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Abstract

While deep learning methods have achieved state-of-the-

art performance in many challenging inverse problems like

image inpainting and super-resolution, they invariably in-

volve problem-specific training of the networks. Under this

approach, each inverse problem requires its own dedicated

network. In scenarios where we need to solve a wide variety

of problems, e.g., on a mobile camera, it is inefficient and

expensive to use these problem-specific networks. On the

other hand, traditional methods using analytic signal priors

can be used to solve any linear inverse problem; this often

comes with a performance that is worse than learning-based

methods. In this work, we provide a middle ground between

the two kinds of methods — we propose a general framework

to train a single deep neural network that solves arbitrary

linear inverse problems. We achieve this by training a net-

work that acts as a quasi-projection operator for the set

of natural images and show that any linear inverse prob-

lem involving natural images can be solved using iterative

methods. We empirically show that the proposed framework

demonstrates superior performance over traditional methods

using wavelet sparsity prior while achieving performance

comparable to specially-trained networks on tasks including

compressive sensing and pixel-wise inpainting.

1. Introduction

At the heart of many image processing tasks is a linear

inverse problem, where the goal is to reconstruct an image

x ∈ R
d from a set of measurements y ∈ R

m of the form

y = Ax + n, where A ∈ R
m×d is the measurement op-

erator and n ∈ R
m is the noise. For example, in image

inpainting, A is the linear operation of applying a pixelwise

mask to the image x. In super-resolution, A downsamples
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Figure 1: The same network is used to solve the following

tasks: compressive sensing problem with 10× compression,

pixelwise random inpainting with 80% dropping rate, scat-

tered inpainting, and 2×-super-resolution. Note that even

though the nature and input dimensions of the problems are

very different, the proposed framework is able to use a single

network to solve them all without retraining.

high-resolution images. In compressive sensing, A is a short-

fat matrix with fewer rows than columns and is typically a

random sub-Gaussian or a sub-sampled orthonormal matrix.

Linear inverse problems are often underdetermined, i.e., they

involve fewer measurements than unknowns. Such under-

determined systems are extremely difficult to solve since

the operator A has a non-trivial null space and there are an

infinite number of feasible solutions; however, only a few of

the feasible solutions are valid natural images.
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Solving linear inverse problems. There are two broad ap-

proaches for solving linear underdetermined problems. The

first approach regularizes the inverse problem with signal

priors that identify the true solution from the infinite set of

feasible solutions [9, 18, 19, 31, 39]. However, most hand-

designed signal priors provide limited identification ability,

i.e., many non-image signals can satisfy the constraints and

be falsely identified as natural images. The second approach

learns a direct mapping from the linear measurement y to the

solution x, with the help of large training datasets and deep

neural nets. Such methods have achieved state-of-the-art per-

formance in many challenging image inverse problems like

super-resolution [17, 29], inpainting [38], compressive sens-

ing [28, 35, 36], and image debluring [49]. Despite their su-

perior performance, these methods are designed for specific

problems and usually cannot solve other problems without

retraining the mapping function — even when the problems

are similar. For example, a 4×-super-resolution network

cannot be easily readapted to solve 2× super-resolution prob-

lems; a compressive sensing network for Gaussian random

measurements is not applicable to sub-sampled Hadamard

measurements. Training a new network for every single mea-

surement operator is a wasteful proposition. In comparison,

traditional methods using hand-designed signal priors can

solve any linear inverse problems but they often have poorer

performance on an individual problem. Clearly, a middle

ground between these two classes of methods is needed.

One network to solve them all. We ask the following

question: if we have a large dataset of natural images, can

we learn from the dataset a signal prior that can deal with

any linear inverse problem involving images? Such a signal

prior can significantly lower the cost to incorporate inverse

algorithms into consumer products, for example, via the

form of specialized hardware design. To answer this ques-

tion, we observe that in optimization algorithms for solving

linear inverse problems, signal priors usually appears in the

form of proximal operators. Geometrically, the proximal op-

erator projects the current estimate closer to the feasible sets

(natural images) constrained by the signal prior. Thus, we

propose to learn the proximal operator with a deep projection

model. Once learned, the same network can be integrated

into many standard optimization frameworks for solving

arbitrary linear inverse problems of natural images.

Contributions. We make the following contributions.

• We propose a general framework that, for large image

datasets, implicitly learns a signal prior in the form of a

projection operator. When integrated into an alternating

direction method of multipliers (ADMM) algorithm, the

same proposed projection operator can solve challenging

linear inverse problems.

• We identify the convergence conditions of the nonconvex

ADMM with the proposed projection operator, and we use

these conditions as the guidelines to design the proposed

projection network.

• We empirically show that specially-trained networks are

indeed sensitive to changes in the linear operators and

noise in the linear measurements, and require retraining

for effective usage. In contrast, the proposed method

can be easily repurposed to small and big changes in the

measurement operator without any retraining.

Limitations. A limitation of our method is its reliance on

iterative methods; this is often computationally expensive

when compared to specially-trained networks that are often

non-iterative. Using a learned projection network also limits

our ability to fine-tune the weight of the signal prior on-the-

fly. Our convergence analysis is based on a perfectly learned

projection network, which may not occur in practice. For

very challenging problems like image inpainting with large

missing regions, our current projection network may fail to

produce satisfying results (see Figure 7).

2. Related Work

Given noisy linear measurements y and the corresponding

linear operator A, which is usually underdetermined, the goal

of linear inverse problems is to find a solution x, such that

y ≈ Ax and x be a signal of interest, in our case, an image.

Based on their strategies to deal with the underdetermined

nature of the problem, algorithms for linear inverse problems

can be roughly categorized into those using hand-designed

signal priors and those learning from datasets. In this section,

we briefly review some of these methods.

Hand-designed signal priors. Linear inverse problems

are usually regularized by signal priors in a penalty form:

min
x

1

2
‖y −Ax‖

2
2 + λφ(x), (1)

where φ : R
d → R is the signal prior and λ is the non-

negative weighting term. Signal priors constraining the

sparsity of x in some transformation domain have been

widely used in literatures. For example, since images are

usually sparse after wavelet transformation or after taking

gradient operations, a signal prior φ can be formulated as

φ(x) = ‖Wx‖1, where W is a operator representing either

wavelet transform, taking image gradient, or other hand-

designed linear operation that produces sparse features from

images [20]. Using signal priors of ℓ1-norms provides two

advantages. First, it forms a convex optimization problem

and provides global optimality. The optimization problem

can be solved efficiently with a variety of algorithms for con-

vex optimization. Second, ℓ1 priors enjoy many theoretical

guarantees, thanks to results in compressive sensing [8]. For

example, if the linear operator A satisfies conditions like the

restricted isometry property and Wx is sufficiently sparse,

the optimization problem (1) provides the sparsest solution.
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Despite their algorithmic and theoretical benefits, hand-

designed priors are often too generic to constrain the solution

set of the inverse problem (1) to be natural images — we can

easily generate noise-like signals that have sparse wavelet

coefficients or gradients.

Learning-based methods. The ever-growing number of

images on the Internet enables state-of-the-art algorithms

to deal with challenging problems that traditional methods

are incapable of solving. For example, image inpainting and

restoration can be performed by pasting image patches or

transforming statistics of pixel values of similar images in a

large dataset [15, 24]. Image denoising and super-resolution

can be performed with dictionary learning methods that re-

construct image patches with sparse linear combinations

of dictionary entries learned from datasets [4, 50]. Large

datasets can also help learn end-to-end mappings from the

linear measurement domain to the image domain. Given

a linear operator A and a dataset M = {x1, . . .,xn},
the pairs {(xi, Axi)}

n
i=1 can be used to learn an inverse

mapping f ≈ A−1 by minimizing the distance between

xi and f(Axi), even when A is underdetermined. State-

of-the-art methods usually parametrize the mapping func-

tions with deep neural nets. For example, stacked auto-

encoders and convolutional neural nets have been used

to solve compressive sensing and image deblurring prob-

lems [28, 35, 36, 49, 51]. Recently, adversarial learning [21]

has been demonstrated for its ability to solve many chal-

lenging image problems, such as image inpainting [38] and

super-resolution [14, 29].

Despite its ability to solve challenging problems, learning

end-to-end mappings has a major disadvantage — the num-

ber of mapping functions scales linearly with the number of

problems. Since the datasets are generated based on specific

operators As, these end-to-end mappings can only solve the

given problems. Even if the problems change slightly, the

mapping functions (neural nets) need to be retrained. For

example, a mapping to solve 2×-super-resolution cannot be

used directly to solve 3×- or 4×-super-resolution with satis-

factory performance; it is even more difficult to re-purpose

a mapping for image inpainting to solve super-resolution

problems. This specificity of end-to-end mappings makes it

costly to incorporate them into consumer products that need

to deal with a variety of image processing applications.

Deep generative models. Another thread of research

learns generative models from image datasets. Suppose we

have a dataset containing samples of a distribution P (x). We

can estimate P (x) and sample from the model [27,43,44], or

directly generate new samples from P (x) without explicitly

estimating the distribution [21, 40]. Dave et al. [16] use a

spatial long-short-term memory network to learn the distri-

bution P (x); to solve linear inverse problems, they solve a

maximum a posteriori estimation — maximizing P (x) over

x subject to y = Ax. Nguyen et al. [37] use a discriminative

network and denoising autoencoders to implicitly learn the

joint distribution between the image and its label P (x, y),
and they generate new samples by sampling the joint dis-

tribution P (x, y), i.e., the network, with an approximated

Metropolis-adjusted Langevin algorithm. To solve image in-

painting, they replace the values of known pixels in sampled

images and repeat the sampling process. As the proposed

framework, these methods can be used to solve a wide vari-

ety of inverse problems. They use a probability framework

and thereby can be considered orthogonal to the proposed

framework, which is motivated by a geometric perspective.

3. One Network to Solve Them All

Signal priors play an important role in regularizing under-

determined inverse problems. As mentioned earlier, tradi-

tional priors constraining the sparsity of signals in gradient

or wavelet bases are often too generic, in that we can easily

create non-image signals satisfying these priors. Instead of

using traditional signal priors, we propose to learn a prior

from a large image dataset. Since the prior is learned directly

from the dataset, it is tailored to the statistics of images in

the dataset and, in principle, provide stronger regularization

to the inverse problem. In addition, similar to traditional

signal priors, the learned signal prior can be used to solve

any linear inverse problems pertaining to images.

3.1. Problem formulation

The proposed framework is motivated by the optimiza-

tion technique, alternating direction method of multipliers

(ADMM) [7], that is widely used to solve linear inverse prob-

lems as defined in (1). A typical first step in ADMM is to

separate a complicated objective into several simpler ones

by variable splitting, i.e., introducing an additional variable

z that is constrained to be equal to x. This gives us the

following optimization problem:

min
x,z

1

2
‖y −Az‖

2
2 + λφ(x) s.t. x = z, (2)

that is equivalent to the original problem (1). The scaled

form of the augmented Lagrangian of (2) can be written as

L(x, z,u) =
1

2
‖y −Az‖22+λφ(x) +

ρ

2
‖x− z+ u‖

2
2,

where ρ > 0 is the penalty parameter of the constraint x =
z, and u represents the dual variables divided by ρ. By
alternately optimizing L(x, z,u) over x, z, and u, ADMM
is composed of the following steps:

x
(k+1) ← argmin

x

ρ

2

∥

∥

∥
x− z

(k) + u
(k)

∥

∥

∥

2

2
+ λφ(x) (3)

z
(k+1) ← argmin

z

1

2
‖y −Az‖22+

ρ

2

∥

∥

∥
x
(k+1)−z+u

(k)
∥

∥

∥

2

2
(4)

u
(k+1) ← u

(k) + x
(k+1) − z

(k+1)
.
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Figure 2: Given a large image dataset, the proposed framework

learns a classifier D that fits a decision boundary of the natural

image set. Based on D, a projection network P(x):Rd→R
d is

trained to fit the proximal operator of D, which enables one to

solve a variety of linear inverse problems using ADMM.

The update of z in (4) is a least squares problem and can be

solved efficiently via conjugate gradient descent. The update

of x in (3) is the proximal operator of the signal prior φ with

penalty ρ
λ

, denoted as proxφ, ρ
λ
(v), where v=z(k)−u(k).

When the signal prior uses ℓ1-norm, the proximal operator is

simply a soft-thresholding on v. Notice that the ADMM al-

gorithm separates the signal prior φ from the linear operator

A. This enables us to learn a signal prior that can be used

with any linear operator.

3.2. Learning a proximal operator

Since signal priors only appears in the form of proximal

operators in ADMM, instead of explicitly learning a signal

prior φ and solving the proximal operator in each step of

ADMM, we propose to directly learn the proximal operator.

Let X represent the set of all natural images. The best

signal prior is the indicator function of X , denoted as IX (·),
and its corresponding proximal operator proxIX ,ρ(v) is a

projection operator that projects v onto X from the geomet-

ric perspective— or equivalently, finding a x ∈ X such that

‖x− v‖ is minimized. However, we do not have the oracle

indicator function IX (·) in practice, so we cannot evaluate

proxIX ,ρ(v) to solve the projection operation. Instead, we

propose to train a classifier D with a large dataset whose

decision function approximates IX . Based on the learned

classifier D, we can learn a projection function P that maps

a signal v to the set defined by the classifier. The learned pro-

jection functionP can then replace the proximal operator (3),

and we simply update x via

x(k+1) ← P(z(k) − u(k)). (5)

An illustration of the idea is shown in Figure 2.

There are some caveats for this approach. First, when the

decision function of the classifier D is non-convex, the over-

all optimization becomes non-convex. For solving general

non-convex optimization problems, the convergence result

is not guaranteed. Based on the theorems for the conver-

gence of non-convex ADMM [47], we provide the following

theorem to the proposed ADMM framework.

Theorem 1. Assume that the function P solves the proximal

operator (3). If the gradient of φ(x) is Lipschitz continuous

and with large enough ρ, the ADMM algorithm is guaranteed

to attain a stationary point.

The proof follows directly from [47] and we omit the

details here. Although Theorem 1 only guarantees conver-

gence to stationary points instead of the optimal solution

as other non-convex formulations, it ensures that the algo-

rithm will not diverge after several iterations. Second, we

initialize the scaled dual variables u with zeros and z(0)

with the pseudo-inverse of the least-square term. Since

we initialize u0 = 0, the input to the proximal operator

v(k)=z(k)−u(k) = z(k) +
∑k

i=1

(

x(i) − z(i)
)

≈ z(k) re-

sembles an image. Thereby, even though it is in general

difficult to fit a projection function from any signal in R
d to

the natural image space, we expect that the projection func-

tion only needs to deal with inputs that are close to images,

and we train the projection function with slightly perturbed

images from the dataset. Third, techniques like denoising

autoencoders learn projection-like operators and, in princi-

ple, can be used in place of a proximal operator; however,

our empirical findings suggest that ignoring the projection

cost ‖v−P(v)‖2 and simply minimizing the reconstruction

loss ‖x0 − P(v)‖
2, where v is a perturbed image from x0,

leads to instability in the ADMM iterations.

3.3. Implementation details

An overview of the framework is illustrated in Figure 3.

The projection operatorP is implemented by a typical convo-

lutional autoencoder, the classifier D and an auxiliary latent-

space classifier Dℓ (whose use will be discussed below) are

implemented by residual nets [25]. The architectures of

the networks are discussed in the supplemental materials.

Our code and trained models are online [1]. Below, we will

discuss the choices made when designing the framework.

Choice of activation function. We use cross entropy loss

as the discriminative loss to the classifiers. Since φ is the

decision function of D, we have φ(x) = log(σ(D(x))),
where σ is the sigmoid function. According to Theorem 1,

we need the gradient of φ to be Lipschitz continuous. Thus,

in order to make D differentiable, we choose the smooth

exponential linear unit [12] as its activation function, instead

of rectified linear units. To bound the gradients of D w.r.t. x,

we truncate the weights of the network after each iteration.

Image perturbation. While adding Gaussian noise may

be the simplest method to perturb an image, we found that

the projection network will easily overfit the Gaussian noise

and become a dedicated Gaussian denoiser. Since during

the ADMM process, the inputs to the projection network,
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z(k) − u(k), do not usually follow a Gaussian distribution,

an overfitted projection network may fail to project the gen-

eral signals produced by the ADMM process. To avoid

overfitting, we generate perturbed images with two methods

— adding Gaussian noise with spatially-varying standard

deviations and smoothing the input images. The detailed

implementation of image perturbation can be found in the

supplemental material. We only use the smoothed images

on ImageNet and MS-Celeb-1M datasets.

Training procedure. One way to train the classifier D is

to feed D natural images from a dataset and their perturbed

counterparts. Nevertheless, we expect the projected images

produced by the projectorP be closer to the datasetM (natu-

ral images) than the perturbed images. Therefore, we jointly

train two networks using adversarial learning. The projector

P is trained to minimize (3), that is, confusing the classifier

D by projecting v to the natural image set defined by the

decision boundary of D. When the projector improves and

generates outputs that are within or closer to the boundary,

the classifier can be updated to tighten its decision boundary.

Although we start from a different perspective from [21], the

joint training procedure described above can also be under-

stood as a two player game in adversarial learning, where

the projector and the classifier have adversarial objectives.

Specifically, we optimize the projection network with the

following objective function:

min
θP

∑

x∈M,v∼f(x)

λ1‖x− P(x)‖2+λ2‖x− P(v)‖2+ · · ·

· · ·λ3‖v − P(v)‖2−λ4 log (σ(Dℓ ◦ E(v)))− λ5 log (σ(D ◦ P(v))),
(6)

where θP is the parameters of the projection network P , f

is the function we used to generate perturbed images, and

the first two terms in (6) are similar to (denoising) autoen-

coders and are added to help the training procedure. The

remaining terms in (6) form the projection loss as we need

in (3). We use two classifiers D and Dℓ, for the output

(image) space and the latent spaces of the projector (E(v)
in Figure 3), respectively. The latent-space classifier Dℓ is

added to further help the training procedure. Essentially, Dℓ

encourages the perturbed images and their corresponding

clean images to share the same encoding. More intuition

about the latent-space classifier can be found in [32]. We

also find that adding Dℓ helps the projector avoid overfitting.

In all of our experiments, we set λ1 = 0.01, λ3 = 0.005,

λ2 = 1.0, λ4 = 0.0001, and λ5 = 0.001.

3.4. Relationship to other techniques

Many recent works solve linear inverse problems by un-

rolling the optimization process into the network architec-

ture [3,6,22, 26]. Since the linear operator A is incorporated

in the architecture, these networks are problem-specific. The

Figure 3: Block diagram of the framework. The adversarial learn-

ing is conducted on both image and latent spaces of P .

proposed method is also similar to the denoising-based ap-

proximate message passing algorithm [34] and plug-and-

play priors [45], which replace the proximal operator with

an image denoiser.

Adversarial learning and denoising autoencoder. In

terms of architecture, the proposed framework is very simi-

lar to adversarial learning [10, 21] and denoising autoen-

coder [38, 46]. Compared to adversarial learning, that

matches the probability distributions of the dataset and the

generated images, the proposed framework is based on the

geometric perspective and the ADMM framework. Our use

of the adversarial training is simply for learning a tighter

decision boundary, based on the hypothesis that images gen-

erated by P should be closer, in terms of ℓ2 distance, to X
than the arbitrarily perturbed images. Compared to denois-

ing autoencoder, the projection network P is encouraged

to project perturbed images x0 + n to the closest x in X ,

instead of the original image x0. In our empirical experience,

the difference helps stabilize the ADMM process.

Other related methods. Many concurrent works also pro-

pose to solve generic linear inverse problems by learning

proximal operators [33,48]. Meinhardt et al. [33] replace the

proximal operator with a denoising network. Xiao et al. [48]

use a modified multi-stage non-linear diffusion process [11]

to learn the proximal operator.

Dave et al. [16] and Bora et al. [5] learn generative mod-

els of natural images and solve linear inverse problems by

performing maximum a posteriori inference. Their algo-

rithms need to compute the gradient of the networks in each

iteration, which can be computationally expensive when

the networks are very deep and complex. In contrast, the

proposed method directly provides the solution to the x-

update (5) and is thus computationally efficient.

3.5. Limitations

Unlike traditional signal priors whose weights λ can be

adjusted at the time of solving the optimization problem (1),

the prior weight of the proposed framework is fixed once

the projection network is trained. While an ideal projection

operator should not be affected by the value of the prior

weights, sometimes, it may be preferable to control the effect

of the signal prior to the solution. In our experiments, we find
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Figure 4: Convergence of the ADMM algorithms for compressive

sensing (left) and scattered inpainting (right) of Figure 1.

that adjusting ρ sometimes has similar effects as adjusting λ.

The convergence analysis of ADMM in Theorem 1 is

based on the assumption that the projection network can

provide global optimum of (3). However, in practice the

optimality is not guaranteed. While there are convergence

analyses with inexact proximal operators, the general prop-

erties are too complicated to analyze for deep neural nets. In

practice, we find that for problems like pixelwise inpainting,

compressive sensing, 2× super-resolution and scattered in-

painting the proposed framework converges gracefully, as

shown in Figure 4, but for more challenging problems like

image inpainting with large blocks and 4×-super-resolution

on ImageNet dataset, we sometimes need to stop the ADMM

procedure early (by monitoring the residual ‖x(k) − z(k)‖).

4. Experiments

We evaluate the proposed framework on the MNIST

dataset [30], MS-Celeb-1M dataset [23], ImageNet

dataset [41], and LabelMe dataset [42], whose descriptions

are listed in Table 1.

For each of the datasets, we perform the following tasks:

(i) Compressive sensing. We use m× d random Gaussian

matrices of different compression (m
d

) as the linear op-

erator A. The images are vectorized into d-dimensional

vectors x and multiplied with the random Gaussian

matrices to form y.

(ii) Pixelwise inpainting and denoising. We randomly drop

pixels (independent of channels) by filling zeros and

add Gaussian noise with different standard deviations.

(iii) Scattered inpainting. We randomly drop 10 small

blocks by filling zeros. Each block is of 10% width

and height of the input.

(iv) Blockwise inpainting. We fill the center 30% region of

the input images with zeros.

(v) Super resolution. We downsample the images into 50%
and 25% of the original width and height using box-

averaging algorithm.

Configurations of specially-trained networks. For each

task (except for 4×-super resolution and for scattered inpaint-

ing), we train a deep neural net using context encoder [38]

with adversarial training. For compressive sensing, we de-

sign the network based on the work of [35], which applies

dataset # of samples resolution

MNIST (hand-written digits) 60k + 10k 28×28×1

MS-Celeb (faces of 100k people) 8 million 64×64×3

ImageNet (natural images on the web) 1.2 million + 100k 64×64×3

LabelMe (natural images on the web) 2, 920 + 1, 133 64×64×3

Table 1: Datasets used to examine the proposed framework. For

MS-Celeb-1M, we randomly select images of 73, 678 people as the

training set and use the rest as the test set. The images are resized

to the listed resolution before the training procedure.

A⊤ to the linear measurements and resize it into the image

size to operate in image space. The measurement matrix

A is a random Gaussian matrix and is fixed. For pixelwise

inpainting and denoise, we randomly drop 50% of the pixels

and add Gaussian noise with σ = 0.5 for each training in-

stances. For blockwise inpainting, we drop a block with 30%
size of the images at a random location in the images. For

2×-super resolution, we follow the work of Dong et al. [17]

which first upsamples the low-resolution images to the target

resolution using bicubic interpolation. We do not train a

network for 4×-super resolution and for scattered inpainting

— to demonstrate that the specially-trained networks do not

generalize well to similar tasks. Since the inputs to the 2×-

super resolution network are bicubic-upsampled images, we

also apply the upsampling to 1
4 -resolution images and feed

them to the same network. We also feed scattered inpainting

inputs to the blockwise inpainting network.

Configurations of wavelet sparsity prior. We compare

the proposed framework with the traditional signal prior

using ℓ1-norm of wavelet coefficients. We tune the weight

of the ℓ1 prior, λ, based on the dataset. For pure image

denoising task, we will compare with the state-of-the-art

algorithm BM3D [13] in the supplementals.

Results. For each of the experiments, we use ρ = 0.3 if

not mentioned. The results on MNIST, MS-Celeb-1M, and

ImageNet dataset are shown in Figures 5, 6, and 7, respec-

tively. We also apply the same projection network trained on

ImageNet dataset on the test set of LabelMe dataset. We list

the statistics of peak-to-noise ratio (PSNR) values of the re-

construction outputs in Table 2. In addition, we use the same

projection network on the image shown in Figure 1, which

was not from any of the datasets above and can be found

in [2]. To deal with the 384× 512 image, when solving the

projection operation (3), we apply the projection network on

64 × 64 patches and stitch the results. The reconstruction

outputs are shown in Figure 1, and their statistics of each

iteration of ADMM are shown in Figure 4.

As can be seen from the results, using the proposed pro-

jection operator/network learning from datasets enables us to

solve more challenging problems than using the traditional

wavelet sparsity prior. In Figures 5 and 6, while the tradi-
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Figure 5: Results on MNIST dataset. Since the input of compressive sensing cannot be visualized, we show the ground truth instead.

Compressive sensing 1 uses m
d
= 0.3 and compressive sensing 2 uses m

d
= 0.03. Pixelwise inpaint 1 drops 50% of the pixels, and pixelwise

inpaint 2 drops 70% of the pixels and adds Gaussian noise with σ = 0.3. We use ρ = 0.1 for pixelwise inpainting and ρ = 0.05 for

blockwise inpainting.
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Figure 6: Results on MS-Celeb-1M dataset. The PSNR values are shown in the lower-right corner of each image. For compressive sensing,

we test on m
d
= 0.1. For pixelwise inpainting, we drop 50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 1.0 on both

super resolution tasks.

tional ℓ1-prior of wavelet coefficients is able to reconstruct

images from compressive measurements with m
d

= 0.3,

it fails to handle larger compression ratios like m
d

= 0.1
and 0.03. Similar observations can be seen on pixelwise

inpainting of different dropping probabilities and scattered

and blockwise inpainting. In contrast, since the proposed

projection network is tailored to the images in the datasets,

it enables the ADMM algorithm to solve challenging prob-

lems like compressive sensing with small m
d

and blockwise

inpainting on MS-Celeb dataset.

Robustness to changes in linear operator and to noise.

Even though the specially-trained networks are able to gen-

erate state-of-the-art results on their designing tasks, they

are unable to deal with similar problems, even with a slight

change of the linear operator A. For example, as shown in

Figure 6, the blockwise inpainting network is able to deal

with much larger vacant regions; however, it overfits the prob-

lem and fails to fill contents to smaller blocks in scattered

inpainting problems. The 2×-super resolution network also

fails to reconstruct higher resolution images for 4×-super

task ℓ1 prior proposed specially-trained

compressive sensing (10×) 13.01 (±2.75) 25.43 (±3.74) 25.18 (±2.82)

pixelwise inpaint, denoise 20.68 (±1.65) 26.29 (±1.98) 30.13 (±1.66)

2× super-resolution 27.30 (±2.50) 27.11 (±3.21) 22.59 (±2.89)

scattered inpaint 27.85 (±2.58) 25.69 (±3.45) 18.30 (±2.55)

(a) ImageNet

task ℓ1 prior proposed specially-trained

compressive sensing (10×) 13.79 (±3.67) 27.34 (±5.15) 27.49 (±4.16)

pixelwise inpaint, denoise 21.72 (±2.17) 27.71 (±3.05) 30.93 (±1.96)

2× super-resolution 29.00 (±4.08) 28.52 (±4.64) 20.79 (±4.08)

scattered inpaint 30.17 (±3.96) 28.71 (±5.26) 18.65 (±3.12)

(b) LabelMe

Table 2: Average and standard deviation of PSNR values on 100k

randomly chosen test images from ImageNet and the whole La-

belMe test dataset. Note that we apply the same projection net-

work trained with ImageNet on LabelMe. The similarity in the

performance across the two datasets shows the robustness of the

projection network.
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Figure 7: Results on ImageNet dataset. The PSNR values are shown in the lower-right corner of each image. Compressive sensing uses
m
d

= 0.1. For pixelwise inpainting, we drop 50% of the pixels and add Gaussian noise with σ = 0.1. We use ρ = 0.05 on scattered

inpainting and ρ = 0.5 on super resolution.

ground truth orignal result resample 1% resample 5% resample 10% resample 20% noise σ=0.1 noise σ=0.2 noise σ=0.3 noise σ=0.4 noise σ=0.5

24.45 22.48 17.95 14.48 11.51 23.67 21.72 19.26 17.10 15.47

24.14 24.17 24.47 23.18 24.66 24.44 23.49 22.37 20.39 20.50

Figure 8: Comparison on the robustness to the linear operator A and noise on compressive sensing. The results of the specially-trained

network and the proposed method are shown at the top and bottom row, respectively, along with their PSNR values. We use ρ = 0.5 for

σ = 0.2, ρ = 0.7 for σ = 0.3, ρ = 1.0 for σ = 0.4, ρ = 1.1 for σ = 0.5, and ρ = 0.3 for all other cases.

resolution tasks, even though both inputs are upsampled

using bicubic algorithm beforehand. We extend this argu-

ment with a compressive sensing example. We start from the

random Gaussian matrix A0 used to train the compressive

sensing network, and we progressively resample elements in

A0 from the same distribution constructing A0. As shown in

Figure 8, once the portion of resampled elements increases,

the specially-trained network fails to reconstruct the inputs,

even though the new matrices are still Gaussian. The net-

work also shows lower tolerance to Gaussian noise added to

the clean linear measurements y = A0x0. In comparison,

the proposed projector network is robust to changes of linear

operators and noise.

Failure cases. The proposed projection network can fail

to solve very challenging problems like the blockwise in-

painting on ImageNet dataset, which has higher varieties in

image contents than the other two datasets we test on. As

shown in Figure 7, the proposed projection network tries to

fill in random edges in the missing regions. In these cases,

the projection network fails to project inputs to the natural

image set, and thereby, violates our assumption in Theorem 1

and affects the overall ADMM framework. Even though in-

creasing ρ can improve the convergence, it may produce

low-quality, overly smoothed outputs.

5. Conclusion

In this paper, we propose a general framework to implic-

itly learn a signal prior — in the form of a projection operator

— for solving generic linear inverse problems. The learned

projection operator enjoys the flexibility of deep neural nets

and wide applicability of traditional signal priors. With the

ability to solve generic linear inverse problems like denois-

ing, inpainting, super-resolution and compressive sensing,

the proposed framework resolves the scalability of specially-

trained networks. This characteristic significantly lowers

the cost to design specialized hardware (ASIC for example)

to solve image processing tasks. Thereby, we envision the

projection network to be embedded into consumer devices

like smart phones and autonomous vehicles to solve a variety

of image processing problems.

References

[1] Implementation of the proposed method and trained models. https:

//github.com/image-science-lab/OneNet. 4

5895

https://github.com/image-science-lab/OneNet
https://github.com/image-science-lab/OneNet


[2] One ring to rule them all. https://flic.kr/p/mGjhs7. 6
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