
resnet-pw size ↓ 64 128 256 512

res2a 76.79 76.81 76.80 76.80
res3a 76.98 76.85 76.84 76.71
res4a 76.95 77.05 76.95 76.97

densepotts-G-CRF Embedding Dimension →
resnet-pw size ↓ 256 512 1024 2048

res2a 76.95 76.86 77.10 76.82
res3a 76.98 76.86 77.15 76.85
res4a 76.99 77.10 77.21 76.92

Table 2. Ablation study- mean Intersection Over Union (IOU) ac-

curacy on PASCAL VOC 2012 validation set. We compare the

performance of our method against that of the base network, and

study the effect of varying the depth of the pairwise stream net-

work, and the size of pixel embeddings.

Performance on test set. We now compare our ap-

proach with the base network [6], the base network with

the sparse deep G-CRF from [2], as well as other leading

approaches on this benchmark. In these experiments, we

train with the train and val sets, and evaluate performance

5108



on the test set. In all of the following sections we use our

best configurations from table 2.

Baselines. The mainstream approach on this task is to

use fully convolutional networks [5, 6, 29] trained with the

Softmax cross-entropy loss. For this task, we compare our

approach with the state of the art methods on this bench-

mark. The baselines include (a) the CRF as RNN net-

work [40], (b) the Deeplab+Boundary network [18] which

exploits an edge detection detection network to boost the

performance of the Deeplab network, (c) the Adelaide Con-

text network [26], (d) the deep parsing network [28], (e)

the Deeplab-v2 base network [6] and (f) the sparse-G-CRF

network [2] which combines the Deeplab-v2 network with

sparse, Potts-type pairwise terms.

We report the results in table 3. With our dense-Potts em-

beddings, we get an improvement of 0.8% over the sparse

deep G-CRF approach, and 1.3% over the base network.

We get a 0.1% boost in performance when we train our

dense-Potts model with the sparse G-CRF from [2] (the

output after dense-GCRF inference is fed as input to the

sparse-GCRF inference module). Qualitative results are

shown in Fig. 5. We note that performances of two re-

cent deep-architectures namely PSPNet [38] and Deeplab-

v3 [3] are significantly better than those of our baseline and

other competing approaches. However, the authors of these

works have not yet released their training pipelines publicly.

We expect similar improvements by using our approach on

these networks. We will experiment with these networks

once their training pipelines are made available.

Method mean IoU

CRFRNN [40] 74.7

Deeplab Multi-Scale + CRF [18] 74.8

Adelaide Context [26] 77.8

Deep Parsing Network [28] 77.4

Deeplab V2 (base network) [6] 79.0

Deeplab V2 + CRF [6] 79.7

sparsepotts-G-CRF [2] 79.5

dense-G-CRF (Ours) 80.1

densepotts-G-CRF (Ours) 80.3

densepotts+sparsepotts-G-CRF (Ours) 80.4

Table 3. Semantic segmentation - mean Intersection Over Union

(IOU) accuracy on PASCAL VOC 2012 test.

4.2. Human part Segmentation

Dataset. We use the PASCAL Person Parts dataset [9].

As in [24], we merge the annotations to obtain six per-

son part classes, namely the head, torso, upper arms, lower

arms, upper legs, and lower legs. This dataset has 1716 train

images and 1817 test images. The evaluation criterion is the

mean pixel intersection-over-union (IOU) metric.

Baselines. The state of the art approaches on human

part segmentation also use fully convolutional networks,

sometimes additionally exploiting Long Short Term Mem-

ory Units [24, 25]. For this task, we compare our approach

to the following methods: (a) the Deeplab attention to scale

network [4], (b) the Auto Zoom network [37], (c) the Lo-

cal Global LSTM network [25] which combines local and

global cues via LSTM units, (d) the Graph LSTM net-

work [24], (e) the base network with and without dense CRF

post-processing, and (f) the sparse G-CRF Potts model.

We report the results in table 4. While the previous

state of the art approach Deeplab-v2 achieves 64.94 with

dense-CRF post-processing, out Potts-type model outper-

forms it by 1.33% mean IoU without using dense-CRF post-

processing. Additionally, we outperform the Deeplab-V2

G-CRF Potts baseline from [2] by 1.06%. Using the sparse-

G-CRF on top of our results gives us a minor boost of

0.04%. We show qualitative results in Fig. 5.

Attention [4] 56.39

Auto Zoom [37] 57.54

LG-LSTM [25] 57.97

Graph LSTM [24] 60.16

Deeplab-V2 [6] 64.40

Deeplab-V2-CRF [6] 64.94

sparsepotts-G-CRF [2] 65.21

dense-G-CRF (Ours) 66.10

densepotts-G-CRF (Ours) 66.27

densepotts+sparsepotts-G-CRF (Ours) 66.31

Table 4. Part segmentation - mean Intersection-Over-Union accu-

racy on the PASCAL Parts dataset of [9].

4.3. Saliency Estimation

Datasets. As in [19], we use the MSRA-10K saliency

dataset [35] for training, and evaluate our performance on

the PASCAL-S [23], and the HKU-IS [21] datasets. The

Method PASCAL-S HKU-IS

LEGS [36] 0.752 0.770

MC [39] 0.740 0.798

MDF [21] 0.764 0.861

FCN [22] 0.793 0.867

DCL [22] 0.815 0.892

DCL + CRF [22] 0.822 0.904

Ubernet 1-Task [19] 0.835 -

Deeplab-v2 [6] 0.859 0.916

sparse-G-CRF [2] 0.861 0.914

dense-G-CRF (Ours) 0.872 0.927

dense+sparse-G-CRF (Ours) 0.864 0.927

Table 5. Saliency estimation results: we report the Maximal F-

measure (MF) on the PASCAL Saliency dataset of [23], and the

HKU-IS dataset of [21].
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(a) Unary (b) sparse G-CRF (c) dense G-CRF (d) Image+GT(a) Unary (b) sparse G-CRF (c) dense G-CRF
(i) Human Parts Segmentation (ii) Semantic Segmentation

(d) Image+GT

Figure 5. Qualitative Results of (i) Part Segmentation, and (ii) Semantic Segmentation tasks. (a) shows the unary network output, (b) shows

the sparsepotts-G-CRF output, (c) shows the densepotts-G-CRF output, and (d) shows the input image and ground truth. In (i), our fully

connected model recovers false negatives (rows 1,4), and missing parts (the right foot in rows 2,3), and prevents propagation of erroneous

labels (a patch labeled face is eliminated from the right foot in row 5). In (ii), this information flow from the rest of the image helps recover

missing object parts (cycle in rows 1,3, person’s leg in row 2, table in row 4, sheep’s leg in row 5, and left hand in row 7.)

MSRA-10K dataset contains 10000 images with annotated

pixel-wise segmentation masks for salient objects. The

Pascal-S saliency dataset contains pixel-wise saliency for

850 images. The HKU-IS dataset has 4447 images, with

multiple salient objects in each image. The evaluation cri-

terion is the maximal F-Measure as in [19, 23].

Baselines. Our baselines for the saliency estimation task

include (a) the Local Estimation and Global Search (LEGS)

framework [36], (b) the multi-context network [39], (c)

the multiscale deep features network [21], (d) the deep

contrast learning networks [22] which proposes a network

structure that better exploits object boundaries to improve

saliency estimation and additionally uses a fully connected

CRF model, (e) the Ubernet architecture [19] which demon-

strates that sharing parameters for mutually symbiotic tasks

can help improve overall performance of these tasks, (f) our

base network, i.e. Deeplab-v2, and (g) the sparse G-CRF

Potts model alongside the base network.

Results are tabulated in table 5. Our method significantly

outperforms the competing methods on both datasets. Ad-

ditionally, we do not obtain improvements when combining

our method with the sparse G-CRF approach.

5. Conclusions and Future Work

In this work we propose a fully-connected G-CRF model
for end-to-end training of deep architectures. We propose
strategies for efficient implementation and show that infer-
ence over a fully-connected graph comes with neglegible
computational overhead compared to a sparsely connected
graph. Our experimental evaluation indicates consistent
improvements over the state of the art approaches on three
challenging public benchmarks for semantic segmenta-
tion, human part segmentation and saliency estimation.
Future work would involve exploiting this framework on
other dense labeling and regression tasks such as depth
estimation, image denoising and estimation of surface
normals, which can be naturally handled by our model
owing to its continuous nature. Further, we would also
like to exploit G-CRF embeddings for dense-labeling tasks
such as semantic/instance segmentation and optical flow
estimation in videos. In the case of videos, we would like
to capture not only the spatial context but temporal context
as well by expressing temporal pairwise terms between two
frames via dot products of embeddings computed on them.
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